活性多肽类似物的设计、制备和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多肽及较小的寡肽,在激素调控、细胞免疫、信息传递等生命活动中日益显示重要的生物功能。为研究它们的作用机理,多肽合成是提供这些多肽的有效途径,至于N端、C端及侧链经过加工的天然多肽或含有非编码氨基酸多肽的制备,目前仍必须依靠多肽的化学合成或体外的酶促合成。
     本论文研究活性多肽类似物的设计、制备和功能,分为四个部分,采用多肽固相和液相合成的方法,分别合成了活性多肽绿豆胰蛋白酶抑制剂Lys片段长链16肽、天花粉胰蛋白酶抑制剂、癌胚抗原肽、甜味肽等一系列类似物,并测定了这些类似物的生物活性,有以下新的研究结果:1、furin酶抑制剂的设计、制备和功能;2、芳香氨基酸芳环之间的π-π共轭能部分补偿二硫键的作用;3、癌胚抗原肽Gly4被L-Pro替代可增加与HLA-A2分子的结合;4、肽键对甜味肽保持甜味是必须的。
     第一章是将绿豆胰蛋白酶抑制剂Lys片段改造为furin和kexin抑制剂。高活性、低分子量的furin酶抑制剂有可能发展成为新型的抗细菌内毒素和抗病毒感染的药物,我们以绿豆胰蛋白酶抑制剂Lys片段长链22肽为模板,设计了一系列能抑制furin和kexin活性的突变体,采用如下三种方法逐步优化:一、去除Lys片段长链三对二硫键中的一对,用Ser替换Cys,减少可能存在的二硫键错误配对;二、抑制剂的活性中心根据furin底物的专一性逐步改变,即P1、P2、P4和P6位分别变为Arg、Lys、Arg和Arg,同时为了避免P7 Asp和P6 Arg之间可能存在的相互作用,将P7位Asp替换为Ala;三、将两对二硫键形成的双环的外面5个氨基酸残基去除。最后所得的16肽对furin和kexin的抑制常数分别为:2.45×10-9 M和5.60×10-7 M。上述得到的突变体抑制剂为‘自杀性’抑制剂,若与酶长时期保温,P1与P’1间的肽键将被裂解,抑制活性也就丧失。进一步将P’1位Ser变为D-Ser或N-methyl Ser,P’1位为N-methyl Ser的突变体对furin的抑制活力为4.70×10-8 M,与酶保温3小时后仍保留80%以上的抑制活性,P’1位为D-Ser的突变体与酶保温3小时后抑制活性几乎不变,但它的抑制常数(Ki)大大增加。因此N-methyl Ser的突变体对furin有较强的抑制活性,也不易被降解,是一种较理想的furin抑制剂,为进一步研究发展为抗病毒和细菌外毒素的药物提供了实验依据。
     第二章是对天花粉胰蛋白酶抑制剂的两对二硫键的作用进行了研究,二硫键在蛋白质的折叠和功能中有重要的作用,芳香族氨基酸的芳环之间形成π-π共轭能否部分补偿二硫键的作用?我们将天花粉胰蛋白酶抑制剂(Trichosanthes trypsin inhibitor I, TTI)的Cys14- Cys26或Cys8- Cys20的二硫键分别替换为Tyr和Phe,C14F-C26Y的突变体抑制活性为M6A-TTI-I的1/140。作为阴性对照的C14S-C26S突变体没有活性( Ki > 0.4 mM), Tyr和Phe间的π-π共轭可部分地补偿了Cys14- Cys26二硫键的作用。C8Y-C20F和C8S-C20S突变体都没有胰蛋白酶抑制活性(Ki > 0.4 mM),Cys8- Cys20二硫键的作用不能被Tyr和Phe间的相互作用替代。说明蛋白质的某些二硫键作用可以被芳香族氨基酸的芳环之间形成的π-π共轭部分补偿,但是这种补偿作用在一定条件下才能发生。
     第三章是研究癌胚抗原肽CAP-1(YLSGANLNL)的1-5位氨基酸残基对其活性的影响。癌胚抗原肽是一种HLA-A2限制的抗原表位,由于中国人群中HLA-A2阳性率大于40%,而且90%的胃癌、结肠癌和直肠癌患者癌胚抗原的表达呈阳性,因此这个抗原表位有极高的应用价值,临床已使用自体树突状细胞递呈癌胚抗原肽CAP-1治疗癌胚抗原阳性的肿瘤患者。为了进一步研究CAP-1的各个位点的氨基酸残基与其活性的关系,我们合成了一些CAP-1的第1,2,3,4,5位氨基酸分别替换为其他的氨基酸的类似物,并测定这些类似物与HLA-A2分子的结合能力和产生杀伤性T细胞的能力。其中Gly4变为L-Pro的肽(YLSPANLNL)HLA-A2分子的结合能力比CAP-1高,但是产生杀伤性T细胞的能力比CAP-1略低,提示Gly4对CAP-1与HLA-A2分子的结合以及与T细胞受体结合都有影响,为进一步研究提供了方向。
     第四章是研究甜味肽的结构和功能,甜味肽(L-天冬氨酸-L-苯丙氨酸甲酯)的肽键替换为酯键,甜味消失。甜味肽X射线晶体结构研究表明肽键的“–NH”可与L-天冬氨酸侧链羧基的“O”形成氢键,肽键替换为酯键后,氢键消失。文献已报道甜味肽的天冬氨酸可被天冬酰胺替换,仍保持甜味。我们合成了甜味肽的类似物L-天冬酰氨酰-L-α-羟基苯丙酸甲酯,将甜味肽的天冬氨酸替换为天冬酰胺,肽键替换为酯键。这个类似物的酰胺的“–NH”可与酯键的“O”形成氢键,但是经测定它没有甜味,表明肽键不能替换为酯键。肽键的“C-N”键有双键的性质,C、O、N、H四个原子在同一平面,肽键替换为酯键破坏了肽键特有的构象,使其没有甜味。
This study is design and preparation of active peptide analogues of mung bean trypsin inhibitor Lys fragment, Trichosanthes trypsin inhibitor I, carcinoembryonic antigen peptide and aspartame using solid and liquid phase peptide synthesis methods. Based on the activities of the synthtic analogues, the ralationship of structure and activity was discussed.
