交通荷载对道路工后沉降影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道路沉降可以分为道路施工期沉降和道路工后沉降。道路施工期沉降一般通过填补加高等措施解决,道路工后沉降需对运营中的道路进行平整性修补,对道路的运营能力、维修成本影响较大。引起道路工后沉降的原因主要有:固结残余孔压消散、交通荷载等。精确预测道路在交通荷载作用下的工后沉降,对道路在设计、施工过程中采取有效措施来减少道路工后沉降具有重要的意义。论文针对这一问题开展了如下工作:
     首先,论文采用脉冲函数的有限差分近似表达式模拟交通荷载,反映交通荷载的作用点、轴重、行车速度。理论验证了该表达式模拟交通荷载特征与匀速移动荷载作用于弹性半空间表面的竖向动应力特征一致,试验验证了与实际行驶车辆在道路中引起的竖向动应力脉冲曲线特征结果一致。
     其次,基于原状杭州软粘土的三轴压缩试验结果中土体轴向应变和偏应力呈应力-应变硬化或者应力-应变软化形式、Es/E20re与q/q,呈非线性关系,论文提出了Hardening Soil (HS)修正模型。该修正模型能描述在三轴压缩试验中土的应变硬化及应变软化现象、非线性刚度软化现象,且该修正模型的应力-应变曲线与实测应力-应变曲线的相关系数大于0.97。
     第三,基于道路为半空间无限体,论文采用Plaxis有限元软件,建立了黏弹性人工边界有限元数值模型。其中黏弹性人工边界条件为在有限元模型的截断边界处:(])采用吸收边界模拟系统在振动过程中动应力波动向远场介质辐射的特点,消除了应力波在固定边界上的反射而导致振动波在有限域内的振荡反射,使得计算周期出现放大或缩小及卸载后出现动位移、动应力反复振荡的不正常现象;(2)采用锚锭杆单元模拟线性弹簧作用,解决吸收边界在低频作用下出现的漂移现象而导致动位移响应与理论值有较大差异的稳定问题。结果显示:黏弹性人工边界的有限元数值分析模型计算区域小,模拟交通荷载作用下道路的动响应准确性好。
     第四,基于循环三轴试验,采用εp-N与Up/σ.-N的幂函数关系拟合了累积塑性应变-加载次数及累积孔压比-加载次数的关系,考虑的影响因素涉及动偏应力幅值和振动频率等交通荷载因素,孔隙比、粒径、含水量、回弹模量等道路因素,初始静偏应力和围压等试验初始应力条件。
     第五,基于Plaxis有限元软件,采用脉冲函数的有限差分形式模拟交通荷载、以Hardening Soil非线性刚度软化修正模型模拟土的本构关系、以黏弹性人工边界模拟有限元模型边界上波的传播,建立模拟交通荷载作用下道路动响应的数值分析模型。利用上述数值分析模型,计算了交通荷载作用下道路的初始静偏应力、围压等试验初始应力条件和交通动偏应力幅值;计算了交通荷载的有效传递深度,并采用0.001%的最大竖向动应变为界定标准,得到交通荷载的传递深度在6~15m范围内;综合道路因素、交通荷载因素和试验初始条件多项因素的作用,计算了道路累积塑性应变和累积孔压。最后,利用分层总和法,以杭州市古翠路为例,预测道路在开放交通300天后的工后沉降值为0.046m,与现场原位监测结果一致。
Road settlement can be divided into construction settlement and post-construction settlement. The construction settlement can be solved by filling soil. But it is difficult to mend the leak that caused by the post-construction settlement after the road is open. It will reduce the operational ability and increase maintenance cost of road. Both pore pressure dissipation and traffic load result in the post-construction settlement of road. Accurate prediction of post-construction settlement under traffic load is of great importance for controlling and reducing post-construction settlement by taking reasonable control measures in the design and construction. To solve this problem, the main studies of this thesis are as follows:
     First, a impulsive function of finite difference approximation expressions is used to describe the axle load, vehicle speed of traffic load in this paper. This function can simulate the vertical dynamic stress characteristics induced by uniform moving load moving on uniform elastic half-space surface or real traffic load moving on road, and it is verified by theory and field test.
     Secondly, by triaxial compressipon test, the relationship between axial strain and deviatoric stress is increasing or decreasing, and the relationship between Es/E50ref and q/qf are unlinear. Two equations were suggested to describe not only unlinear stiffness degradation but also strain softening and strain hardening in this paper. The correlation coefficient is 0.97 compared the new model with the measured stress-strain curve.
