可可影响血脂谱的荟萃分析及FOXP3基因甲基化修饰与动脉粥样硬化的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:以往关于黑巧克力、可可粉等可可产物对血脂谱影响的研究结论不一致。
     目的:通过Meta分析的方法综合评价随机对照试验中可可对总胆固醇(TC)、低密度脂蛋白胆固醇(LDL)和高密度脂蛋白胆固醇(HDL)的影响,为健康饮食提供可参考的循证学证据。
     方法:系统检索PubMed、Cochrane library、Embase电子数据库,并通过阅读相关综述及文章的参考文献进一步获取信息。对目前已发表的,研究食用可可与血脂水平关系的随机对照实验进行荟萃分析。应用固定效应和随机效应模型,以加权平均差计算血脂指标的净变化。以预设的亚组分析探索影响效应的试验因素。
     结果:最终纳入8个短期干预的随机对照试验,总共包括215个研究对象。综合分析显示,与对照组相比,食用可可能够显著减低LDL(平均差:-5.87mg/dL,95%CI:-11.13,-0.61,P<0.05),并且对TC有改善的趋势(平均差:-5.82mg/dL,95%CI:-12.39,0.76mg,P=0.08)。但是,敏感性分析中,在排除质量较低的实验后,综合分析高质量实验(仅纳入3项实验)显示,可可对LDL的作用不明显(平均差:-4.98mg/dL,95%CI:-3.18,3.21,P=0.23)。亚组分析显示,食用低剂量可可(多酚摄入量<260mg/天)能够显著降低胆固醇(TC:平均差:-9.92mg/dL;95%CI:-15.74,-4.14;P=0.0008;LDL平均差:-8.07 mg/dL; 95%CI:-15.15,-0.99;P=0.03),而中量或大量摄入可可对血脂谱没有影响。另外,可可改善血脂的作用在有心血管相关疾病组更加明显(TC:平均差:-8.01 mg/dL;95%CI:-13.83,-2.20;P=0.0007;LDL:平均差:7.60 mg/dL;95%CI:-14.70,-0.51:P=0.04)。
     结论:短期摄入适量可可能够显著降低血胆固醇,但是可可的这种效应依赖于可可摄入量和受试者的健康状况。本研究仅分析了短期实验的效果,尚需更多的高质量的长期干预试验提供证据。
     目的:动物学研究中发现,调节性T细胞在动脉粥样硬化中起保护作用。然而,在人类冠心病的研究中,调节性T细胞的变化水平尚存在争议。实验证明FOXP3基因的去甲基化状态保证其基因能够稳定表达,是调节性T细胞发挥抑制性功能的基础。研究还发现了一项新的调节性T细胞的检测方法,即基于调节性T细胞FOXP3基因特殊区域(TSDR)的去甲基化水平来反应调节性T细胞的水平。所以本研究旨在两方面的研究,一是应用这种新的方法来评估冠心病患者调节性T细胞水平;二是探讨动脉粥样硬化发生发展过程中是否伴有FOXP3基因的甲基化改变。
     方法和结果:本研究纳入20位ST段抬高的急性心肌梗死患者,16位非ST段抬高的急性冠脉综合征患者以及20位冠脉造影正常者。分离外周血单个核细胞,分别用流式细胞分析仪和基于PCR的FOXP3基因甲基化分析来测量调节性T细胞水平。实验发现,冠心病患者用基于PCR的FOXP3基因甲基化分析所得到的调节性T细胞水平均是降低的(正常对照4.22%±1.92%,非ST段抬高的急性冠脉综合征3.29%±1.45%;ST段抬高的急性心肌梗死2.86%±1.26%),而流式细胞仪所得到的调节性T细胞水平在冠心病患者中的改变不一致。FOXP3-TSDR的去甲基化水平与冠心病的严重程度呈反比(r=-0.308,P<0.05)。在去除传统危险因素(年龄、吸烟、体重指数、平均动脉压、血脂和血糖)的影响后,这种相关性依然显著存在(β=-0.336,P<0.05)。进一步检测冠心病患者和正常对照者CD4+CD25+T细胞中甲基化转移酶的表达水平发现,冠心病患者CD4+CD25+T细胞中的甲基化转移酶DNMT3b的表达是显著增高的。我们用氧化低密度脂蛋白与分离的健康人的CD4+CD25+T细胞共培养发现,氧化低密度脂蛋白能够明显增加FOXP3-TSDR的甲基化程度达41%,减少FOXP3基因的表达超过3倍,同时伴有氧化低密度脂蛋白诱导DNMT3a和DNMT3b表达显著增加。此外,我们在单个核细胞的培养中还发现甲基转移酶抑制剂EGCG可逆转氧化低密度脂蛋白对调节性T细胞的作用。
     结论:本研究显示冠心病患者的去甲基化FOXP3所代表的调节性T细胞水平显著降低,调节性T细胞的减少和动脉粥样硬化的严重程度呈负相关关系。冠心病的危险因素之一,氧化低密度脂蛋白能够增加FOXP3基因的甲基化程度,减少FOXP3基因表达。提示调节性T细胞在冠心病的发病中起重要作用,表观遗传学改变调控动脉粥样硬化进程。
Background:The effect of cocoa products on lipid changes is still controversial. Objectives:We aimed to identify and quantify the effect of cocoa on total cholesterol (TC), low density lipoprotein cholesterol (LDL) and high density lipoprotein cholesterol (HDL).
     Design:A comprehensive literature search was conducted for relevant trials of cocoa on lipid profile. Weighted mean differences were calculated for net changes in lipid concentrations by using fixed-effect or random-effect models. Previously defined subgroup analyses were performed to identify the source of heterogeneity.
     Results:Eight trials (215 participants) were included and evaluated. Because there was only one relatively longer term study, we focused on the short-term data to evaluate the effects of cocoa on plasma lipid. Cocoa consumption significantly reduced LDL by 5.87 mg/dL (95%CI:-11.13,-0.61; P<0.05) and marginally decreased TC by 5.82 mg/dL (95%CI:-12.39,0.76; P=0.08). However, no significant change was seen in LDL in the high-quality studies (3 studies included,-4.98 mg/dL,95%CI:-13.18,3.21,P=0.23). Subgroup analyses suggested that the cholesterol-lowering effect only was identified in those with low dose of cocoa consumption and with cardiovascular disease risks. No evidence was found in supporting a dose-effect relationship, of any effect in healthy subjects, or of any change in HDL.
     Conclusion:Short-term cocoa consumption significantly reduced blood cholesterol, but the effects were dependent on the dose of cocoa consumption and the healthy status of participants. No dose response and no effect were found in healthy participants. Future high quality studies are needed to determine the efficiency of moderate cocoa on lipid profile in long-term intervention and in subjects with other cardiometabolic risk factors.