     Chapter one is template-assisted rational design of peptide inhibitors of furin using the lysine fragment of the mung bean trypsin inhibitor. Highly active, small-molecule furin inhibitors are attractive drug candidates to fend off bacterial exotoxins and viral infection. Based on the 22-residue, active Lys fragment of the mung bean trypsin inhibitor, a series of furin inhibitors were designed and synthesized, and their inhibitory activity toward furin and kexin was evaluated using enzyme kinetic analysis. The most potent inhibitor, containing 16 amino acid residues with a Ki value of 2.45×10~(-9) M for furin and of 5.60×10~(-7) M for kexin, was designed by three incremental approaches. First, two non-essential Cys residues in the Lys fragment were deleted via a Cys-to-Ser mutation to minimize peptide miss-folding. Second, residues in the reactive site of the inhibitor were replaced by the consensus substrate recognition sequence of furin, namely, Arg at P_1, Lys at P_2, Arg at P_4 and Arg at P_6. In addition, the P_7 residue Asp was substituted with Ala to avoid possible electrostatic interference with furin inhibition. Finally, the extra N and C terminal residues beyond the doubly conjugated disulfide loops were further truncated. However, all resultant synthetic peptides were found to be temporary inhibitors of furin and kexin during a prolonged incubation, with the scissile peptide bond between P1 and P’1 cleaved to different extents by the enzymes. To enhance proteolytic resistance, the P’1 residue Ser was mutated to D-Ser or N-methyl Ser. The N-methyl Ser mutant gave rise to a Ki value of 4.70x10~(-8) M for furin, and retained over 80% inhibitory activity even after a 3-h incubation with the enzyme. By contrast, the D-Ser mutant was resistant to cleavage, although its inhibitory activity against furin drastically decreased. Our findings identify a useful template for the design of potent, specific and stable peptide inhibitors against furin, shedding light on the molecular determinants that dictate the inhibition of furin and kexin.
     Charpter two studies on the two disulfide bonds (Cys14- Cys26 or Cys8- Cys20)of Trichosanthes trypsin inhibitor I. Disulfide bridges between cysteine residues are the key structural and functional elements of protein. Could theπstacking made by two aromatic residues partially compensate for the loss of the disulfide bridge? Two analogues of Trichosanthes trypsin inhibitor I with the Cys14- Cys26 or Cys8- Cys20 disulfide bonds replaced by Tys or Phe and two negative control analogues substitution serine for cysteine at 14 and 26 or 8 and 20 positions were synthesized, respectively. The C14F-C26Y mutant had 1/140 inhibitory activity of native Trichosanthes trypsin inhibitor I to trypsin. But the negative control the C14S-C26S mutant had no activity ( Ki > 0.4 mM) indicating that theπstacking made by C14F and C26Y may partially compensate for the action of the disulfide bond. However, different results obtained from the Cys14- Cys26 mutants that both the C8Y-C20Fand C8S-C20S mutants had no activity( Ki > 0.4 mM) . So theπstacking made by two aromatic residues may partially compensate for the loss of the disulfide bridge in the some conditions.
     Charpter three studies on the action of the five amino acid residues (position 1, 2, 3, 4, 5) of carcinoembryonic antigen peptide-1 (CAP-1, YLSGANLNL). CAP-1 is an HLA-A2 resticted epitope of tumor antigen carcinoembryonic antigen (CEA). The epitope CAP-1 is an attractive drug target because more than 40% Chinese patients are HLA-A2 positive and more than 90% of gastric cancer, colon cancer and rectum cancer patients are carcinoembryonic antigen expressing positive. Autologous human cultured dendritic cell, loaded with CAP-1 was used for the treatment of the patients with advanced CEA-expressing malignancies in clinic. The analogues with five amino acid residues (position 1, 2, 3, 4, 5) were replaced by other residues were synthesized and tested for the activities of binding to HLA-A2 and generating cytotoxic T Lymphocyte. The analogue with the Gly4 mutation to Pro had a higher activity for binding to HLA-A2 and lower activity for generating cytotoxic T Lymphocyte. Our findings indicate the Gly4 influence the binding of CAP-1 to HLA-A2 and T cell receptor, shedding light on the molecular design of new epitope analogues.