     Thirdly, The visco-elastic artificial boundary was built in Plaxis in this paper. It can simulate the dynamic stress fluctuations to the far-field in the vibration and eliminate the stress wave reflection in the fixed boundary by setting viscous absorbing boundary at the truncation boundary of finite element model. The spring unit setted on the viscous absorbing boundary simultaneously solves the drift of the finite element model in low frequency.The finite element model with the visco-elastic artificial boundary can accurately simulate the dynamic properties of road induced by traffic load, and it only needs a much smaller model size than that with fixed boundary.
     Fourthly, based on the cyclic triaxial experiments and the analysis of one factor, the relationships of accumulated plastic strain with load times and accumulated pore pressure with load times were fitted with power function. These factors included traffic load factors such as the amplitude of dynamic deciator stress and the rate of vibration, road factors such as void ratio, grain diameter, water content, resilience modulus and initial stress conditions such as initial static deviator stress, confining pressure.
     Finally, a numerical model to study the dynamic response in road induced by traffic load was built based on Plaxis FEM software in this paper. This model used an impulsive function to describe traffic load, the modified Hardening soil model to simulate the constitutive relation of soil and the visco-elastic artificial boundary to be combined with FEM. Using this numerical model, initial static deviator stress, confining pressure, the amplitude of dynamic deciator stress was calculated. The pass depth of traffic load was also calculated. The 6-15m of the pass depth was obtained acrroding to the standards defined by 0.001 percent the maxmen vertical dynamic strain. Then, accumulated plastic strain and accumulated pore pressure were calculated considering all of factors such as road factors, traffic load factors and initial experimental conditions. This numerical model was used to predict the post-construction settlement of Gu-cui road in Hangzhou. The 0.046m of the post-construction settlement after opening 300 days is according with the result of the field monitoring.
引文
[1]Abdelkrim M. Bonnet G, Buhan P. A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading[J]. Computers and Geotechnics,2003.30(6):463-476.
    [2]Allou F. Chazallon C. Hornych P. A numerical model for flexible pavements rut depth evolution with time[J]. International journal for numerical and analytical methods in geomechanics.2007,31(1):1-22.
    [3]Ansal A M, Erken A. Undrained Behavior of Clay under Cyclic Shear Stresses[J]. Journal of Geotechnical Engineering,1989,115(7):968-983.
    [4]Atkinson.1 H, Sallfors G. Experimental determination of stress-strain-time characteristics in laboratory and in-situ tests[C]. Proceedings of 10th European Conference on Soil Mechanics and Foundation Engineering. Florence, [s. n.]: 1991:915-956.
    [5]Atilla M A, Afer E. Undrained behavior of clay under cyclic shear stresses[J]. Journal of Geotechnical Engineering,1989,115(7):968-983.
    [6]Barker W R. Nonlinear finite element analysis of heavily loaded airfield pavement systems[C]. Applications of the Finite Element method in Geotechnical Engineering. Mississippi, [s.n.],1972(9):657-693.
    [7]Barksdale R D, Itani S Y. Influence of Aggregate Shape on Base Behaviour[J]. Transportation Research Record,1989,1227:173-182.
    [8]Barksdale R D. Compressive stress pulse times in flexible pavements for use in dynamic testing[J]. Highway Research Record,1971,345:32-44.
    [9]Barksdale R D. Laboratory evaluation of rutting in base course materials[C]. Proceedings of the Third International Conference on Structural Design of Asphalt Pavements, London, [s.n.],1972:161-174.
    [10]Benz T. Small-strain stiffness of soils and its numerical consequences[D]. Germany:University Stuttgart,2007.
    [11]Brinkgreve R B J. Plaxis Version8:Material Models Manual[M]. [S.1.],2002.
    [12]Brinkgreve R B J, Broere W. Plaxis 8.2 manual[M]. Netherlands:Balkema,2006.
    [13]Brown S F. Soil mechanics in pavement engineering[J]. Geotechnique,1996, 46(3):383-426.
    [14]Cebon D. Interaction Between Heavy Vehicles and Roads[M]. [S.1.]:SAE,1993.
    [15]Cebon D. Theoretical road damage due to dynamic tyre forces of heavy vehicles Part Ⅱ:simulated damage caused by a tandem-axle vehicle[C]. Proceedings of the Institution of Mechanical Engineers. Part C:Mechanical Engineering Science. [S.I.]:Sage Publications,1988,202(C2),109-117.
    [16]Chai J C, Miura N. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002, 128(11):907-916.
