光学捕捉与柱对称矢量光束的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪70年代美国贝尔实验室的Ashkin发现光场中的梯度力可捕获微小粒子以来,光学捕捉技术或称之为光镊已经作为一种重要的工具被广泛应用于到从原子、分子、亚微米量级到几百个微米级别的各种微观领域的研究。围绕着光学捕捉中光束与粒子的相互作用,本论文主要完成了以下工作:
     1.提出了一种改进的T矩阵方法,使得计算非轴对称体和复杂形状微粒的散射场成为可能。普通的T矩阵方法只能计算轴对称型粒子,我们提出的改进T矩阵方法用表面剖分的办法对粒子的表面用一组三角形集合来近似,因此可以计算任何复杂形状微粒的散射场。
     2.针对T矩阵方法,提出了散射场的快速计算算法。在散射场的计算中,T矩阵的计算涉及到矩阵的乘法和求逆,当粒子尺寸很大时,这两种矩阵运算特别是求逆将消耗大量的时间。Petrov等人提出了一种优化的矩阵求逆算法,在这种优化矩阵求逆算法的基础上,我们提出了另外的快速计算散射场的算法。我们的方法通过进行矩阵与入射场系数矢量之间的运算来得到散射场,它们之间的运算可以通过上述的优化求逆的方法进行。数值结果显示我们的方法需要的时间少于Petrov等人方法消耗时间的一半。
     3.提出了用复源点球面波(CSPSW)矢量势来描述径向偏振光束(R-TEM_(01))。传统的描述多采用Lax微扰级数法来获得矢量势,其表达式随精度要求的提高而变得复杂。我们使用的CSPSW矢量势具有非常简单的数学形式,而且能准确地满足波动方程。
     4.提出了五次方修正的径向偏振Laguerre-Gauss光束(R-TEM_(nl))描述方法。应用Lax微扰级数法,得到了径向偏振光场产生矢量势(通常是沿z方向)的二阶修正表达式以及由其生成的五次方修正的R-TEM_(nl),同时得到了Laguerre-Gauss光束的任意次修正表达式。
     5.理论证明了径向偏振光束可以改善轴向捕捉效率。捕获光阱作用在粒子上的辐射力通常分为梯度力和散射力,后者在轴向捕捉是需要克服的,其大小依赖于Poynting矢量的纵向分量S_z。径向偏振光束的径向分量的强度在焦点附近将出现一个空洞,导致它的S_z在焦点附近为零,这很好地满足了降低散射力的要求,理论计算验证了这一点。
     6.为了进一步降低散射力,我们提出用双环径向偏振光束捕捉微粒。双环径向偏振光束的内外环的瞬时偏振方向刚好相反,经过聚焦后,其横向分量的强度将产生两个环,且内环强度小于R-TEM_(01)在相应区域横向分量的强度。由于S_z正比于横向分量的强度,我们预言只要粒子的半径限制在内环区域,DR R-TEM_(01)模相对于R-TEM_(01)模可以提供更高的轴向捕捉效率。
Since Ashkin of Bell Lab demonstrated in 1970 that the gradient force in optical field can trap micro-particle,optical trapping or optical tweezer has emerge as a powerful tool with wide-reaching applications in the study of microscopic field covering from atoms,molecules,sub-micron to the dimension of the order of hundreds micron.Centered on the interaction between the trapping beam and the particle,this thesis completed the following work.
     1.An improved T-matrix method is proposed,which is capable of dealing with the scattering by non-axis-symmetrical and complicated-shape particles.The new method discretizes the surface of the particle by a set of triangles.It is therefore applicable to calculating the scattering field by particles with complicated shape.
     2.For T-matrix method,a technique of speeding the calculation of the scattered field is presented.In computing the scattering fields,the determination of the T-matrix involves matrix multiplication and inversion,which consumes considerable time when the size of the particle is large.Petrov et al.proposed an improved matrix inversion method.Based on this improved inversion,we present another fast technique for calculating the scattering fields.Our method obtains the scattered field by directly multiplying the matrix and the incident field coefficients,operation between which can be completed by the improved matrix inversion.Numerical results show that this technique can decrease time-consumption by more than half that of the optimized matrix inversion technique by Petrov et al.