     Objective:Regulatory T (Treg) cells play a protective role in experimental atherosclerosis. However, the role of Treg in the development of human coronary artery disease (CAD) is still inconsistent. Demethylation in the DNA that encodes transcription factor forkhead box P3 (FOXP3) is a prerequisite for the stable maintenance of suppressive properties in Tregs, which is also identified as the most specific marker for human Tregs. We aim to evaluate Treg levels in CAD patients by a novel method based on Treg-specific DNA demethylation within FOXP3 gene and testify DNA methylation modification of FOXP3 in the development of atherosclerosis.
     Methods and Results:We included acute ST-elevation myocardial infarction (STEMI) patients, non-ST-elevation acute coronary syndromes (NSTACS) patients, and control subjects with normal coronary artery on angiography (NCA) in our study. Peripheral blood mononuclear cells were collected to determine Treg levels by both flow cytometry and PCR based DNA methylation analysis. We found that Treg levels, quantified by the demethylation rate of Treg-specific demethylated region in FOXP3 gene, but not by flow cytometry, were univocally decreased in NSTACS and in STEMI patients (NCA 4.22%±1.92%; NSTACS 3.29%±1.45%; AMI 2.86%±1.26%). This decline was inversely related to the severity of CAD (γ=-0.308,p<0.05). After adjustment for traditional risk factors, the association remained (/?=-0.336, P<0.05). Furthermore, we detected the expression of DNA methyltransferases in CD4+CD25+Tregs sorted from included subjects. A significant increase of DNA methyltransferase 3b was observed in CAD patients compared with normal controls. Treatment of CD4+CD25+Tregs with ox-LDL induced a 41%increase in the methylation of FOXP3, accompanied with a more than 3-fold reduction of FOXP3 mRNA expression and increases in the expressions of DNA methyltransferase 3a and 3b. Moreover, the effect of ox-LDL on Tregs can be reversed by methyltransferase inhibitor (-)-epigallocatechin-3-gallate.
     Conclusion:Our data demonstrate that Treg cells are decreased in CAD patients and its reduction are associated with the severity of atherosclerosis. Ox-LDL decreases the expression of FOXP3 by DNA methylation. Thus, we confirm the important role of Treg cells in human CAD and suggest potential epigenetic regulation in the progression of atherosclerosis.
引文
1. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.Circulation 2009; 119:480-6.
    2. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364:937-52.
    3. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002; 106: 3143-421.
    4. Osman JL, Sobal J. Chocolate cravings in American and Spanish individuals: biological and cultural influences. Appetite 2006; 47:290-301.
    5. Patel J, D'Souza J. Can we now eat chocolate without feeling guilty? J Am Pharm Assoc (2003) 2008; 48:438-40.
    6. Buijsse B, Feskens EJ, Kok FJ, Kromhout D. Cocoa intake, blood pressure, and cardiovascular mortality:the Zutphen Elderly Study. Arch Intern Med 2006; 166: 411-7.
    7. Crews WD Jr, Harrison DW, Wright JW. A double-blind, placebo-controlled, randomized trial of the effects of dark chocolate and cocoa on variables associated with neuropsychological functioning and cardiovascular health:clinical findings from a sample of healthy, cognitively intact older adults. Am J Clin Nutr 2008; 87: 872-80.
    8. Farouque HM, Leung M, Hope SA, et al. Acute and chronic effects of flavanol-rich cocoa on vascular function in subjects with coronary artery disease:a randomized double-blind placebo-controlled study. Clin Sci (Lond) 2006; 111: 71-80.
    9. Shiina Y, Funabashi N. Lee K. et al. Acute effect of oral flavonoid-rich dark chocolate intake on coronary circulation, as compared with non-flavonoid white chocolate, by transthoracic Doppler echocardiography in healthy adults. Int J Cardiol2009; 131:424-9.
    lO.Polagruto JA, Wang-Polagruto JF, Braun MM, Lee L, Kwik-Uribe C, Keen CL. Cocoa flavanol-enriched snack bars containing phytosterols effectively lower total and low-density lipoprotein cholesterol levels. J Am Diet Assoc 2006; 106: 1804-13.
    ll.Grassi D, Necozione S, Lippi C, et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 2005; 46:398-405.
    12.Baba S, Osakabe N, Kato Y, et al. Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr 2007; 85:709-17.
    13.Davison K, Coates AM, Buckley JD, Howe PR. Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjects. Int J Obes (Lond) 2008; 32:1289-96.
    14. Wan Y, Vinson JA, Etherton TD, Proch J, Lazarus SA, Kris-Etherton PM. Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humans. Am J Clin Nutr 2001; 74:596-602.
    15.Taubert D, Roesen R, Lehmann C, Jung N, Schomig E. Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide:a randomized controlled trial. JAMA 2007; 298:49-60.
    16. Engler MB, Engler MM, Chen CY,et al. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults.J Am Coll Nutr 2004; 23:197-204.
    17. Fraga CG, Actis-Goretta L, Ottaviani JI, et al. Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer players. Clin Dev Immunol 2005; 12:11-7.
    18. Grassi D, Lippi C, Necozione S, Desideri G, Ferri C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr 2005; 81:611-4.
    19. Balzer J, Rassaf T, Heiss C, Karne RJ, Crandon SK, Quon MJ. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial. J Am Coll Cardiol 2008; 51:2141-9.
    20. Muniyappa R, Hall G, Kolodziej TL,et al. Cocoa consumption for 2 wk enhances insulin-mediated vasodilatation without improving blood pressure or insulin resistance in essential hypertension. Am J Clin Nutr 2008; 88:1685-96.
    21.Grassi D, Desideri G, Necozione S, et al. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 2008; 138:1671-6.
    22. Wang-Polagruto JF, Villablanca AC, Polagruto JA, et al. Chronic consumption of flavanol-rich cocoa improves endothelial function and decreases vascular cell adhesion molecule in hypercholesterolemic postmenopausal women. J Cardiovasc Pharmacol 2006; 47:S177-86.
    23.Mathur S, Devaraj S, Grundy SM, Jialal I. Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J Nutr 2002; 132:3663-7.
    24. Osakabe N, Baba S, Yasuda A,et al. Daily cocoa intake reduces the susceptibility of low-density lipoprotein to oxidation as demonstrated in healthy human volunteers. Free Radic Res 2001; 34:93-9.
    25. Allen RR, Carson L, Kwik-Uribe C, Evans EM, Erdman JW Jr. Daily consumption of a dark chocolate containing flavanols and added sterol esters affects cardiovascular risk factors in a normotensive population with elevated cholesterol. J Nutr 2008; 138:725-31.