    [17]Chen J. Lin C, Stein E, et. Development of a mechanistic-empirical model to characterize rutting in flexible pavements[J]. Journal of transportation engineering,2004,130(4):519-525.
    [18]Cole D J. Cebon D. Modification of a heavy vehicle suspension to reduce road damage[C]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. [S.1.]:Sage Publications,1995,209(D3): 183-193.
    [19]Cole D J, Cebon D. Truck suspension design to minimize road damage[C]. Proceedings of the Institution of Mechanical Engineers. Part D:Journal of Automobile Engineering. [S.1.]:Sage Publications,1996,210(D2),95-107.
    [20]Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries[J]. Journal of Engineering Mechanics,1994,120(1):25-42.
    [21]Degrande G, Clouteau D, Othman R. et al. A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite lement-boundary element formulation[J]. Journal of sound and vibration,2006, 293(3-5):645-666.
    [22]Domaschuk L, Valliappan P. Nonlinear settlement analysis by finite element[J]. Journal of the Geotechnical Engineering Division,1975,101(7):601-614.
    [23]Drucker D C, Prager W, Greenberg H J. Extended limit design theorems for continuous media[J]. Quarterly of Applied Mathematics,1952,9(4):381-391.
    [24]Drucker D C. Prager W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics,1952,10(2):157-165.
    [25]Drucker D C. Definition of stable inelastic material[J]. American Society of Mechanical Engineers-Transactions-Journal of Applied Mechanics,1959,26(1): 101-106.
    [26]Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division,1970,96(5):1629-1653.
    [27]France J W. Sangrey D A. Effects of drainage in repeated loading of clays[J]. Journal of Geotechnical Engineering,1977,103GT(7):769-785.
    [28]Gilbert F, Backus G E. Propagator matrices in elastic wave and vibration problems[J]. Geophysics,1966,31:326-332.
    [29]Goulois A M, Whitman R V, Hoeg K. Effects of sustained shear stresses on the cyclic degradation of clay[J]. Strength testing of marine sediments:Laboratory and in-situ strength measurements, ASTM STP 883. R. C. Chaney and K. R. Demars. eds., ASTM. Philadelphia,1985,336-351.
    [30]Grundmann H, Lieb M. Trommer E. The response of a layered half- space to traffic loads moving along its surface[J]. Archive of Applied Mechanics,1999, 69(1):55-67.
    [31]Gupta S, Hussein M F M, Degrande G, et al. A comparison of two numerical models for the prediction of vibrations from underground railway traffic[J]. Soil dynamics and earthquake engineering,2007,27(7):608-624.
    [32]Hadi M N S, Bodhinayake B C. Non-linear finite element ayalysis of flexible pavements[J]. Advances in engineering software,2003,34(11-12):657-662.
    [33]Hall L. Simulations and analyses of train-induced ground vibrations in finite element models[J]. Soil dynamics and earthquake engineering,2003,23(5): 403-413.
    [34]Hardin B O, Drnevich V P. Shear modulus and damping in soil:measurement and parameter effects[J]. Journal of the Soil Mechanics and Foundations Division, 1972,98(6):603-624.
    [35]Hardin B O, Drnevich V P. Shear modulus and damping in soils:design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972,98(SM7):667-691.
    [36]Hardy M S A, Cebou D. Importance of speed and frequency in flexible pavement response[J]. Journal of Engineering Mechanics,1994,120(3):463-482.
    [37]Haskell N. The dispersion of surface waves on multilayered media[J]. Bulletin of Seismic Society of America,1953,43:17-34.
    [38]Hejazi Y, Dias D. Kastner R. Impact of constitutive models on the numerical analysis of underground constructions[J]. Acta Geotechnica,2008,3(4):251-258.
    [39]Helmberger D V. Generalized ray theory for shear dislocations[J]. Bulletin of the Seismological Society of America,1974,64(1):45-64.
    [40]Hong H K, Liu C S. Prandtl-reuss elastoplasticity:on-off switch and superposition formulae[J]. International Journal of Solids and Structures,1997, 34(33):4281-4304.
    [41]Hyde A F L, Yasuhara K. Hirao K. Stability criteria for marine clay under one-way cyclic loading[J]. Journal of Geotechnical Engineering,1993, 119(11):1771-1889.
    [42]Hyodo M, Yasuhara K. Analytical procedure for evaluating pore-water pressure and deformation of saturated clay ground subjected to traffic loads [C]. Proceedings of the 6th International Conference on Numerical Methods in Geomechanics. Innsbruck, Austria:[s. n.].1987:653-658.