     3.Complex-source-point spherical wave(CSPSW) vector potential is introduced to describe radially polarized beam(R-TEM_(01)).The vector potential expression represented by the conventional Lax perturbative series method become rather complicated with increasing the accuracy.The CSPSW vector potential acquires very simple form in mathematics and exactly satisfies the Ho equation.
     4.The method of representing a fifth-order corrected radially polarized Laguerre-Gauss beam(R-TEM_(nl)) is obtained.By using the Lax perturbative series method,we derive the vector potential expression with second-order correction from which 5th-order corrected R-TEM_(nl) is found.Meanwhile,a scalar Laguerre-Gauss wave accurate to any order is obtained.
     5.The possibility of improving axial trapping efficiency by raidally polarized beams is proved theoretically.In optical trapping,radiation forces on the particle are,in general,divided into the gradient force and the scattering force,and the latter needs to be reduced as weak as possible in axial trapping and its amplitude depending on the z component S_z of Poynting vector.Radially polarized fields acquire zero radial field component near the focus,leading to a vanishing S_z near the focus.Thus the scattering force can be weakened significantly.Our calculation strongly confirms this.
     6.Double-ring radially polarized beam(DR R-TEM_(01)) is suggested to further reduce the scattering force in optical trapping.The fields of inner and outer rings of a DR R-TEM_(01) are polarized in instantly opposite direction along the radius. After being focused,the beam develops two intensity rings of radial component and the inner intensity is less than that of R-TEM_(01) in the same region.Since S_zis proportional to the radial component intensity,we predict that DR R-TEM_(01) could give higher axial trapping efficiency provider that the particle size falls into the inner ring.
引文
[1] K. Dholakia, G Spalding, and M. MacDonald. Optical tweezers: the next generation. Physics world, 2002.
    
    [2] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys.Rev. Lett., 1970,24: 156-159.
    [3] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 1986,11: 288-290.
    [4] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 1985,55:48-51.
    [5] S. Chu. The manipulation of neutral particles. Rev. Mod. Phys., 1998, 60:685-706.
    [6] R. W. Steubing, S. Cheng, W. H. Wright, Y. Numajiri, and M. W. Berns. Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. Cytometry, 1991,12: 505-510.
    [7] M. W. Berns, W. H. Wright, B. J. Tromberg, G. A. Profeta, J. J. Andrews, and R.J. Walter. Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle. Proc. Natl. Acad. Sci. U.S.A., 1989, 86:7914-7918.
    [8] S. Seeger, S. Monajembashi, K. J. Hutter, G Futterman, J. Wolfrum, and K. O.Greulich. Application of laser optical tweezers in immunology and molecular genetics. Cytometry, 1991,12: 497-504.
    [9] H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles. Transcription against an applied force. Science, 1995, 270: 1653.
    [10] S. M. Block, D. F. Blair, and H. C. Berg. Compliance of bacterial flagella measured with optical tweezers. Nature, 1989, 338: 514-518.
    
    [11] S. M. Block, L. S. Goldstein, and B. J. Schnapp. Bead movement by single kinesin molecules studied with optical tweezers. Nature, 1990,348: 348-352.
    
    [12] A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa. Force generation of organelle transport measured in vivo by an infrared laser trap.Nature, 1990,348:346-348.
    [13] S. C. Kuo and M. P. Sheetz. Force of single kinesin molecules measured with optical tweezers. Science, 1993,260:232-234.
    [14] L. Allen, M.W. Beijersbergen, R. J. C. Spreeuw, and J. P.Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 1992,45: 8185-8189.
    [15] K. S. Youngworth and T. G Brown. Focusing of high numerical aperture cylindrical. Opt. Express, 2000,7: 77-87.
    [16] R. Dorn, S. Quabis, and G. Leuchs. Sharper focus for a radially polarized light beam. Phys. Rev. Lett., 2003,91:233901.
    [17] J. Arlt and K. Dholakia. Generation of high-order Bessel beams by use of an axicon. Opt. Commun., 2000,177:297-301.