    26. Mursu J, Voutilainen S, Nurmi T, et al. Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Radic Biol Med 2004; 37:1351-9.
    27. Hamed MS, Gambert S, Bliden KP, et al. Dark chocolate effect on platelet activity, C-reactive protein and lipid profile:a pilot study. South Med J 2008; 101:1203-8.
    28. Murphy KJ, Chronopoulos AK, Singh I, et al. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am J Clin Nutr 2003; 77:1466-73.
    29. Osakabe N. Baba S, Yasuda A, et al. Dose-response study of daily cocoa intake on the oxidative susceptibility of low-density lipoprotein in healthy human volunteers. Journal of health science 2004; 50:679-684.
    30. Baba S, Natsume M, Yasuda A, et al. Plasma LDL and HDL cholesterol and oxidized LDL concentrations are altered in normo-and hypercholesterolemic humans after intake of different levels of cocoa powder. J Nutr 2007; 137: 1436-41.
    31.Nanetti L, Vignini A, Gregori A,et al. Effect of consumption of dark chocolate on Iipoproteins and serum lipids. Mediterranean Journal of Nutrition and Metabolism 2008; 1:25-31.
    32. Moher D, Pham B, Jones A, et al. Does quality of reports of randomized trials affect estimates of intervention efficacy reported in meta-analyses? Lancet 1998; 352:609-13.
    33.Follmann D, Elliott P, Suh I, Cutler J. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 1992; 45:769-73.
    34.Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327:557-60.
    35.DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7:177-88.
    36.Innes AJ, Kennedy G, McLaren M, Bancroft AJ, Belch JJ. Dark chocolate inhibits platelet aggregation in healthy volunteers. Platelets 2003; 14:325-7.
    37.Hannum SM, Schmitz HH, Keen CL. Chocolate:A Heart-healthy Food? Show Me the Science! Nutr Today 2002; 37:103-109.
    38. Kastelein JJ, Wedel MK, Baker BF, et al. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation 2006; 114:1729-35.
    39.Ballantyne CM, Abate N, Yuan Z, King TR, Palmisano J. Dose-comparison study of the combination of ezetimibe and simvastatin (Vytorin) versus atorvastatin in patients with hypercholesterolemia:the Vytorin Versus Atorvastatin (VYVA) study. Am Heart J 2005; 149:464-73.
    40. Pearson TA, Denke MA, McBride PE, Battisti WP, Brady WE, Palmisano J. A community-based, randomized trial of ezetimibe added to statin therapy to attain NCEP ATP III goals for LDL cholesterol in hypercholesterolemic patients:the ezetimibe add-on to statin for effectiveness (EASE) trial. Mayo Clin Proc 2005; 80:587-95.
    41.Corti R, Flammer AJ, Hollenberg NK, Luscher TF. Cocoa and cardiovascular health. Circulation 2009; 119:1433-41.
    42. Schmidt M, Schmitz HJ, Baumgart A, et al. Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture. Food Chem Toxicol 2005; 43: 307-14.
    43.Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 2002; 277:34933-40.
    44. Vinson JA, Proch J, Bose P,et al. Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant contributor to antioxidants in the European and American Diets. J Agric Food Chem2006;54 (21):8071-6.
    45. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med 1993; 328:1676-85.
    46. Lecumberri E, Goya L, Mateos R, et al. A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition 2007; 23:332-41.
    47. Zang M, Xu S, Maitland-Toolan KA,et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 2006; 55:2180-91.
    48. Hooper L, Kroon PA, Rimm EB, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk:a meta-analysis of randomized controlled trials. Am J Clin Nutr 2008; 88:38-50.
    49. Banel DK, Hu FB. Effects of walnut consumption on blood lipids and other cardiovascular risk factors:a meta-analysis and systematic review. Am J Clin Nutr 2009; 90:56-63.
    50. Upadhyay GA, Choudhry NK, Auricchio A, Ruskin J, Singh JP. Cardiac resynchronization in patients with atrial fibrillation:a meta-analysis of prospective cohort studies. J Am Coll Cardiol 2008; 52:1239-46.
    1. Henderson JS, Joyce RA, Hall GR, Hurst WJ, McGovern PE. Chemical and archaeological evidence for the earliest cacao beverages. Proc Natl Acad Sci U S A.2007; 104:18937-18940.
    2. Dillinger TL, Barriga P, Escarcega S, Jimenez M, Salazar Lowe D, Grivetti LE. Food of the gods:cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr.2000; 130:2057S-2072S.
    3. Bravo L. Polyphenols:chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev.1998; 56:317-333.4. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med.1995; 155:381-386.
    4. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med.1995;155:381-386.
    5. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease:the Zutphen Elderly Study. Lancet.1993; 342:1007-1011.6. Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland:a cohort study. BMJ.1996; 312:478-481.
    6. Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland:a cohort study. BMJ.1996;312:478-481.
    7. Joshipura KJ, Hu FB, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, Colditz G, Ascherio A, Rosner B, Spiegelman D. Willett WC. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med.2001; 134: 1106-1114.
    8. Keli SO, Hertog MG, Feskens EJ, Kromhout D. Dietary flavonoids, antioxidant vitamins, and incidence of stroke:the Zutphen study. Arch Intern Med.1996; 156: 637-642.
    9. Hollenberg NK, Martinez G, McCullough M, Meinking T, Passan D, Preston M, Rivera A, Taplin D, Vicaria-Clement M. Aging, acculturation, salt intake, and hypertension in the Kuna of Panama. Hypertension.1997:29:171-176.
    10. Hollenberg NK, Rivera A, Meinking T, Martinez G, McCullough M, Passan D, Preston M, Taplin D, Vicaria-Clement M. Age, renal perfusion and function in island-dwelling indigenous Kuna Amerinds of Panama. Nephron.1999; 82: 131-138.
    11. Bayard V, Chamorro F, Motta J, Hollenberg NK. Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int J Med Sci.2007; 4:53-58.
    12. Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong CP, Nettleton JA, Jacobs DR Jr. Flavonoid intake and cardiovascular disease mortality:a prospective study in postmenopausal women. Am J Clin Nutr.2007; 85:895-909.
    13.Buijsse B, Feskens EJ, Kok FJ, Kromhout D. Cocoa intake, blood pressure, and cardiovascular mortality:the Zutphen Elderly Study. Arch Intern Med.2006; 166: 411-417.
    14. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols:food sources and bioavailability. Am J Clin Nutr.2004; 79:727-747.
    15. Arts IC, van de Putte B, Hollman PC. Catechin contents of foods commonly consumed in The Netherlands,1:fruits, vegetables, staple foods, and processed foods. JAgric Food Chem.2000; 48:1746-1751.