    [43]Ishibashi I. Kawamura M. Bhatia S K. Effect of initial shear on cyclic behavior of sand[J]. Journal of the Geotechnical Engineering,1985,119(12):1395-1412.
    [44]Iwan W D. On a class of models for the yielding behavior of continuous and composite systems[J]. Journal of Applied Mechanics,1967,34(E3):612-617.
    [45]Janbu N. Soil compressibility as determined by oedometer and triaxial tests[C]. In Proceedings of the European Conference on Soil Mechanics and Foundations Engineering. Wiesbaden:[s. n.].1963,1:19-25.
    [46]Janoo V. Quantification of shape, angularity, and surface texture of base course materials[R]. USA, US Army Corps of Engineers:Cold Regions Research & Engineering Laboratory,1998.
    [47]Jardine R J. Some observations on the kinematic nature of soil stiffness[J]. Soils and Foundations,1992.32(2):111-124.
    [48]Jones C J C, Thompson D J. Diehl R J. The use of decay rates to analyse the performance of railway track in rolling noise generation [J]. Journal of Sound and Vibration,2006,293(3-5):485-495.
    [49]Jones D V. Petyt M. Ground vibration in the vicinity of a strip load:A two-dimensional half-space model[J]. Journal of Sound and Vibration,1991. 147(1):155-166.
    [50]Jones D V, Petyt M. Ground vibration in the vicinity of a strip load:An elastic layer on an elastic half-space[J]. Journal of Sound and Vibration,1993.161(1): 1-18.
    [51]Karg C. Haegeman W. Elasto-plastic long-term behavior of granular soils: Experimental investigation[J]. Soil Dynamics and Earthquake Engineering,2009, 29:155-172.
    [52]Karg C. Modelling of strain accumulation due to low level vibrations in granular soils[D]. Belgium:Ghent University.2007.
    [53]Karg C. Strain accumulation caused by low level vibrations[EB/OL].2007. http://www.kuleuven.be/bwf/projects/SBO/data/CP/CP_2007_Karg_].pdf.
    [54]Karrech A, Duhamel D, Bonnet G, et al. A computational procedure for the prediction of settlement in granular materials under cyclic loading[J]. Computer methods in applied mechanics and engineering,2007.197(1-4):80-94.
    [55]Kattis S E. Polyzos D, Beskos D E. Vibration isolation by a row of piles using a 3-D frequency domain BEM[J]. International Journal for Numerical Methods in Engineering,1999.46(5):713-728.
    [56]Kettil P, Engstrom G, Wiberg N E. Coupled hydro-mechanical wave propagation in road structures [J]. Computers and Structures,2005,83:1719-1729.
    [57]Khedr S. Deformation characteristics of granular base course in flexible pavement[J]. Transportation Research Record,1985,1043:131-138.
    [58]Kohata Y. Tatsuoka F, Wang L. et al. Modelling the nonlinear deformation properties of stiff goematerials[J]. Geotechnique,1997,47(3):563-580.
    [59]Koike M, Kaji T, Usaborisut P, et al. Several contributions to soil compactibility induced by cyclic loading test[J]. Journal of terramechanics,2002,39(3): 127-141.
    [60]Konder R L. Hyperbolic stress-strain response:cohesive soils[J]. Journal of the Soil mechanics and Foundation Engineering,1963,89(1):156-187.
    [61]Ladd C C. Stability evaluation during staged construction[J]. Journal of geotechnical engineering,1991,117(4):540-615.
    [62]Lade P V, Duncan J M. Cubical triaxial tests on cohesionless soil[J]. Journal of the Soil Mechanics and Foundations Division,1973,99(10):793-812.
    [63]Lade P V, Duncan J M. Elastoplastic Stress-Strain Theory for Cohesionless Soil[J]. Journal of the Geotechnical Engineering Division,1975,101(10): 1037-1053.
    [64]Lamb H. On the propagation of tremors over the surface of an elastic solid[C]. Philosophical transactions of the royal society of London. Series A, Containing papers of a mathematical or physical character,1904:1-42.
    [65]Larew H G. Leonards G A. A repeated load strength criterion[C]. Proceeding Highway Research Board, [s. n.],1962:529-556.
    [66]Lefebvre G, Pfendler P. Strain rate and preshear effects in cyclic resistance of soft clay[J]. Journal of Geotechnical Engineering,1996,122(1):21-26.
    [67]Lekarp F. Dawson A. Modelling permanent deformation behaviour of unbound granular materials[J]. Construction and building materials,1998,12(1):9-18.