     Charpter four studies on the relationship of structure and activity of aspartame. An aspartame analogue, L-asparaginyl L-3-phenyllactic acid methyl ester was synthesized with aspartic acid replaced by asparagine and peptide bond replaced by ester bond. The aspartic acid of aspartame could be replaced by asparagine as reported in the literature. In this analogue, the hydrogen of amide group could still form a hydrogen bond with the oxygen of ester bond and the ester bond was isosteric with peptide bond. However, the product was not sweet, showing that the peptide bond could not be replaced by ester bond. The peptide C-N bond behaves as a double bond that is not free to rotate and the C, O, N and H atoms are in the same plane. The replacement of peptide bond by ester bond destroyed the unique conformation of peptide bond, resulting in the loss of sweet taste.
引文
(1) Takumi I, Steiner DF, Sanno N, Teramoto A, Osamura RY. Localization of prohormone convertases 1/3 and 2 in the human pituitary gland and pituitary adenomas: analysis by immunohistochemistry, immunoelectron microscopy, and laser scanning microscopy. Mod Pathol. 1998; 11(3):232-8
    (2) Julius D, Brake A, Blair L, Kunisawa R, Thorner J: Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor.Cell 1984; 37(3):1075-89
    (3) Fuller RS, Brake AJ, Thorner J:Intracellular targeting and structural conservation of a prohormone-processing endoprotease.Science 1989b; 246(4929):482-6
    (4) Leduc R, Molloy SS, Thorne BA, Thomas G: Activation of human furin precursor processing endoprotease occurs by an intramolecular autoproteolytic cleavage. J Biol Chem 1992 15; 267(20):14304-8
    (5) Fuller RS, Brake A, Thorner J: Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A 1989a; 86(5):1434-8
    (6) Shennan KI, Smeekens SP, Steiner DF, Docherty K: Characterization of PC2, a mammalian Kex2 homologue, following expression of the cDNA in microinjected Xenopus oocytes. FEBS Lett 1991; 284(2):277-80
    (7) Nakayama K: Purification of recombinant soluble forms of furin produced in Chinese hamster ovary cells. Methods Enzymol 1994; 244:167-75
    (8) Brenner C, Bevan A, Fuller RS: Biochemical and genetic methods for analyzing specificity and activity of a precursor-processing enzyme: yeast Kex2 protease, kexin. Methods Enzymol 1994; 244:152-67
    (9) Henrich S, Cameron A, Bourenkov GP, Kiefersauer R, Huber R, Lindberg I, Bode W, Than ME. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol. 2003; 10(7):520-6
    (10)Holyoak T, Wilson MA, Fenn TD, Kettner CA, Petsko GA, Fuller RS, Ringe D. 2.4 A resolution crystal structure of the prototypical hormone-processing protease Kex2 in complex with an Ala-Lys-Arg boronic acid inhibitor. Biochemistry. 2003; 42(22):6709-18
    (11)Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997; 327 ( Pt 3):625-35.
    (12)Roebroek AJ, Umans L, Pauli IG, Robertson EJ, van Leuven F, Van de Ven WJ, Constam DB. Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development. 1998; 125(24):4863-76.
    (13)Bresnahan PA, Leduc R, Thomas L, Thorner J, Gibson HL, Brake AJ, Barr PJ, Thomas G. Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol. 1990; 111(6 Pt 2):2851-9.
    (14)Mondino A, Giordano S, Comoglio PM. Defective posttranslational processing activates the tyrosine kinase encoded by the MET proto-oncogene (hepatocyte growth factor receptor). Mol Cell Biol. 1991; 11(12):6084-92.
    (15)Brennan SO, Nakayama K. Furin has the proalbumin substrate specificity and serpin inhibitory properties of an in situ hepatic convertase. FEBS Lett. 1994; 338(2):147-51.
    (16)Wasley LC, Rehemtulla A, Bristol JA, Kaufman RJ. PACE/furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway. J Biol Chem. 1993; 268(12):8458-65.
    (17)Pei D, Weiss SJ. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature. 1995; 375(6528):244-7.
    (18)Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature. 1992; 360(6402):358-61
    (19)Volchkov VE, Feldmann H, Volchkova VA, Klenk HD. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A. 1998; 95(10):5762-7.
    (20)Spaete RR, Thayer RM, Probert WS, Masiarz FR, Chamberlain SH, Rasmussen L, Merigan TC, Pachl C. Human cytomegalovirus strain Towne glycoprotein B is processed by proteolytic cleavage. Virology. 1988; 167(1):207-25.
    (21)Klimpel KR, Molloy SS, Thomas G, Leppla SH. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA. 1992; 89(21): 10277-81.
    (22)Tsuneoka M, Nakayama K, Hatsuzawa K, Komada M, Kitamura N, Mekada E. Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem. 1993; 268(35): 26461-5.