    16. Adamson GE, Lazarus SA, Mitchell AE, Prior RL, Cao G, Jacobs PH, Kremers BG, Hammerstone JF, Rucker RB, Ritter KA, Schmitz HH. HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agric Food Chem.1999; 47:4184-4188.
    17. Serafini M, Bugianesi R, Maiani G Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature.2003; 424:1013.
    18. Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG. Epicatechin in human plasma:in vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr.2000; 130:2109S-2114S.
    19. Richelle M, Tavazzi I, Enslen M, Offord EA. Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr.1999; 53:22-26.
    20. Miller KB, Stuart DA. Smith NL, Lee CY, McHale NL, Flanagan JA, Ou B, Hurst WJ. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J Agric Food Chem.2006; 54:4062-4068.
    21.Roura E, Andres-Lacueva C, Estruch R, Mata-Bilbao ML, Izquierdo-Pulido M, Waterhouse AL, Lamuela-Raventos RM. Milk does not affect the bioavailability of cocoa powder flavonoid in healthy human. Ann Nutr Metab.2007; 51: 493-498.
    22. Schroeter H, Holt RR, Orozco TJ, Schmitz HH, Keen CL. Nutrition:milk and absorption of dietary flavanols. Nature.2003; 426:787-788.
    23.Boulanger C, Luscher TF. Release of endothelin from the porcine aorta:inhibition by endothelium-derived nitric oxide. J Clin Invest.1990; 85:587-590.
    24. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, Luscher TF. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation.1995; 91:1314-1319.
    25. Joannides R, Richard V, Haefeli WE, Linder L, Luscher TF, Thuillez C. Role of basal and stimulated release of nitric oxide in the regulation of radial artery caliber in humans. Hypertension.1995; 26:327-331.
    26.Oemar BS, Tschudi MR, Godoy N, Brovkovich V, Malinski T, Luscher TF. Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation.1998; 97:2494-2498.
    27. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, Lieberman EH, Ganz P, Creager MA, Yeung AC, Selwyn AP. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol.1995; 26:1235-1241.
    28.Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol.1994; 24: 1468-1474.
    29. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000; 101:1899-1906.
    30. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation.2000; 101:948-954.
    31. Duffy SJ, Keaney JF Jr, Holbrook M, Gokce N, Swerdloff PL, Frei B, Vita JA. Short-and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation.2001; 104:151-156.
    32.Karatzi K, Papamichael C, Aznaouridis K, Karatzis E, Lekakis J, Matsouka C, Boskou G, Chiou A, Sitara M, Feliou G, Kontoyiannis D, Zampelas A, Mavrikakis M. Constituents of red wine other than alcohol improve endothelial function in patients with coronary artery disease. Coron Artery Dis.2004; 15:485-490.
    33. Whelan AP, Sutherland WH, McCormick MP, Yeoman DJ, de Jong SA, Williams MJ. Effects of white and red wine on endothelial function in subjects with coronary artery disease. Intern Med J.2004; 34:224-228.
    34.Nagaya N, Yamamoto H, Uematsu M, Itoh T, Nakagawa K, Miyazawa T, Kangawa K, Miyatake K. Green tea reverses endothelial dysfunction in healthy smokers. Heart.2004; 90:1485-1486.
    35.Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr.2000; 130:2105S-2108S.
    36. Fisher ND, Hughes M, Gerhard-Herman M, Hollenberg NK. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens.2003; 21:2281-2286.
    37. Engler MB, Engler MM, Chen CY, Malloy MJ, Browne A, Chiu EY, Kwak HK, Milbury P, Paul SM, Blumberg J, Mietus-Snyder ML. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr.2004; 23:197-204.
    38. Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, Kelm M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci USA. 2006; 103:1024-1029.
    39. Heiss C, Dejam A, Kleinbongard P, Schewe T, Sies H, Kelm M. Vascular effects of cocoa rich in flavan-3-ols. JAMA.2003; 290:1030-1031.
    40. Hermann F, Spieker LE, Ruschitzka F, Sudano I, Hermann M, Binggeli C, Luscher TF, Riesen W, Noll G, Corti R. Dark chocolate improves endothelial and platelet function. Heart.2006; 92:119-120.
    41.Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P. Desideri G, Blumberg JB, Ferri C. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension. 2005; 46:398-405.
    42. Heiss C. Kleinbongard P, Dejam A. Perre S. Schroeter H, Sies H. Kelm M. Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol.2005:46:1276-1283.
    43.Balzer J, Rassaf T, Heiss C, Kleinbongard P, Lauer T, Merx M, Heussen N, Gross HB, Keen CL, Schroeter H, Kelm M. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial. J Am Coll Cardiol.2008; 51:2141-2149.
    44. Choi YJ, Kang JS, Park JH, Lee YJ, Choi JS, Kang YH. Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide-treated human vascular endothelial cells. J Nutr.2003; 133:985-991.
    45. Leikert JF, Rathel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation.2002; 106:1614-1617.
    46. Benito S, Lopez D, Saiz MP, Buxaderas S, Sanchez J, Puig-Parellada P, Mitjavila MT. A flavonoid-rich diet increases nitric oxide production in rat aorta. Br J Pharmacol.2002; 135:910-916.
    47. Wallerath T, Poleo D, Li H, Forstermann U. Red wine increases the expression of human endothelial nitric oxide synthase:a mechanism that may contribute to its beneficial cardiovascular effects. J Am Coll Cardiol.2003; 41:471-478.
    48. Schnorr O, Brossette T, Momma TY, Kleinbongard P, Keen CL, Schroeter H, Sies H. Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo. Arch Biochem Biophys.2008; 476:211-215.
    49.49. Francis ST, Head K, Morris PG, Macdonald IA. The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J Cardiovasc Pharmacol.2006; 47 (suppl 2):S215-S220.
    50. Sorond FA, Lipsitz LA, Hollenberg NK, Fisher ND. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr Dis Treat.2008; 4:433-440.
    51. Waterhouse AL, Shirley JR, Donovan JL. Antioxidants in chocolate. Lancet.1996; 348:834.
    52. Sanbongi C, Suzuki N, Sakane T. Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro. Cell Immunol. 1997; 177:129-136.
    53.Ottaviani JI, Carrasquedo F, Keen CL, Lazarus SA, Schmitz HH, Fraga CG. Influence of flavan-3-ols and procyanidins on UVC-mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in isolated DNA. Arch Biochem Biophys. 2002; 406:203-208.
    54. Wever RM, Luscher TF, Cosentino F, Rabelink TJ. Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation.1998; 97:108-112.
    55.Flammer AJ, Hermann F, Sudano I, Spieker L, Hermann M, Cooper KA, Serafini M, Luscher TF, Ruschitzka F, Noll G, Corti R. Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation.2007; 116:2376-2382.