    [68]Lekarp F. Isacsson U, Dawson A. State of the art Ⅱ:Permanent strain response of unbound aggregates[J]. Journal of transportation engineering,2000,126(1): 76-83.
    [69]Lekarp F. Permanent deformation behaviour of unbound granular materials[D]. Stockholm,1997.
    [70]Lentz R W, Baladi G Y. Constitutive equation for permanent strain of sand subjected to cyclic loading[J]. Transportation Research Record,1981,810:50-54.
    [71]Li D Q, Selig E T. Cumulative plastic deformation for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering,1996,122(12):1006-1013.
    [72]Li D Q, Selig E T. Method for railroad track foundation design II Application[J]. Journal of Geotechnical Engineering,1998,124(4):323-329.
    [73]Li K Q, Zheng S F. Yang D G. Modeling and control of active suspensions for MDOF vehicle[J]. Tsinghua Science and Technology,2003.8(2):224-230.
    [74]Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division,1969,95:859-877.
    [75]M米齐克.汽车动力学[M].陈荫三译.北京:人民交通出版社,1992.
    [76]Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters [J]. Journal of the Society for Industrial and Applied Mathematics, 1963.11(2):431-441.
    [77]Matsui T, Bahr M A, Abe N. Estimation of shear characteristics degradation and stress-strain relationship of saturated clays after cyclic loading[J]. Soils and Foundations,1992,32(1):161-172.
    [78]Michaels J E. Pao Y H. The inverse source problem for an oblique force on an elastic plate[J]. The Journal of the Acoustical Society of America,1985,77(6): 2005-2011.
    [79]Miura N, Chai J C, Hino T, et al. Depositional environment and geotechnical properties of soft deposit in Saga plain[J]. Indian Geotechnical Journal,1998. 28(2):121-146.
    [80]Monismith C L, Ogawa N. Freeme C R. Permanent deformation characteristics of subsoil due to repeated loading[J]. Transport Research Record,1975,537: 1-17.
    [81]Mostaghel N, Byrd R A. Inversion of Ramberg-Osgood equation and description of hysteresis loops [J]. International journal of non-linear mechanics,2002.37(8): 1319-1335.
    [82]Mulungye R M, Owende P M O, Mellon K. Finite element modelling of flexible pavements on soft soil subgrades[J] Materials & Design,2007,28(3):739-756.
    [83]Naylor D J. Stress-strain laws for soils[A]. Developments in soil mechanics[M]. Science Publishers,1978.
    [84]Nesnas K, Nunn M. Modelling the time dedepennt behaviour of asphalt and pavement permanent deformation under a rolling wheel[EB/OL].2005, http://www.tran sportresearchfoundation.co.uk/PDF/lnfrastructure/Nesnas_(2005)_Modelling_time_dependent....pdf.
    [85]Pappin J W. Characteristics of a granular material for pavement analysis[D]. UK: University of Nottingham,1979.
    [86]Parr G B. Some aspects of the behavior of London clay under repeated loading[D]. UK:University of Nottingham.1972.
    [87]Paute J L, Hornych P, Benaben J P. Comportement mecanique des graves non traitees[J]. Bull Liasion Laboratories Ponts Chaussees.1994.190:27-38.
    [88]Peckley D C Uchimura T. Strength and deformation of soft rocks under cyclic loading considering loading period effects[J]. Soils and foundations.2009.49(1): 51-62.
    [89]Pekeris C L. The seismic surface pulse[C]. Proceedings of the National Academy of Sciences of the United States of America.1955:469-480.
    [90]Perez 1, Medina L, Romana M G. Permanent deformation models for a granular material used in road pavements[J]. Construction and building materials,2006, 20(9):790-800.
    [91]Pestel E C. Leckie F A. Matrix Methods in Elastomechanics[M]. New York: McGraw-Hill.1963.
    [92]Presti D C F, Pallara O, Lancellotta R, et al. Monotonic and cyclic loading behavior of two sands at small strains[J]. Geotechnical Testing Journal.1993. 16(4):409-424.
    [93]Procter D C, Khaffaf J H. Cyclic Triaxial Tests on Remoulded Clays[J]. Journal of Geotechnical Engineering,1984,110(10):1431-1445.
    [94]Ray R L. Nonlinear state and tire force estimation for advanced vehicle control[J], Transactions on control systems technology,1995,3(1):117-124.