    (23)Moehring JM, Inocencio NM, Robertson BJ, Moehring TJ. Expression of mouse furin in a Chinese hamster cell resistant to Pseudomonas exotoxin A and viruses complements the genetic lesion. J Biol Chem. 1993; 268(4): 2590-4.
    (24)Angliker H: Synthesis of tight binding inhibitors and their action on the proprotein-processing enzyme furin. J Med Chem 1995; 38(20): 4014-8
    (25)Jean F, Boudreault A, Basak A, Seidah NG, Lazure C: Fluorescent peptidyl substrates as an aid in studying the substrate specificity of human prohormone convertase PC1 and human furin and designing a potent irreversible inhibitor. J Biol Chem 1995; 270(33): 19225-31
    (26)Anderson ED, Thomas L, Hayflick JS, Thomas G: Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem 1993; 268(33): 24887-91
    (27)Wantanabe M, Hirano A, Stenglein S, Nelson J, Thomas G, Wong TC: Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus. J Virol 1995;69(5): 3206-10
    (28)Ilia Tikhonov, Tracy J. Ruckwardt, Shannon Berg, Glen S. Hatfield, C. David Pauza. Furin cleavage of the HIV-1 Tat protein. FEBS Letters 2004; 565: 89–92
    (29)Bouchaib Bahbouhi, Nabil Georges Seidah. and Elmostafa Bahraoui. Replication of HIV-1 viruses in the presence of the Portland a1-antitrypsin variant (a1-PDX) inhibitor. Biochem. J. 2001; 360: 127-134
    (30)Pierre Cordelier, David S. Strayer. Mechanisms of a1-antitrypsin inhibition of cellular serine proteases and HIV-1 protease that are essential for HIV-1 morphogenesis. Biochimica et Biophysica Acta 2003; 1638: 197– 207.
    (31)Lu W, Zhang W, Molloy SS, Thomas G, Ryan K, Chiang Y, Anderson S, Laskowski M Jr: Arg15-Lys17-Arg18 turkey ovomucoid third domain inhibits human furin. J Biol Chem 1993; 268 (20):14583-5
    (32)Hammond RW, Foard DE, Larkins BA. Molecular cloning and analysis of a gene coding for the Bowman-Birk protease inhibitor in soybean. J Biol Chem. 1984; 259(15): 9883-90.
    (33)Stankovic B, Davies E. Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett. 1996; 390(3): 275-9.
    (34)Bode W, Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem. 1992; 204(2): 433-51.
    (35)Jeffrey D. McBride, Emma M. Watson, Arnd B.E.Brauer, Agnes M.Jaulent, Robin J.Leatherbarrow. Peptide mimics of the Bowman-Birk inhibitor reactive site loop. Biopolymers. 2002, 66: 79-92.
    (36)Chu, HM and Chi, CW. The isolation and crystallization of two trypsin inhibition of low molecular weight from mung bean (Phaseolus aureus Roxb.). Sci. Sinica 1965; 14: 1441-1453
    (37)Chi, CW., Lo, SS., Tan FL., Zhang YS. and Chu, HM. In Proteins in Biology and Medicine, Acad. Press, New York, 1982, 341-362.
    (38)Li Yili, Huang Q., Zhang S.W., Liu S.P., Chi C.W., Tang Y.Q. Studies on an artificial trypsin inhibitor peptide derived from the mung bean trypsin inhibitor: chemical synthesis, refolding, and crystallographic analysis of its complex with trypsin. J Biochem(Tokyo).1994; 116(1): 18-25.
    (39)Korsinczky ML, Schirra HJ, Rosengren KJ, West J, Condie BA, Otvos L, Anderson MA & Craik DJ (2001) Solution structures by 1H NMR of the novel cyclic trypsin inhibitor SFTI-1 from sunflower seeds and an acyclic permutant. J Mol Biol 311, 579-591
    (40)Luckett S, Garcia RS, Barker JJ, Konarev AV, Shewry PR, Clarke AR & Brady RL (1999) High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J Mol Biol 290, 525-533
    (41)Maruyama K, Nagasawa H & Suzuki A (1999) 2,2'-Bispyridyl disulfide rapidly induces intramolecular disulfide bonds in peptides. Peptides 20, 881-884
    (42)Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55, 170-171
    (43)Rockwell NC, Krysan DJ, Komiyama T & Fuller RS (2002) Precursor processing by kex2/furin proteases. Chem Rev 102, 4525-4548
    (44)Rockwell NC & Fuller RS (1998) Interplay between S1 and S4 subsites in Kex2 protease: Kex2 exhibits dual specificity for the P4 side chain. Biochemistry 37, 3386-3391
    (45)Rockwell NC, Wang GT, Krafft GA & Fuller RS (1997) Internally consistent libraries of fluorogenic substrates demonstrate that Kex2 protease specificity is generated by multiple mechanisms. Biochemistry 36, 1912-1917
    (46)Brenner C & Fuller RS (1992) Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci U S A 89, 922-926
    (47)Nakayama K (1997) Furin: a mammalian subtilisin/Kex2p-like endoproteaseinvolved in processing of a wide variety of precursor proteins. Biochem J 327 ( Pt 3), 625-635
    (48)Krysan DJ, Rockwell NC & Fuller RS (1999) Quantitative characterization of furin specificity. Energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamides. J Biol Chem 274, 23229-23234
    (49)罗明娟毕业论文,1996
    (50)Holyoak T, Kettner CA, Petsko GA, Fuller RS, Ringe D. Structural basis for differences in substrate selectivity in Kex2 and furin protein convertases. Biochemistry. 2004; 43(9): 2412-21.