    [18] N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner.Opt. Lett., 1997,22:52-54.
    [19] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt.Express, 2004,12:3377-3382.
    [20] H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. Opt. Lett., 2007,32:1839-841.
    [21] S. Yan and B. Yao. Radiation forces of highly focused radial polarization field on spherical particles. Phys. Rev. A, 2007,76: 053836.
    [22] N. Hayazawa, Y. Saito, and S. Kawata. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Appl. Phys. Lett., 2004,85:6239.
    [23] A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J., 1992,61: 569-582.
    [24] Y. Harada and T. Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Comm., 1996,124: 529-541.
    [25] A. Rohrbach and E. H. K. Stelzer. Optical trapping of dielectric particles in arbitrary fields. J. Opt. Soc. Am. A, 2001,18: 839-853.
    [26] J. P. Barton and D. R. Alexander. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J.Appl. Phys., 1989,66: 4594-4602.
    [27] J. A. Lock. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. Appl. Opt., 2004, 43:2532-2544.
    [28] J. A. Lock. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force. Appl. Opt., 2004,43:2545-2554.
    [29] T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop. Numerical modelling of optical trapping. Comp. Phys. Comm., 2001, 142:468-471.
    [30] S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop.Orientation of biological cells using plane-polarized Gaussian beam optical tweezers. J. Mod Opt., 2003, 50:1581-1590.
    [31] A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop. Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Phys. Rev. A, 2003, 68: 033802.
    [32] T. A Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop. Computational modelling of optical tweezers. Proc. SPIE, 2004, 5514: 514523.
    [33] W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H.Rubinsztein-Dunlop. Orientation of optically trapped nonspherical birefringent particles. Phys. Rev. E, 2006, 73: 021911.
    [34] X. Wang, J. Ding, W. Ni, C. S. Guo, and H.T. Wang. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 2007, 32: 3549-3551.
    [35] Y. Kozawa and S. Sato. Generation of a radially polarized laser beam by use of a conical Brewster prism.Opt.Lett.,2005,30:3063-3065.
    [36]D.Ganic,X.Gan,and M.Gu.Exact radiation trapping force calculation based on vectorial diffraction theory.Opt.Express,2004,12:2670-2675.
    [37]D.Ganic,X.Gan,and M.Gu.Optical trapping force with annular and doughnut laser beams based on vectorial diffraction.Opt.Express,2005,13:1260-1265
    [38]D.Deng and Guo Qi.Analytical vectorial structure of radially polarized light beams.Opt.Lett.,2007,32:2711-2713.
    [39]D.Deng.Nonparaxial propagation of radially polarized light beams.J.Opt.Soc.Am.A,2006,23:1228-1234.
    [40]D.Deng,Q.Guo,and L.Wu.Propagation of radially polarized elegant light beams.J.Opt.Soc.Am.B,2007,24:636-643.
    [41]H.Kawauchi,K.Yonezawa,Y.Kozawa,and S.Sato.Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam.Opt.Lett.,2007,32:1839-1841.
    [42]T.A.Nieminen,N.R.Heckenberg,and H.Rubinsztein-Dunlop.Forces in optical tweezers with radially and azimuthally polarized trapping beams.Opt.Lett.,2008,33:122-124.
    [1]A.Ashkin.Forces of a single-beam gradient laser trap on a dielectric sphere.Biophy.J..1992,61:569-582.
    [2]Jin.Au.Kong著,吴季等译.Electromagnetic wave theory(电磁波理论).北京:电子工业出版社.2003年1月.
    [3]H.Kawauchi,K.Yonezawa,Y.Kozawa and S.Sato.Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam.Opt.Lett.,2007,32:1839-1841.
    [1]Y.Harada and T.Asakura.Radiation forces on a dielectric Sphere in the Rayleigh scattering regime.Opt.Commun,1996,124:529-541.
    [2]J.D.Jackson.Classical Electrodynamics.2nd edition.New York:Wiley,1998.