    56. Lotito SB, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans:cause, consequence, or epiphenomenon? Free Radic Biol Med.2006; 41:1727-1746.
    57. Keen CL, Holt RR, Oteiza PI, Fraga CG, Schmitz HH. Cocoa antioxidants and cardiovascular health. Am J Clin Nutr.2005; 81:298S-303S.
    58. Holt RR, Schramm DD, Keen CL, Lazarus SA, Schmitz HH. Chocolate consumption and platelet function. JAMA.2002; 287:2212-2213.
    59. Pearson DA, Paglieroni TG, Rein D, Wun T, Schramm DD, Wang JF, Holt RR, Gosselin R, Schmitz HH, Keen CL. The effects of flavanol-rich cocoa and aspirin on ex vivo platelet function. Thromb Res.2002; 106:191-197.
    60. Rein D, Paglieroni TG, Wun T, Pearson DA, Schmitz HH, Gosselin R, Keen CL. Cocoa inhibits platelet activation and function. Am J Clin Nutr.2000; 72:30-35.
    61. Kelly FD, Sinclair AJ, Mann NJ, Turner AH, Abedin L, Li D. A stearic acid-rich diet improves thrombogenic and atherogenic risk factor profiles in healthy males. Eur J Clin Nutr.2001; 55:88-96.
    62. Kelly FD, Sinclair AJ, Mann NJ, Turner AH, Raffin FL, Blandford MV, Pike MJ. Short-term diets enriched in stearic or palmitic acids do not alter plasma lipids, platelet aggregation or platelet activation status. Eur J Clin Nutr.2002; 56: 490-499.
    63.Taubert D, Roesen R, Lehmann C, Jung N, Schomig E. Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide:a randomized controlled trial. JAMA.2007; 298:49-60.
    64. Alonso A. de la Fuente C, Beunza JJ, Sanchez-Villegas A, Martinez-Gonzalez MA. Chocolate consumption and incidence of hypertension. Hypertension.2005; 46: e21-e22.
    65.Taubert D. Roesen R, Schomig E. Effect of cocoa and tea intake on blood pressure: a meta-analysis. Arch Intern Med.2007:167:626-634.
    66. Actis-Goretta L. Ottaviani JI, Fraga CG. Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J Agric Food Chem.2006; 54:229-234.
    67. Kelly CJ. Effects of theobromine should be considered in future studies. Am J Clin Nutr.2005; 82:486-487.
    68. Grassi D, Lippi C, Necozione S, Desideri G, Ferri C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr.2005; 81:611-614.
    69. Tomaru M, Takano H, Osakabe N, Yasuda A, Inoue K, Yanagisawa R, Ohwatari T, Uematsu H. Dietary supplementation with cacao liquor proanthocyanidins prevents elevation of blood glucose levels in diabetic obese mice. Nutrition.2007; 23:351-355.
    70. Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Mostowski H, Quon MJ. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation.2000; 101:1539-1545.
    71.Baba S, Natsume M, Yasuda A, Nakamura Y, Tamura T, Osakabe N, Kanegae M, Kondo K. Plasma LDL and HDL cholesterol and oxidized LDL concentrations are altered in normo-and hypercholesterolemic humans after intake of different levels of cocoa powder. J Nutr.2007; 137 (6):1436-41.
    72.Bonanome A, Grundy SM. Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N Engl J Med.1988; 318:1244-1248.
    73.Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins:a meta-analysis of 60 controlled trials. Am J Clin Nutr.2003; 77:1146-1155.
    74.Kris-Etherton PM, Derr JA, Mustad VA, Seligson FH, Pearson TA. Effects of a milk chocolate bar per day substituted for a high-carbohydrate snack in young men on an NCEP/AHA Step 1 Diet. Am J Clin Nutr.1994; 60:1O37S-1O42S.
    75. Kondo K, Hirano R, Matsumoto A, Igarashi O, Itakura H. Inhibition of LDL oxidation by cocoa. Lancet.1996; 348:1514.
    76. Baba S, Osakabe N, Kato Y, Natsume M, Yasuda A, Kido T, Fukuda K, Muto Y, Kondo K. Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr.2007; 85:709-717.
    77. Baba S, Natsume M, Yasuda A, Nakamura Y, Tamura T, Osakabe N, Kanegae M, Kondo K. Plasma LDL and HDL cholesterol and oxidized LDL concentrations are altered in normo-and hypercholesterolemic humans after intake of different levels of cocoa powder. J Nutr.2007; 137:1436-1441.
    1. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med.2005;352:1685-1695.
    2. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O'Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2008 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25-146.
    3. Libby P, Ridker PM, Hansson GK; Leducq Transatlantic Network on Atherothrombosis. Inflammation in atherosclerosis:from pathophysiology to practice. J Am Coll Cardiol.2009;54:2129-2138.
    4. Binder CJ, Chang MK, Shaw PX, Miller YI, Hartvigsen K, Dewan A, Witztum JL. Innate and acquired immunity in atherogenesis. Nat Med.2002;8:1218-1226.
    5. Hosono M, de Boer OJ, van der Wal AC, van der Loos CM, Teeling P, Piek JJ, Ueda M, Becker AE. Increased expression of T cell activation markers (CD25, CD26, CD40L and CD69) in atherectomy specimens of patients with unstable angina and acute myocardial infarction. Atherosclerosis.2003; 168:73-80.
    6. De Palma R, Del Galdo F, Abbate G, Chiariello M, Calabro R, Forte L, Cimmino G, Papa MF, Russo MG, Ambrosio G, Giombolini C, Tritto I, Notaristefano S, Berrino L, Rossi F, Golino P. Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque:evidence for a local, intracoronary immunologic mechanism. Circulation.2006; 13:640-646.
    7. von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol. 2005;6:338-344.
    8. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells in immunological tolerance to self and non-self. Nat Immunol.2005:6:345-352.
    9. George J. Mechanisms of disease:the evolving role of regulatory T cells in atherosclerosis. Nat Clin Pract Cardiovasc Med.2008;5:531-540.
    10. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hansson GK, Klatzmann D, Tedgui A, Mallat Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med.2006; 12:178-180.
    11. Mor A, Planer D, Luboshits G, Afek A, Metzger S, Chajek-Shaul T, Keren G, George J. Role of naturally occurring CD4+CD25+regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol.2007;27:893-900.
    12. Mallat Z, Gojova A, Brun V, Esposito B, Fournier N, Cottrez F, Tedgui A, Groux H. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation.2003; 108:1232-1237.
    13. Wigren M, Bengtsson D, Duner P, Olofsson K, Bjorkbacka H, Bengtsson E, Fredrikson GN, Nilsson J. Atheroprotective effects of Alum are associated with capture of oxidized LDL antigens and activation of regulatory T cells. Circ Res. 2009;104:e62-70.