    (51)Kaiser E, Colescott RL. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem. 1970, 34(2): 595-8.
    (52)Song HK, Kim YS, Yang JK, Moon J, Lee JY & Suh SW (1999) Crystal structure of a 16 kDa double-headed Bowman-Birk trypsin inhibitor from barley seeds at 1.9 A resolution. J Mol Biol 293, 1133-1144
    (53)Anfinsen, C. B. (1973) Principles that govern the folding of protein chains, Science. 181, 223-30.
    (54)Thomas, P. J., Qu, B. H. & Pedersen, P. L. (1995) Defective protein folding as a basis of human disease, Trends Biochem Sci. 20, 456-9.
    (55)Betz, S. F. (1993) Disulfide bonds and the stability of globular proteins, Protein Sci. 2, 1551-8.
    (56)Weiss, M. A., Hua, Q. X., Jia, W., Chu, Y. C., Wang, R. Y. & Katsoyannis, P. G. (2000) Hierarchical protein "un-design": insulin's intrachain disulfide bridge tethers a recognition alpha-helix, Biochemistry. 39, 15429-40.
    (57)Hua, Q. X., Hu, S. Q., Frank, B. H., Jia, W., Chu, Y. C., Wang, S. H., Burke, G. T., Katsoyannis, P. G. & Weiss, M. A. (1996) Mapping the functional surface of insulin by design: structure and function of a novel A-chain analogue, J Mol Biol. 264, 390-403.
    (58)Hua, Q. X., Nakagawa, S. H., Jia, W., Hu, S. Q., Chu, Y. C., Katsoyannis, P. G. & Weiss, M. A. (2001) Hierarchical protein folding: asymmetric unfolding of an insulin analogue lacking the A7-B7 interchain disulfide bridge, Biochemistry. 40, 12299-311.
    (59)Chang, S. G., Choi, K. D., Jang, S. H. & Shin, H. C. (2003) Role of disulfide bonds in the structure and activity of human insulin, Mol Cells. 16, 323-30.
    (60)Heitz, A., Le-Nguyen, D. & Chiche, L. (1999) Min-21 and min-23, the smallest peptides that fold like a cystine-stabilized beta-sheet motif: design, solution structure, and thermal stability, Biochemistry. 38, 10615-25.
    (61)Le-Nguyen, D., Heitz, A., Chiche, L., el Hajji, M. & Castro, B. (1993) Characterization and 2D NMR study of the stable [9-21, 15-27] 2 disulfide intermediate in the folding of the 3 disulfide trypsin inhibitor EETI II, Protein Sci. 2, 165-74.
    (62)Heitz, A., Chiche, L., Le-Nguyen, D. & Castro, B. (1995) Folding of the squash trypsin inhibitor EETI II. Evidence of native and non-native local structural preferences in a linear analogue, Eur J Biochem. 233, 837-46.
    (63)Chaloin, L., Vidal, P., Heitz, A., Van Mau, N., Mery, J., Divita, G. & Heitz, F. (1997) Conformations of primary amphipathic carrier peptides in membrane mimicking environments, Biochemistry. 36, 11179-87.
    (64)Hagihara, Y., Shiraki, K., Nakamura, T., Uegaki, K., Takagi, M., Imanaka, T. & Yumoto, N. (2002) Screening for stable mutants with amino acid pairs substituted for the disulfide bond between residues 14 and 38 of bovine pancreatic trypsin inhibitor (BPTI), J Biol Chem. 277, 51043-8.
    (65)Liu, Y., Breslauer, K. & Anderson, S. (1997) "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor, Biochemistry. 36, 5323-35.
    (66)Kosen, P. A., Creighton, T. E. & Blout, E. R. (1983) Circular dichroism spectroscopy of the intermediates that precede the rate-limiting step of the refolding pathway of bovine pancreatic trypsin inhibitor. Relationship of conformation and the refolding pathway, Biochemistry. 22, 2433-40.
    (67)Chang, J. & Ballatore, A. (2000) The structure of denatured bovine pancreatic trypsin inhibitor (BPTI), FEBS Lett. 473, 183-7.
    (68)Proba, K., Worn, A., Honegger, A. & Pluckthun, A. (1998) Antibody scFv fragments without disulfide bonds made by molecular evolution, J Mol Biol. 275, 245-53.
    (69)Proba, K., Honegger, A. & Pluckthun, A. (1997) A natural antibody missing a cysteine in VH: consequences for thermodynamic stability and folding, J Mol Biol. 265, 161-72.
    (70)Zavodszky, M., Chen, C. W., Huang, J. K., Zolkiewski, M., Wen, L. & Krishnamoorthi, R. (2001) Disulfide bond effects on protein stability: designedvariants of Cucurbita maxima trypsin inhibitor-V, Protein Sci. 10, 149-60.