    [4]M.I.Mishchenko,L.D.Travis,and A.A.Lacis.Scattering,Absorption,and Emission of Light by Small Particles.New York:Cambridge University Press,2002.
    [3]C.Bohren and D.R.Huffman.Absorption and Scattering of Light by Small Particles.New York:Wiley Science Paperback,1998.
    [4]A.Rohrbach and E.H.K.Stelzer.Optical trapping of dielectric particles in arbitrary fields.J.Opt.Soc.Am.A,2001,18:839-853.
    [5]M.Born and E.Wolf著,杨葭荪译.Optics Principle(光学原理).第七版.北京:电子工业出版社,2006年.
    [1]P.C.Waterman.Matrix formulation of electromagnetic scattering.Proc.IEEE,1965,53:805-812.
    [2]P.C.Waterman.Symmetry,unitary,and geometry in electromagnetic scattering.Phys.Rev.D,1971,13:825-839.
    [3]宋文淼.并矢格林函数和电磁场的散射理论.第一版.合肥:中国科学技术大学出版社,1991年9月.
    [4]Jin.Au.Kong著,吴季等译.Electromagnetic wave theory(电磁波理论).北京:电子工业出版社,2003年1月.
    [5]M.I.Mishchenko,L.D.Travis,and A.A.Lacis.Scattering,Absorption,and Emission of Light by Small Particles.New York:Cambridge University Press,2002.
    [6]J.A.Stratton.Electromagnetic Theory.New York:McGraw-Hill Book Company,1941.
    [7]P.W.Barber and S.C.Hill.Light Scattering by Particles:Computational Methods.Singapore:World Scientific,1990.
    [8]D.Petrov,Y.Shkuratov and G.Videen.Optimized matrix inversion technique for the T-matrix method.Opt.Lett.,2007,32:1168-1170.
    [9]S.H.Yan and B.L.Yao.Fast calculation technique for scattering in T-matrix method.Phys.Lett.A,2008,372:5243-5245.
    [10]J.A.Lock.Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory.Ⅰ.Localized model description of an on-axis tightly focused laser beam with spherical aberration.Appl.Opt.,2004,43:2532-2544.
    [11]E.E.M.Khaled,S.C.Hill,and P.W.Barber.Scattered and internal intensity of a sphere illuminated with a Gaussian beam.IEEE Trans.Antennas Propagat.,1993,41:295-303.
    [12]J.A.Lock.Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory.Ⅱ.On-axis trapping force.Appl.Opt.,2004,43:2545-2554.
    [1]D.Pohl.Operation of a Ruby laser in the purely transverse electric mode TE_(01).Appl.Phys.Lett.,1972,20:266-267.
    [2]M.W.Beijersbergen,L.Allen,H.E.L.O.van der Veen,and J.P.Woerdman.Astignmatic laser mode converters and transfer of orbital angular momentum.Opt.Commun.,1993,96:123-132.
    [3]M.W.Beijerbergen,R.P.C.Coerwinkel,M.Kristensen,and J.P.Woerdman.Helical-wavefront laser beam produced with a spiral phaseplate.Opt.Commun.,1994,112:321-327.
    [4]M.Stalder and M.Schadt.Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters.Opt.Lett.,1996,21:1948-1950.
    [5]R.Oron,N.Davidson,A.A.Fdesem,and E.Hasman.Efficient formation of pure helical laser beams.Opt.Commun.,2000,152:205-208.
    [6]R.Oron,S.Blit,N.Davidson,A.A.Friesem,Z.Bomzon,and E.Hasman.The formation of laser beams with pure azimuthal or radial polarization.Appl.Phys.Lett.,2000,77:3322-3324.
    [7]H.Kano,S.Mizuguchi,and S.Kawata.Excitation of surface-plasmon polaritons by a focused laser beam.J.Opt.Soc.Am.B.,1998,15:1381-1386.
    [8]K.Schuster.Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement.US patent 6191880 B1(2001).
    [9]J.Courtial,D.A.Robertson,K.Dholakia,L.Allen,and M.J.Padgett.Rotational frequency shift of a light beam.Phys.Rev.Lett.,1998,81:4828-4830.