    14. Groyer E, Nicoletti A, Ait-Oufella H, Khallou-Laschet J, Varthaman A, Gaston AT, Thaunat O, Kaveri SV, Blatny R, Stockinger H, Mallat Z, Caligiuri G. Atheroprotective effect of CD31 receptor globulin through enrichment of circulating regulatory T-cells. J Am Coll Cardiol.2007;50:344-350.
    15. Sasaki N, Yamashita T, Takeda M, Shinohara M, Nakajima K, Tawa H, Usui T, Hirata K. Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation.2009; 120:1996-2005.
    16. Mor A, Planer D, Luboshits G, Afek A, Metzger S, Chajek-Shaul T, Keren G, George J. Role of naturally occurring CD4+CD25+regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol.2007;27:893-900.
    17. Feng J, Zhang Z, Kong W, Liu B, Xu Q, Wang X. Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/-mice. Cardiovasc Res. 2009;84:155-163.
    18. Mor A, Luboshits G, Planer D, Keren G, George J. Altered status of CD4(+)CD25 (+) regulatory T cells in patients with acute coronary syndromes. Eur Heart J. 2006:27:2530-2537.
    19. Cheng X, Yu X, Ding YJ, Fu QQ, Xie JJ, Tang TT, Yao R, Chen Y, Liao YH. The Thl7/Treg imbalance in patients with acute coronary syndrome. Clin Immunol. 2008; 127:89-97.
    20. Han SF, Liu P, Zhang W, Bu L, Shen M, Li H, Fan YH, Cheng K, Cheng HX, Li CX, Jia GL. The opposite-direction modulation of CD4+CD25+Tregs and T helper 1 cells in acute coronary syndromes. Clin Immunol.2007; 124:90-97.
    21. de Boer OJ, van der Meer JJ, Teeling P, van der Loos CM, van der Wal AC. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS One.2007;2:e779.
    22. Ammirati E, Cianflone D, Banfi M, Vecchio V, Palini A, De Metrio M, Marenzi G, Panciroli C, Tumminello G, Anzuini A, Palloshi A, Grigore L, Garlaschelli K, Tramontana S, Tavano D, Airoldi F, Manfredi AA, Catapano AL, Norata GD. Circulating CD4+CD25hiCD1271o regulatory T-Cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:1832-1841.
    23. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science.2003;299 (5609):1057-61.
    24. Campbell DJ, Ziegler SF. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol.2007;7 (4):305-10.
    25. Ziegler SF. FOXP3:of mice and men. Annu Rev Immunol.2006;24:209-26.
    26.Huehn J, Polansky JK, Hamann A. Epigenetic control of FOXP3 expression:the key to a stable regulatory T-cell lineage? Nat Rev Immunol.2009;9:83-89.
    27. Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J, Thiel A, Boeld TJ, Hoffmann P, Edinger M, Turbachova I, Hamann A, Olek S, Huehn J. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3 (+) conventional T cells. Eur J Immunol.2007;37:2378-2389.
    28. Nagar M, Vernitsky H, Cohen Y, Dominissini D, Berkun Y, Rechavi G, Amariglio N, Goldstein I. Epigenetic inheritance of DNA methylation limits activation-induced expression of FOXP3 in conventional human CD25-CD4+T cells. Int Immunol. 2008;20:1041-1055.
    29. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol.2007;5:e38.
    30. Lal G, Zhang N. van der Touw W, Ding Y, Ju W, Bottinger EP, Reid SP, Levy DE, Bromberg JS. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol.2009; 182:259-273.
    31. Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J. DNA methylation controls Foxp3 gene expression. Eur J Immunol.2008;38:1654-1663.
    32. Kim HP, Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression:a role for DNA methylation. J Exp Med.2007:204:1543-1551.
    33. Stockis J, Fink W, Francois V, Connerotte T, de Smet C, Knoops L, van der Bruggen P, Boon T, Coulie PG, Lucas S. Comparison of stable human Treg and Th clones by transcriptional profiling. Eur J Immunol.2009;39:869-882.
    34. Wieczorek G, Asemissen A, Model F, Turbachova I, Floess S, Liebenberg V, Baron U, Stauch D, Kotsch K, Pratschke J, Hamann A, Loddenkemper C, Stein H, Volk HD, Hoffmuller U, Grutzkau A, Mustea A, Huehn J, Scheibenbogen C, Olek S. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res.2009;69:599-608.
    35. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002; 16:6-21.
    36. Baron U, Turbachova I, Hellwag A, Eckhardt F, Berlin K, Hoffmuller U, Gardina P, Olek S. DNA methylation analysis as a tool for cell typing. Epigenetics. 2006; 1:55-60.
    37. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S. DNA methylation profiling of human chromosomes 6,20 and 22. Nat Genet.2006;38:1378-1385.
    38. McCabe DC, Caudill MA. DNA methylation, genomic silencing, and links to nutrition and cancer. Nutr Rev.2005;63:183-195.
    39. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, Milliken EE, Issa JP. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res.1999;43.985-991.
    40. Zawadzki C, Chatelain N, Delestre M, Susen S, Quesnel B, Juthier F, Jeanpierre E, Azzaoui R, Corseaux D, Breyne J, Torpier G, Staels B, Van Belle E, Jude B. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques. Atherosclerosis.2009;204:e4-14.
    41. Sharma P, Kumar J, Garg G, Kumar A, Patowary A, Karthikeyan G, Ramakrishnan L, Brahmachari V, Sengupta S. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol.2008;27:357-365.
    42. Stenvinkel P, Karimi M, Johansson S, Axelsson J, Suliman M. Lindholm B, Heimburger O, Barany P, Alvestrand A, Nordfors L, Qureshi AR, Ekstrom TJ, Schalling M. Impact of inflammation on epigenetic DNA methylation-a novel risk factor for cardiovascular disease? J Intern Med.2007;261:488-499.
    43.Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE Jr, Chavey WE 2nd, Fesmire FM, Hochman JS, Levin TN, Lincoff AM, Peterson ED, Theroux P, Wenger NK, Wright RS, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Halperin JL, Hunt SA, Krumholz HM, Kushner FG, Lytle BW, Nishimura R, Ornato JP, Page RL, Riegel B; American College of Cardiology; American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction); American College of Emergency Physicians; Society for Cardiovascular Angiography and Interventions; Society of Thoracic Surgeons; American Association of Cardiovascular and Pulmonary Rehabilitation; Society for Academic Emergency Medicine. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J Am Coll Cardiol.2007;50(7):el-el57.
    44. Sullivan DR, Marwick TH, Freedman SB. A new method of scoring coronary angiograms to reflect extent of coronary atherosclerosis and improve correlation with major risk factors. Am Heart J.1990; 119:1262-1267.