    (71)Pace, C. N., Grimsley, G. R., Thomson, J. A. & Barnett, B. J. (1988) Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds, J Biol Chem. 263, 11820-5.
    (72)Chou, P. Y. & Fasman, G. D. (1978) Empirical predictions of protein conformation, Annu Rev Biochem. 47, 251-76.
    (73)Heinz, D. W., Hyberts, S. G., Peng, J. W., Priestle, J. P., Wagner, G. & Grutter, M. G. (1992) Changing the inhibitory specificity and function of the proteinase inhibitor eglin c by site-directed mutagenesis: functional and structural investigation, Biochemistry. 31, 8755-66.
    (74)Lu, W. Y., Starovasnik, M. A., Dwyer, J. J., Kossiakoff, A. A., Kent, S. B. & Lu, W. (2000) Deciphering the role of the electrostatic interactions involving Gly70 in eglin C by total chemical protein synthesis, Biochemistry. 39, 3575-84.
    (75)Duret, L., Guex, N., Peitsch, M. C. & Bairoch, A. (1998) New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling, Genome Res. 8, 348-53.
    (76)Jiang, X. C., Masucci-Magoulas, L., Mar, J., Lin, M., Walsh, A., Breslow, J. L. & Tall, A. (1993) Down-regulation of mRNA for the low density lipoprotein receptor in transgenic mice containing the gene for human cholesteryl ester transfer protein. Mechanism to explain accumulation of lipoprotein B particles, J Biol Chem. 268, 27406-12.
    (77)Polanowski, A., Cieslar, E., Otlewski, J., Nienartowicz, B., Wilimowska-Pelc, A. & Wilusz, T. (1987) Protein inhibitors of trypsin from the seeds of Cucurbitaceae plants, Acta Biochim Pol. 34, 395-406.
    (78)Favel, A., Mattras, H., Coletti-Previero, M. A., Zwilling, R., Robinson, E. A. & Castro, B. (1989) Protease inhibitors from Ecballium elaterium seeds, Int J PeptProtein Res. 33, 202-8.
    (79)Hara, S., Makino, J. & Ikenaka, T. (1989) Amino acid sequences and disulfide bridges of serine proteinase inhibitors from bitter gourd (Momordica charantia LINN.) seeds, J Biochem (Tokyo). 105, 88-91.
    (80)Bode, W., Greyling, H. J., Huber, R., Otlewski, J. & Wilusz, T. (1989) The refined 2.0 A X-ray crystal structure of the complex formed between bovine beta-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes, FEBS Lett. 242, 285-92.
    (81)Heitz, A., Chiche, L., Le-Nguyen, D. & Castro, B. (1989) 1H 2D NMR and distance geometry study of the folding of Ecballium elaterium trypsin inhibitor, a member of the squash inhibitors family, Biochemistry. 28, 2392-8.
    (82)Chen, X. M., Qian, Y. W., Chi, C. W., Gan, K. D., Zhang, M. F. & Chen, C. Q. (1992) Chemical synthesis, molecular cloning, and expression of the gene coding for the Trichosanthes trypsin inhibitor--a squash family inhibitor, J Biochem (Tokyo). 112, 45-51.
    (83)Huang, Z. F., Wu, M. L. & Qi, Z. W. (1990) Total synthesis of Trichosanthes trypsin inhibitor and its analogue, Sci China B. 33, 1192-200.
    (84)Dombkowski A.A., A computational method for the rational design of disulfide bonds in proteins, Bioinformatics, 2003, 19(14): 22-23
    (85)Steinman RM, Adams JC, Cohn ZA.(1975) Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen. J. Exp. Med. 141: 804–20.
    (86)Knight SC, Mertin J, Stackpoole A, Clark J.(1983) Induction of immune responses in vivo with small numbers of veiled (dendritic) cells. Proc. Nat. Acad. Sci. USA 80: 6032–5.
    (87)Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245 – 252
    (88)Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, de Saint-Vis B, Jacquet C, Yoneda K, Imamura S, Schmitt D, Banchereau J (1996) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp Med 184: 695 – 706
    (89)Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179: 1109 – 1118
    (90)Parmiani, G. (1990). An explanation of the variable clinical response to interleukin 2 and LAK cells. Immunol Today 11(4): 113-5.
    (91)Schmidt-Wolf I, Lefterova P, Mehta B, Fernandez L, Huhn D, Blume K, Weissman I, Negrin R (1993) Phenotypic characterization and identification of effector cells involved in tumor recognition of cytokine induced killer cells. Exp Hem 21: 1673
    (92)Hsu, F. J., C. Benike, et al. (1996). Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2(1): 52-8.
    (93)Nestle, F. O., J. Banchereau, et al. (2001). Dendritic cells: On the move frombench to bedside. Nat Med 7(7): 761-5.
    (94)Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190: 1669 – 1678
    (95)Schott M, Seissler J, Lettmann M, Fouxon V, Scherbaum WA, Feldkamp J (2001) Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination. J Clin Endocrinol Metab 86: 4965 – 4969
    (96)Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL, Engleman EG (2001) Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 167: 7150 – 7156
    (97)Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, Chang AE, Braun TM, Mule JJ (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 61: 8513 – 8519
    (98)Morse, M. A., Y. Deng, et al. (1999). A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 5(6): 1331-8.