    [10]B.Hafizi,E.Esarey and P.Sprangle.Laser-driven acceleration with Bessel beams.Phys.Rev.E,1997,55:3539-3545.
    [11]Y.I.Salamin and C.H.Keitel.Electron Acceleration by a Tightly Focused Laser Beam.Phys.Rev.Lett.,2002,88:095005.
    [12]Y.I.Salamin.Electron acceleration from rest in vacuum by an axicon Gaussian laser beam. Phys. Rev. A, 2006, 73: 043402.
    [13] T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada. Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett., 1997, 78:4713-4716.
    [14] S. Sato, Y. Harada, and Y. Waseda. Optical trapping of microscopic metal particles. Opt. Lett., 1994,19: 1807-1809.
    [15] V. G. Niziev and A. V. Nesterov. Influence of beam polarization on laser cutting efficiency. J. Phys. D, 1999,32:1455-1461.
    [16] Q. Zhan and J. R. Leger. Microellipsometer with radial symmetry. Appl. Opt.,2002, 41: 4630-4637.
    
    [17] S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs. The focus of light-theoretical calculation and experimental tomographic reconstruction. Appl.Phys. B, 2001,72:109-113.
    [18] S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs. Focusing light into a tighter spot. Opt. Commun., 2000,179: 1-7.
    [19] K. S. Youngworth and T. G. Brown. Focusing of high numerical aperture cylindrical vector beams. Opt. Express, 2000, 7: 77-87.
    [20] J. P. Barton and D. R. Alexander. Fifth-order corrected electromagnetic field components for a fundamental Caussian beam. J. Appl. Phys., 1989, 66: 2800.
    [21] E. Wolf. Electromagnetic diffraction in optical systems I. An integral representation of the image field. Proc. R. Soc. Ser. A, 1959,253: 349-357.
    [22] B. Richards and E. Wolf. Electromagnetic diffraction in optical systems II.Structure of the image field in an aplanatic system. Proc. R. Soc. Ser. A, 1959,253:358-379.
    [23] E. E. M. Khaled, S. C. Hill, and P. W. Barber. Scattered and internal intensity of a sphere illuminated with a Gaussian beam. IEEE Trans. Antennas Propagat.,1993, 41: 295-303.
    [24] D. Deng. Nonparaxial propagation of radially polarized light beams. J. Opt. Soc.Am. 4 2006,23:1228-1234.
    [25] I. Moshe, S. Jackel, and A. Meir. Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects.Opt.Lett.,2003,28:807.
    [26]D.J.Armstrong,M.C.Phillips,and A.V.Smith.Generation of Radially Polarized Beams with an Image-Rotating Resonator.Appl.Opt.,2003,42:3550.
    [27]A.V.Nesterov,V.G.Niziev,and V.P.Yakunin.Generation of high-power radially polarized beam.J.Phys.D,1999,32:2871-2875.
    [28]T.Moser,H.Glur,V.Romano,F.Pigeon,O.Parriaux,M.A.Ahmed,and T.Graf,Polarization-selective grating mirrors used in the generation of radial polarization.Appl.Phys.B,2005,80:707-713.
    [29]Y.Kozawa and S.Sato.Generation of a radially polarized laser beam by use of a conical Brewster prism.Opt.Lett.,2003,28:807.
    [30]Shoham,R.Vander,and S.G.Lipson,Production of radially and azimuthally polarized polychromatic beams.Opt.Lett.,2006,31:3405.
    [31]C.Maurer et al..Tailoring of arbitrary optical vector beams.New J.Phys.,2007,9:78.
    [32]Dorn,S.Quabis,and G.Leuchs.Sharper focus for a radially polarized light beam.Phys.Rev.Lett.,2003,91:233901.
    [33]G.Machavariani,Y.Lumer,I.Moshe,A.Meir,and S.Jackel.Efficient extracavity generation of radially and azimuthally polarized beams.Opt.Lett.,2007,32:1468.
    [34]K.T.McDonald.puhepl.princeton.edu/~mcdonald/examples/axicon.pdf.