    [95]Roscoe K H. Schofield A N, Thurairajah A. Yielding of clays in states wetter than critical[J]. Geotechnique,1963,13(3):211-240.
    [96]Roscoe K H. Schofield A N, Wroth C P. On the yielding of soils[J]. Geotechnique, 1958,8(1):22-53.
    [97]Saad B, Mitri H, Poorooshasb H.3D FE analysis of flexible pavement with geosynthetic reinforcement[J]. Journal of Transportation Engineering,2006, 132(5):402-415.
    [98]Saad B. Mitri H, Poorooshasb H. Three-dimensional dynamic analysis of flexible conventional pavement foundation[J]. Journal of Transportation Engineering, 2005,131(6):460-469.
    [99]Sangrey D A, Castro G, Poulos S J, et al. Cyclic loading of sands, silts and clays[C]. Proceedings of the Specialty Conference on Earthquake Engineering and Soil Dynamics. Pasadena. Calif:1978:836-851.
    [100]Schanz T, Vermeer P A, Bonnier P G. The hardening soil model:formulation and verification[C]. Beyond 2000 in Computational Geotechnics. Balkema: Amsterdam.1999:281-296.
    [101]Seed H B, Chan C K. Clay strength under earthquake loading conditions[J]. Journal of Soil Mechanics and Foundations,1966.92(2):53-78.
    [102]Sekula K, Holnicki-Szulc J, Knap L. New sensors system for monitoring of traffic load [EB/OL].2004, http://smart.ippt.gov.pl/pdf/paper_2004 KS_JH_LK_eshm.pdf.
    [103]Sekula K. Holnicki-Szulc J. Built-in self-test for the system traffic load identification[C]. Computer Methods in Mechanics, Poland:[s. n.],2005.
    [104]Sheng X, Jones C J C, Thompson D J. A theoretical study on the influence of the track on train-induced ground vibration[J]. Journal of Sound and Vibration, 2004.272(3-5):909-936.
    [105]Sheng X, Jones C J C. Thompson D J. Ground vibration generated by a harmonic load moving in a circular tunnel in a layered ground[J]. Low Frequency Noise, Vibration and Active Control,2003,22(2):83-96.
    [106]Strwart H E. Permanent strains from cyclic variable-amplitude loadings[J]. Journal of Geotechnical Engineering,1986.112(6):646-660.
    [107]Subei N, Saxena S K, Mohammadi J. A BEM-FEM approach for analysis of distresses in pavements[J]. International Journal of Numerical Analysis Methods in Geomechanics,1991,15(2):103-119.
    [108]Sweere G T H. Unbound granular bases for roads[D]. Holland:University of Delft,1990.
    [109]Tafreshi M, Mehrjardi T. The use of neural network to predict the behavior of small plastic pipes embedded in reinforced sand and surface settlement under repeated load[J]. Engineering applications of artificial intelligence.2008.21(6):.
    [110]Tan K, Vucetic M. Behavior of medium and low plasticity clays under cyclic simple shear conditions[C]. Proceedings of the 4th International Conference on Soil Dynamic and Earthquake Engineering. Mexico:[s. n.],1989:131-142.
    [111]Terrel R L, Awad I S, Foss L R. Techniques for characterizing bituminous materials using a versatile triaxial testing system[J]. ASTM special technical publication,1974.561:47-66.
    [112]Thomson W T. Matrix solution for the vibration of non-uniform beams[J]. Journal of Applied Mechanics,1950,17:337-339.
    [113]Thomson W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics.1950,21:89-93.
    [114]Uthus L. Deformation properties of unbound granular aggregates[D], Trondheim:Norwegian University,2007.
    [115]Vale C. Influence of vertical load models on flexible pavement response-an investigation[J]. International Journal of Pavement Engineering.2008.9(4): 247-255.
    [116]Vermeer P A. A double hardening model for sand[J]. Geotechnique,1978,28(4): 413-433.
    [117]Veverka V. Raming van de spoordiepte bij wegen met een bitumineuze verharding. de wegentechniek,1979,24(3):25-45.
    [118]Wichtmann T. Triantafyllidis T. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, part II:cyclic axial preloading[J]. Soil Dynamics and Earthquake Engineering,2004,24(11):789-803.
    [119]Wichtmann T. Explicit accumulation model for non-cohesive soils under cyclic loading[D]. Ruhr University Bochum,2005.
    [120]Wichtmann T. Niemunis A, Triantafyllidis T. Strain accumulation in sand due to cyclic loading:drained triaxial tests[J]. Soil dynamics and earthquake engineering, 2005,25(12):967-979.