    (99)Weihrauch, M. R., S. Ansen, et al. (2005). Phase I/II combined chemoimmunotherapy with carcinoembryonic antigen-derived HLA-A2- restricted CAP-1 peptide and irinotecan, 5-fluorouracil, and leucovorin in patients with primary metastatic colorectal cancer. Clin Cancer Res 11(16): 5993-6001.
    (100) Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G,Schadendorf D (1998). Vaccination of melanoma patients with peptide or tumor lysate-pulsed dendritic cells. Nat Med 4: 328 – 332
    (101) Holtl, L., C. Rieser, et al. (1999). Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol 161(3): 777-82.
    (102) Hsu, F. J., C. Benike, et al. (1996). Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2(1): 52-8.
    (103) Parmiani, G., C. Castelli, et al. (2002). Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 94(11): 805-18.
    (104) Renkvist, N., C. Castelli, et al. (2001). A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50(1): 3-15.
    (105) Fong, L. and E. G. Engleman (2000). Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18: 245-73.
    (106) Murphy G, Tjoa B, Ragde H, Kenny G, Boynton A. (1996) Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate 29: 371 – 380
    (107) Lotze MT, Hellerstedt B, Stolinski L, Tueting T, Wilson C, Kinzler D, Vu H, Rubin JT, Storkus W, Tahara H, Elder E, Whiteside T. (1997)The role of interleukin-2, interleukin-12, and dendritic cells in cancer therapy. Cancer J. Sci. Am. 3:S109
    (108) Salgaller ML, Lodge PA, Tjoa BA, McLean JG, Ragde H, Kenny RJ, Rogers M, Boynton AL, Murphy GP. (1998)Monitoring of prostate-specific membrane antigen- (PSMA) specific immune responses and prostate markers in a phase II clinical trial with patients infused with dendritic cells pulsed with PSMA-derived peptides. Proc. Am. Assoc. Cancer Res. 39:173
    (109) Valone FH, Small EJ, Whisenant S, Peshwa MV, Strang G, Laus R, van Schooten WCA. 1998. Antigen-pulsed dendritic cell therapy for hormone refractory prostate cancer: A phase I/II trial. Proc. Am. Assoc. Cancer Res. 39:173
    (110) Reinhard, G., A. Marten, et al. (2002). Generation of dendritic cell-based vaccines for cancer therapy. Br J Cancer 86(10): 1529-33.
    (111) Schuler, G., B. Schuler-Thurner, et al. (2003). The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15(2): 138-47.
    (112) Ribas, A., J. M. Timmerman, et al. (2003). Determinant spreading and tumor responses after peptide-based cancer immunotherapy. Trends Immunol 24(2): 58-61.
    (113) Brossart, P., S. Wirths, et al. (2001). Dendritic cells in cancer vaccines. Exp Hematol 29(11): 1247-55.
    (114) Jenne, L., G. Schuler, et al. (2001). Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 22(2): 102-7.
    (115) Song, W., H. L. Kong, et al. (1997). Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med 186(8): 1247-56.
    (116) Henderson, R. A., M. T. Nimgaonkar, et al. (1996). Human dendritic cells genetically engineered to express high levels of the human epithelial tumor antigen mucin (MUC-1). Cancer Res 56(16): 3763-70.
    (117) Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J(.2002). Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109:409-417.
    (118) Onji, M. and S. M. Akbar (2005). On dendritic cell-based therapy for cancers. J Zhejiang Univ Sci B 6(1): 1-3.
    (119) Akbar, S.M.F., Furukawa, S., Onji, M., Muarta, Y., Niya, T., Kanno, S., Murakami, H., Horiike, N., (2004). Safety and efficacy of hepatitis B surface antigen-pulsed dendritic cells in human volunteers. Hepatol Res, 29: 136-141.
    (120) Schmidt-Wolf IG, Huhn D, Neubauer A, Wittig B (1994) Interleukin-7 gene transfer in patients with metastatic colon carcinoma, renal cell carcinoma, melanoma, or with lymphoma. Hum Gene Ther 5: 1161 – 1168
    (121) Westermann J, Aicher A, Qin Z, Cayeux Z, Daemen K, Blankenstein T, Dorken B, Pezzutto A (1998) Retroviral interleukin-7 gene transfer into human dendritic cells enhances T cell activation. Gene Ther 5: 264 –271
    (122) Tu¨ting T, Wilson CC, Martin DM, Kasamon YL, Rowles J, Ma DI, Slingluff CL, Wagner SN, van der Bruggen P, Baar J, Lotze MT, Storkus WJ (1998). Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha. J Immunol 160: 1139 – 1147
    (123) Valmori, D., J. F. Fonteneau, et al. (1998). Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol 160(4): 1750-8.
    (124) Rivoltini L, Squarcina P, Loftus DJ, Castelli C, Tarsini P, Mazzocchi A, et al.(1999)A superagonist variant of peptide MART1/Melan A27–35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res 59: 301–6.
    (125) Zaremba, S., E. Barzaga, et al. (1997). Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 57(20): 4570-7.