    [35]M.Lax,W.H.Louisell,and W.B.McKnight.From Maxwell to paraxial wave optics.Phys.Rev.A,1975,11:1365.
    [36]L.W.Davis.Theory of electromagnetic beams.Phys.Rev.A,1979,19:1177.
    [37]M.Couture and Pierre-A.Belanger.From Gaussian beam to complex-source-point spherical wave.Phys.Rev.A,1981,24:355.
    [38]S.Yan and B.Yao.Description of a radially polarized Laguerre-Gauss beam beyond the paraxial approximation.Opt.Lett.,2007,32:3367.
    [39]S.Yan and B.Yao.Exact description of a cylindrically symmetrical complex-argument Laguerre-Gauss beam.Opt.Lett.,2008,33:3367.
    [40]S.Yan and B.Yao.Accurate description of a radially polarized Gaussian beam,"Phys.Rev.A,2008,77:023827.
    [41]Y.I.Salamin.Fields of a radially polarized Gaussian laser beam beyond the paraxial approximation.Opt.Lett.,2006,31:2619.
    [42]M.Born and E.Wolf著,杨葭荪译.Optics Principle(光学原理).第七版.北京:电子工业出版社,2006年.
    [43]L.Mandel and E.Wolf,Optical Coherence and Quantum Optics.New York:Cambridge U.Press,1995.
    [44]Z.Wang and D.Guo.Special Functions.Singapore:World Scientific,1996.
    [45]Jin.Au.Kong著,吴季等译.Electromagnetic wave theory(电磁波理论).北京:电子工业出版社,2003年1月.
    [46]S.Gradshteyn and I.M.Ryzhik.Tables of Integrals,Series and Products.New York:Academic,1996.
    [1]Q.Zhan.Trapping metallic Rayleigh particles with radial polarization.Opt.Express,2004,12:3377-3382.
    [2]K.S.Youngworth and T.G.Brown.Focusing of high numerical aperture cylindrical-vector beams.Opt.Express,2000,7:77-87.
    [3]J.A.Stratton.Electromagnetic Theory.New York:McGraw-Hill Book Company,1941.
    [4]S.Yan and B.Yao.Radiation forces of a highly focused radially polarized beam on spherical particles.Phys.Rev.A,2007,76:053836.
    [5]M.I.Mishchenko,L.D.Travis,and A.A.Lacis.Scattering,Absorption,and Emission of Light by Small Particles,New York:Cambridge University Press,2002.
    [6]H.Kawauchi,K.Yonezawa,Y.Kozawa,and S.Sato.Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam.Opt.Lett.,2007,32:1839-1841.
    [7]D.Ganic,X.Gan,and M.Gu.Optical trapping force with annular and doughnut laser beams based on vectorial diffraction.Opt.Express,2005,13:1260-1265.
    [8]Y.Kozawa and S.Sato.Focusing property of a double-ring-shaped radially polarized beam.Opt.Lett.,2006,31:820-822.
    [1]V.B.Berestetskii,E.M.Lifshits and L.P.Pitaevskii.Quantum Electrodynamics,2nd edition.Oxford:Pergamon,1984.
    [2]L.Allen,M.W.Beijersbergen,R.J.C.Spreeuw,and J.P.Woerdman.Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.Phys.Rev.A,1992,45:8185-8189.
    [3]M.Vasnetsov and K.Staliunas(ed).Optical Vortices.NewYork:Nova Science.1999.
    [4]M.S.Soskin and M.V.Vasnetsov.Singular optics.Progress in Optics,edited by E.Wolf(Amsterdam:Elsevier),2001,42:219-76.
    [5]L.Marrucci,C.Manzo,and D.Paparo.Optical Spin-to-Orbital Angula Momentum Conversion in Inhomogeneous Anisotropic Media.Phys.Rev.Lett.,2006,96:163905.
    [6]H.He,M.E.J.Friese,N.R.Heckenberg,and H.Rubinsztein-Dunlop.Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity Phys.Rev.Lett.,1995,75:826-9.
    [7]J.P.Barton and D.R.Alexander.Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam.J.Appl.Phys.,1989,66:4594-4602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700