    [121]Wichtmann T. Niemunis A. Triantafyllidis T. Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands[J]. Soil and Foundation,2009,49(5):711-728.
    [122]Wolff H, Visser A T. Incorporating elasto-plasticity in granular layer pavement design[J]. Journal of Rock Mechanics and Mining,1994.105:259-272.
    [123]Yasuhara K. Yamanouchi T, Hirao K. Cyclic strength and deformation of normally consolidated clay[J]. Soils and Foundations,1982,22 (3):77-91.
    [124]Zhou J, Gong X N. Strain degradation of saturated clay under cyclic loading[J]. Canadian Geotechnical Journal 2001.38(2):208-212.
    [125]Zimmie T F, Lien C Y. Response of clay subjected to combined cyclic and initial static shear stress[C]. Proceedings of the 3rd Canadian Conference on Marine Geotechnical Engineering. [S.1.]:[s. n.],1986:655-675.
    [126]白顺昊,侯永峰,张鸿儒.交通荷载作用下饱和软基的模型试验及变形分析[J].中国安全科学学报,2004,14(12):108-110.
    [127]边学成,陈云敏.基于2.5维有限元方法分析列车荷载产生的地基波动[J].岩石力学与工程学报,2006,25(11):2335-2342.
    [128]边学成.基于软土动力特性的列车荷载作用下无限结构与地基的振动研究[R].杭州:博士后研究工作报告,2007.
    [129]蔡英,曹新文.铁路路基动态特性的模型试验研究[J].西南交通大学学报,1996,31(1):36-41.
    [130]陈颖平.循环荷载作用下结构性软粘土特性的试验研究[D].杭州:浙江大学,2007.
    [131]崔新壮,金青,董琳琳.交通荷载作用下地基累积沉降现场模拟装置及模拟方法:中国,101413275A[P].2009-04-22.
    [132]方安平,叶卫平Origin 8.0实用指南[M].北京:机械工业出版社,2009.
    [133]方福森.路面工程[M].北京:人民交通出版社,2004.
    [134]高玉峰,黎冰,刘汉龙.车辆荷载作用下公路软基沉降的拟静力计算方法 研究[J].岩石力学与工程学报,2005,24(Supp2):5470-5477.
    [135]郭瑞平,李广信.以塑性功函数为硬化参数的土的弹塑性模型[J].清华大学学报(自然科学版),2000,40(5):125-127.
    [136]贺冠军.交通荷载对低路堤下软土地基沉降影响的室内试验与研究[D].南京:河海大学,2005.
    [137]胡安宇,林曼,张洪亮.移动车辆荷载作用下路基中压应力测试[J].建设机械技术与管理.2008,10:108-112.
    [138]黄博,丁浩,陈云敏、等.交通荷载作用后粉质黏土不排水强度特性试验研究[J].岩土力学与工程学报,2010,29(Supp.2):3986-3993.
    [139]黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性[J].岩土工程学报,2006,28(7):891-895。
    [140]黄仰贤(美).路面分析与设计[M].北京:人民交通出版社,1998.
    [141]黄永强.高速公路路基沉降及路面动力特性研究[D].长沙:中南大学.2010.
    [142]蒋吉清.非齐次弹性动力方程的回传射线分析及结构无损检测[D].杭州:浙江大学,2008.
    [143]金睿臣,宋健.路面不平度的模拟与汽车非线性随机振动的研究[J].清华大学学报(自然科学版),1999,39(8):76-79.
    [144]黎冰,高玉峰,魏代现,等.车辆荷载的传递深度及其影响因素的研究[J].岩土力学.2005.26(增):310-313.
    [145]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [146]李广信.土的清华弹塑性模型及其发展[J].岩土工程学报.2006,28(1):1-10.
    [147]李进军,黄茂松,王育德.交通荷载作用下软土路基累积塑性变形分析方法[J].中国公路学报,2006,19(1):1-5.
    [148]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [149]凌建明,王伟,邬洪波.行车荷载作用下湿软路基残余变形的研究[J].同济大学学报,2002,30(11):1315-1320.
    [150]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土 木工程学报,1998,31(3):55-64.
    [151]刘明.饱和软粘土动力本构模型研究与地铁隧道长期振陷分析[D].上海:同济大学,2006.
    [152]刘胜群.郑晓.交通荷载下软土地基沉降模型试验研究[J].路基工程,2008.6:28-29.
    [153]刘云贺.张伯艳.拱坝地震输入模型中黏弹性边界与黏性边界的比较[J].水利学报,2006,37(6):758-763.