    (126) Tourdot, S., A. Scardino, et al. (2000). A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication inthe identification of cryptic tumor epitopes. Eur J Immunol 30(12): 3411-21.
    (127) Brinckerhoff LH, Kalashnikov VV, Thompson LW, Yamshchikov GV, Pierce RA, Galavotti HS, et al. (1999). Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27 – 35) peptide: implications for peptide vaccines. Int J Cancer 83:326–34
    (128) Chen, J. L., P. R. Dunbar, et al. (2000). Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol. 165(2): 948-55
    (129) Hammarstrom, S. and V. Baranov (2001). Is there a role for CEA in innate immunity in the colon? Trends Microbiol 9(3): 119-25.
    (130) Hao, X., Y. Shao, et al. (2002). Induction of specific CTL by MAGE-3/CEA peptide-pulsed dendritic cells from HLA-A2/A24(+) gastrointestinal cancer patients. J Cancer Res Clin Oncol 128(9): 507-15.
    (131) Staab, H. J., F. A. Anderer, et al. (1980). Are circulating CEA immune complexes a prognostic marker in patients with carcinoma of the gastrointestinal tract? Br J Cancer 42(1): 26-33
    (132) Mavligit, G. M. and S. Stuckey (1983). Colorectal carcinoma. Evidence for circulating CEA-anti-CEA complexes. Cancer 52(1): 146-9.
    (133) Kantor, J., K. Irvine, et al. (1992). Antitumor activity and immune responses induced by a recombinant carcinoembryonic antigen-vaccinia virus vaccine. J Natl Cancer Inst 84(14): 1084-91.
    (134) Zhu, M. Z., J. Marshall, et al. (2000). Specific cytolytic T-cell responses to human CEA from patients immunized with recombinant avipox-CEA vaccine. Clin Cancer Res 6(1): 24-33.
    (135) Tsang, K. Y., S. Zaremba, et al. (1995). Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87(13):982-90.
    (136) Nair, S. K., S. Hull, et al. (1999). Induction of carcinoembryonic antigen(CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int J Cancer 82(1): 121-4.
    (137) Tsang, K. Y., M. Zhu, et al. (2001). The infection of human dendritic cells with recombinant avipox vectors expressing a costimulatory molecule transgene(CD80) to enhance the activation of antigen-specific cytolytic T cells. Cancer Res 61(20): 7568-76.
    (138) Weihrauch, M. R., S. Ansen, et al. (2005). Phase I/II combined chemoimmuno- therapy with carcinoembryonic antigen-derived HLA-A2-restricted CAP-1 peptide and irinotecan, 5-fluorouracil, and leucovorin in patients with primary metastatic colorectal cancer. Clin Cancer Res 11(16): 5993-6001.
    (139) Garboczi, D. N., P. Ghosh, et al. (1996). Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384(6605): 134-41.
    (140) Stuber, G., S. Modrow, et al. (1992). Assessment of major histocompatibility complex class I interaction with Epstein-Barr virus and human immunodeficiency virus peptides by elevation of membrane H-2 and HLA in peptide loading-deficient cells. Eur J Immunol 22(10): 2697-703.
    (141) Mazur RH, Schlatter JM, Goldkamp AH. Structure-taste relationships of some dipeptides. J Am Chem Soc, 1969, 91(10), 2684-2691
    (142) Fujino M, Wakimasu M, Tanaka K, Aoki H, Nakajima N. L-Aspartylaminomalonic acid diesters. New group of compounds with intense sweetness. Naturwissenschaften. 1973, 60(7): 351
    (143) Myron SD, Lamonte PD. Sweetener preparation. Ger Offen 2 456 926. Chem Abstr, 1975, 83: 191624c
    (144) MacDonald SA, Willson CG, Chorev M, Vernacchia FS, Goodman M. Peptide sweeteners. 3. Effect of modifying the peptide bond on the sweet taste of L-aspartyl-L-phenylalanine methyl ester and its analogies. J Med Chem, 1980, 23(4): 413–420
    (145) Gorbitz CH. Crystal and molecular structure of aspartame?HCl?2H2O. Acta Chem Scand B, 1987, 41(2): 87–92
    (146) Anderson GW, Zimmerman JE, Callahan FM. The use of esters of N Hydroxysuccinimide in peptide synthesis. J Am Chem Soc, 1964, 86(9): 1839–1842
    (147) Feinstein RD, Polinsky A, Douglas AJ, Beijer CM, Chadha RK, Benedetti E, Goodman M. Conformational analysis of the dipeptide sweetener alitame and two stereoisomers by proton NMR, computer simulations, and X-ray crystallography. J Am Chem Soc, 1991, 113(9): 3467–3473
    (148) Frank M, Aitken DJ. On the sweetness of N-(trifluoroacetyl)aspartame. Biosci Biotechnol Biochem, 2000, 64(9): 1982–1984
    (149) Zhu YF, Yamazaki T, Tsang JW, Lok S, Goodman M. Synthesis and taste properties of L-aspartyl-methylated 1-aminocyclopropanecarboxylic acid methyl esters. J Org Chem, 1992, 57(4): 1074–1081

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700