    45. Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol. 2006; 177:8338-8347.
    46. Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+CD25 (hi) Foxp3+regulatory T cells in cancer patients. Blood.2006:107:2409-2414.
    47. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity.2005;22:329-341.
    48. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+regulatory T cells. Nat Immunol.2003;4:330-336.
    49. Morgan ME, van Bilsen JH, Bakker AM, Heemskerk B, Schilham MW, Hartgers FC, Elferink BG, van der Zanden L, de Vries RR, Huizinga TW, Ottenhoff TH, Toes RE. Expression of FOXP3 mRNA is not confined to CD4+CD25+T regulatory cells in humans. Hum Immunol.2005;66:13-20.
    50. Ziegler SF. FOXP3:not just for regulatory T cells anymore. Eur J Immunol. 2007;37:21-23.
    51. Pillai V, Ortega SB, Wang CK, Karandikar NJ. Transient regulatory T-cells:a state attained by all activated human T-cells. Clin Immunol.2007; 123:18-29.
    52. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, Nakayama M, Rosenthal W, Bluestone JA. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol.2009; 10:1000-1007.
    53. Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol.2007; 19:345-354.
    54. Wang J, Ioan-Facsinay A, van der Voort El, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+T cells. Eur J Immunol.2007;37:129-138.
    55. Merlo A, Tagliabue E, Menard S, Balsari A. Matured human monocyte-derived dendritic cells (MoDCs) induce expansion of CD4+CD25+FOXP3+T cells lacking regulatory properties. Immunol Lett.2008; 117:106-113.
    56. de Vries IJ, Castelli C, Huygens C, Jacobs JF, Stockis J, Schuler-Thurner B, Adema GJ, Punt CJ, Rivoltini L, Schuler G Coulie PG Lucas S. Frequency of circulating tregs with demethylated foxp3 intron 1 in melanoma patients receiving tumor vaccines and potentially treg-depleting agents. Clin Cancer Res. 2011;7:841-848
    57. Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet.2009; 10:805-811.
    58. Huang Y, Peng K, Su J, Xu Y, Wang S. Different effects of homocysteine and oxidized low density lipoprotein on methylation status in the promoter region of the estrogen receptor alpha gene. Acta Biochim Biophys Sin (Shanghai).2007;39:19-26
    1. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009; 119:480-6.
    2. Eriksson JG, Forsen TJ, Kajantie E, Osmond C, Barker DJ. Childhood growth and hypertension in later life. Hypertension.2007;49:1415-21. Epub 2007 Apr 23.
    3. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6-21.
    4. Bird A. The essentials of DNA methylation. Cell 1992; 70:5-8.
    5. Cottrell SE. Molecular diagnostic applications of DNA methylation technology. Clin Biochem 2004; 37:595-604.
    6. Zaina S, Lindholm MW, Lund G. Nutrition and aberrant DNA methylation patterns in atherosclerosis:more than just hyperhomocysteinemia? J Nutr 2005; 135:5-8.
    7. Hiltunen MO, Yla-Herttuala S. DNA methylation, smooth muscle cells, and atherogenesis. Arterioscler Thromb Vasc Biol 2003; 23:1750-3.
    8. Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, Ballestar E, Esteller M, Zaina S. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 2004; 279:29147-54.
    9. Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW. DNA methylation as a biomarker for cardiovascular disease risk. PLoS One 2010; 5:e9692.
    10. Laukkanen MO, Mannermaa S, Hiltunen MO, Aittomaki S, Airenne K, Janne J, Yla-Herttuala S. Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol.1999; 19 (9):2171-8.
    11. Hiltunen MO, Turunen MP, Hakkinen TP, Rutanen J, Hedman M, Makinen K, Turunen AM, Aalto-Setala K, Yla-Herttuala S. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med.2002:7 (1):5-11.
    12. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ, Jakobs C, Tavares de Almeida I. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem.2003;49 (8):1292-6.
    13. Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A. Ballestar E, Esteller M, Zaina S. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004;279 (28):29147-54.
    14. Kortelainen ML, Huttunen P. Expression of estrogen receptors in the coronary arteries of young and premenopausal women in relation to central obesity. Int J Obes Relat Metab Disord 2004; 28:623-7.
    15. Ying AK, Hassanain HH, Roos CM, Smiraglia DJ, Issa JJ, Michler RE, Caligiuri M, Plass C, Goldschmidt-Clermont PJ. Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res 2000:46:172-9.
    16. Dong C, Yoon W, Goldschmidt-Clermont PJ. DNA methylation and atherosclerosis. J Nutr 2002; 132:2406S-2409S.
    17. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, Milliken EE, Issa JP. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 1999; 43:985-91.
    18. Zhu S, Goldschmidt-Clermont PJ, Dong C. Inactivation of monocarboxylate transporter MCT3 by DNA methylation in atherosclerosis. Circulation 2005; 112: 1353-61.
    19. Zawadzki C, Chatelain N, Delestre M, Susen S, Quesnel B, Juthier F, Jeanpierre E, Azzaoui R, Corseaux D, Breyne J, Torpier G, Staels B, Van Belle E, Jude B. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques. Atherosclerosis 2009; 204:e4-14.
    20. Chang PY, Lu SC, Lee CM, Chen YJ, Dugan TA, Huang WH, Chang SF, Liao WS, Chen CH, Lee YT. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ Res 2008; 102:933-41.
    21. Smolarek I, Wyszko E, Barciszewska AM, Nowak S, Gawronska I, Jablecka A, Barciszewska MZ. Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit.2010;16 (3):CR149-155.
    22. Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW. DNA methylation as a biomarker for cardiovascular disease risk. PLoS One.2010;5 (3):e9692.
    23. Gao WL, Li D, Xiao ZX, Liao QP, Yang HX, Li YX, Ji L, Wang YL. Detection of global DNA methylation and paternally imprinted H19 gene methylation in preeclamptic placentas. Hypertens Res.2011. [Epub ahead of print]
    24. Nuyt AM, Szyf M. Developmental programming through epigenetic changes. Circ Res 2007; 100:452-5.
    25. Draper N, Stewart PM.11 beta-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J Endocrinol 2005; 186:251-71.
    26. Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. J Clin Invest 2004; 114: 1146-57.
    27. Friso S, Pizzolo F, Choi SW, Guarini P, Castagna A, Ravagnani V, Carletto A, Pattini P, Corrocher R, Olivieri O. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis 2008; 199:323-7.
    28. Lee HA, Baek I, Seok YM, Yang E, Cho HM, Lee DY, Hong SH, Kim IK. Promoter hypomethylation upregulates Na+-K+-2C1-cotransporter 1 in spontaneously hypertensive rats. Biochem Biophys Res Commun.2010;396 (2):252-7.