    [154]卢正.交通荷载作用下公路结构动力响应及路基动强度设计方法研究[D].武汉:中国科学院研究生院,2009.
    [155]梅英宝,朱向荣,吕凡任.交通荷载作用下道路与软土地基弹塑性变形分析[J].浙江大学学报(工学版),2005,39(7):997-1002.
    [156]日本道路协会编.道路土工软土地基处理技术指南[M].蔡思捷译.北京:人民交通出版社,1989.
    [157]沈珠江.土体应力应变分析中的一种新模型[C].第五届土力学及基础二程学术讨论会论文集[C].北京:中国建筑工业出版社,1992,101-105,
    [158]唐益群,黄雨,叶为民,等.地铁列车荷载作用下隧道周围土体的临界动应力比和动应变分析[J].岩石力学与工程学报,2003,22(9):1566-1570.
    [159]王常晶.列车移动荷载作用下地基的动应力及饱和软粘土特性研究[D].杭州:浙江大学,2005.
    [160]王军,蔡袁强.循环荷载作用下饱和软黏土应变累积模型研究[J].岩石力学与工程学报,2008,27(2):331-338.
    [161]王军.单、双向激振循环荷载作用下饱和软粘土动力特性研究[D].杭州:浙江大学,2007.
    [162]王立忠,赵志远,李玲玲.考虑土体结构性的修正邓肯-张模型[J].水利学报.2004(1):83-90.
    [163]王涛.高速公路桥梁交通荷载调查分析及仿真模拟[D].西安:长安大学,2010.
    [164]王贻荪.地面波动分析若干问题[J].建筑结构学报,1982,3(2):56-67.
    [165]王振宇.大型结构一地基系统动力反应的计算理论及其应用研究[D].北京: 清华大学,2002.
    [166]魏星,黄茂松.交通荷载作用下公路软土地基长期沉降的计算[J].岩土力学,2009,30(11):3342-3346.
    [167]魏星,王刚,余志灵.交通荷载下软土地基长期沉降的有限元法[J].岩土力学,2010,31(6):2011-2015.
    [168]徐斌,郑钢铁,范轶,等.道路破坏的影响因素及悬架参数优化[J].汽车工程,2000,22(6):418-422.
    [169]杨仲元.基于复杂场地及行车条件的交通振动影响研究[J].公路交通科技,2008(12):167-171.
    [170]叶国铮.路面永久变形的实验研究[J].岩土工程学报,1987.9(1):113-116.
    [171]俞茂宏,刘奉银,胡小荣,等Mohr-Coulomb强度理论与岩土力学基础理论研究[J].岩石力学与工程学报,2001,20(增1):841-845.
    [172]于清,曹源文.不平整路面上的汽车动荷载[J].重庆交通学院学报.2003.22(4):32-34.
    [173]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报.2001.20(6):772-779.
    [174]章根德.土的太构模型及其工程应用[M].北京:科学出版社,1995.
    [175]张茹,涂扬举,费文平等.振动频率对饱和软黏土动力特性的影响[J].岩土力学,2006.27(5):699-704.
    [176]张仪萍.俞亚南,周宏伟.桥头粉喷桩复合地基工后沉降原因分析[J].岩土力学,2006,27(7):1171-1175.
    [177]赵俊明,刘松玉,石名磊,等.交通荷载作用下低路堤动力特性试验研究[J].东南大学学报(自然科学版).2007.37(5):921-925.
    [178]赵维炳,施建勇.软土固结与流变[M].南京:河海大学出版社,1996
    [179]中华人民共和国建设部.城市道路设计规范(CJJ37-90)[S].北京:人民交通出版社.1991.
    [180]中华人民共和国交通部.公路软土地基路堤设计与施工技术规范(JTJ017-96)[S].北京:人民交通出版社,1997.
    [181]中华人民共和国水利部.土工试验方法标准(GB/T50123-1999)[S].南京 中国计划出版社,1999.
    [182]钟辉虹,黄茂松,吴世明,等.循环荷载作用下软黏土变形特性研究[J].岩土工程学报.2002.24(5):629-632.
    [183]周建,龚晓南.循环荷载作用下饱和软粘土应变软化研究[J].土木工程学报,2000.32(5):62-68.
    [184]周建斌.魏金霞.李国强.交通动荷载模拟试验成果分析[J].公路与汽运,2005,4:32-34.
    [185]朱赞凌.交通荷载作用下路面地基共同作用的模型试验研究[D].杭州:浙江大学,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700