    29. Chim SS, Tong YK, Chiu RW, Lau TK, Leung TN, Chan LY, Oudejans CB, Ding C, Lo YM. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci U S A.2005;102 (41):14753-8.
    30. Yung RL, Julius A. Epigenetics, aging, and autoimmunity. Autoimmunity 2008; 41: 329-35.
    31. Carlson BA, Xu XM, Gladyshev VN, Hatfield DL. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. J Biol Chem 2005; 280:5542-8.
    32. Huang S. Histone methyltransferases, diet nutrients and tumour suppressors. Nat Rev Cancer 2002:2:469-76.
    33. Belinsky SA, Palmisano WA, Gilliland FD, Crooks LA, Divine KK, Winters SA, Grimes MJ, Harms HJ, Tellez CS, Smith TM, Moots PP, Lechner JF, Stidley CA, Crowell RE. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res 2002; 62:2370-7.
    34. N. Sato, N. Maehara, G.H. Su and M. Goggins, Effects of 5-aza-2'-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness, J Natl Cancer Inst 95 (February (4)) (2003), pp.327-330. Full Text via CrossRef
    35. G Jayaraman, R. Srinivas and C. Duggan et al., p300/cAMP-responsive element-binding protein interactions with ets-1 and ets-2 in the transcriptional activation of the human stromelysin promoter, J Biol Chem 274 (June (24)) (1999), pp.17342-17352. Full Text via CrossRef| View Record in Scopus| Cited By in Scopus (86)
    36. Wild A, Ramaswamy A, Langer P, Celik I, Fendrich V, Chaloupka B, Simon B, Bartsch DK.Frequent methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene in pancreatic endocrine tumors.J Clin Endocrinol Metab. 2003;88 (3):1367-73.
    37. Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol.2005; 175 (6):3846-61.
    38. Chan Y, Fish JE, D'Abreo C, Lin S, Robb GB, Teichert AM, Karantzoulis-Fegaras F, Keightley A, Steer BM, Marsden PA. The cell-specific expression of endothelial nitric-oxide synthase:a role for DNA methylation. J Biol Chem. 2004;279 (33):35087-100.
    39. White GP, Watt PM, Holt BJ, Holt PG. Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO-T cells. J Immunol.2002; 168 (6):2820-7.
    40. Takei S, Fernandez D, Redford A, Toyoda H. Methylation status of 5'-regulatory region of tumor necrosis factor alpha gene correlates with differentiation stages of monocytes. Biochem Biophys Res Commun.1996;220 (3):606-12.
    41.Hellebrekers DM, Castermans K, Vire E, Dings RP, Hoebers NT, Mayo KH, Oude Egbrink MG, Molema G, Fuks F, van Engeland M, Griffioen AW.Epigenetic regulation of tumor endothelial cell anergy:silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res.2006;66 (22):10770-7.
    42. Armenante F, Merola M, Furia A, Palmieri M.Repression of the IL-6 gene is associated with hypermethylation. Biochem Biophys Res Commun.1999;258 (3):644-7.
    43. Dandrea M, Donadelli M, Costanzo C, Scarpa A, Palmieri M. MeCP2/H3meK9 are involved in IL-6 gene silencing in pancreatic adenocarcinoma cell lines. Nucleic Acids Res.2009;37 (20):6681-90.
    44. Osada H, Tatematsu Y, Sugito N, Horio Y, Takahashi T. Histone modification in the TGFbetaRⅡ gene promoter and its significance for responsiveness to HDAC inhibitor in lung cancer cell lines. Mol Carcinog.2005;44 (4):233-41.
    45. Lin XH, Guo C, Gu LJ, Deuel TF. Site-specific methylation inhibits transcriptional activity of platelet-derived growth factor A-chain promoter. J Biol Chem.1993;268 (23):17334-40.
    46. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, Milliken EE, Issa JP. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res.1999;43 (4):985-91.
    47. Kim J, Kim JY, Song KS, Lee YH, Seo JS, Jelinek J, Goldschmidt-Clermont PJ, Issa JP. Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys Acta. 2007; 1772 (1):72-80.
    48. Hastings NE, Simmers MB, McDonald OG, Wamhoff BR, Blackman BR. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am J Physiol Cell Physiol.2007;293 (6):C1824-33.
    49. Liu C, Xu D, Sjoberg J, Forsell P, Bjorkholm M, Claesson HE. Transcriptional regulation of 15-lipoxygenase expression by promoter methylation. Exp Cell Res. 2004;297 (1):61-7.
    50. Devlin AM, Singh R, Wade RE, Innis SM, Bottiglieri T, Lentz SR. Hypermethylation of Fads2 and altered hepatic fatty acid and phospholipid metabolism in mice with hyperhomocysteinemia. J Biol Chem.2007;282 (51):37082-90.
    51. Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, Bottiglieri T, Bagley P, Selhub J, Rudnicki MA, James SJ, Rozen R. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet.2001;10 (5):433-43.
    52. Schroeder M, Mass MJ. CpG methylation inactivates the transcriptional activity of the promoter of the human p53 tumor suppressor gene. Biochem Biophys Res Commun.1997;235 (2);403-6.
    53. Yang AS, Doshi KD, Choi SW, Mason JB, Mannari RK, Gharybian V, Luna R, Rashid A, Shen L, Estecio MR, Kantarjian HM, Garcia-Manero G, Issa JP. DNA methylation changes after 5-aza-2'-deoxycytidine therapy in patients with leukemia. Cancer Res.2006;66 (10):5495-503.
    54. Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, Ehrlich M, Laird PW. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res.2005;33 (21):6823-36.
    55. Wu J, Issa JP, Herman J, Bassett DE Jr, Nelkin BD, Baylin SB. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. ProcNatl Acad Sci USA.1993;90 (19):8891-5.
    56. Oakeley EJ, Podesta A, Jost JP. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci USA. 1997;94 (21):11721-5.
    57. Oakeley EJ, Schmitt F, Jost JP. Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction. Biotechniques.1999;27 (4):744-6,748-50,752.
    58. Zilberman D, Coleman-Derr D, Ballinger T, HenikoffS. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature.2008;456 (7218):125-9.
    59. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature.2008;454 (7205):766-70.
    60. Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, Gold DL, Sekido Y, Huang TH, Issa JP. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet.2008;40 (6):741-50.
    61.Kaminsky ZA, Tang T. Wang SC, Ptak C, Oh GH, Wong AH, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, McRae AF, Visscher PM, Montgomery GW, Gottesman Ⅱ,Martin NG, Petronis A. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet.2009;41 (2):240-5.
    62. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP. Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41 (12):1350-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700