凡纳滨对虾游泳行为生理生态学实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文详细综述了水生生物的游泳能力及环境因子对水生生物游泳行为生理生态学的研究进展,并以凡纳滨对虾为研究对象,采用行为学和生理学等方法,研究了凡纳滨对虾游泳能力的测定方法及温度、盐度和溶解氧对凡纳滨对虾临界游速、持续游泳时间和弹跳速度的影响,同时分析了凡纳滨对虾游泳疲劳的生理机制和溶解氧变动对对虾生长、存活、呼吸代谢、能量代谢及氧化应激反应的影响。主要研究结果如下:
     1.凡纳滨对虾临界游速测定方法的探讨
     应用临界游速(Ucrit)法测定水生生物游泳能力时,游速提升的时间间隔和速度增量的选取至关重要,设定值是否合理将直接影响测定结果的准确性与可靠性。实验利用垂直回流循环水槽在不同游速提升的时间间隔(10、20、30、40、50min)和速度增量(1/2BL s-1、3/4BLs-1、BL s-1)下,测定了3个体长组凡纳滨对虾的临界游速。结果表明,时间间隔和速度增量的改变对临界游速值影响显著。L1体长组实验虾的Ucrit随着时间间隔的延长呈现先降低后增加的趋势,但各测定值之间无显著差异。当时间间隔<40min时,L2体长组实验虾在1/2BL s-1速度增量下的Ucrit显著高于其他处理组,且随着时间间隔的延长而降低;当速度增量达到3/4BL s-1时,实验虾Ucrit随着时间间隔的延长呈现先降低后增高的趋势。当时间间隔<30min时,L3体长组实验虾在1/2BL s-1速度增量下的Ucrit显著高于其他处理,且Ucrit随时间间隔的延长而降低。在较高速度增量条件下(BLs-1),时间间隔对各处理组实验虾的Ucrit均无显著影响。实验证明,时间间隔为20min,速度增量为1/2BL s-1时,测得的临界游速接近最大值。
     2.温度对凡纳滨对虾临界游速(Ucrit)及游泳疲劳后生理指标的影响
     实验测定了凡纳滨对虾Litopenaeus vannamei在4个温度梯度(17、20、25和29℃)下的临界游速(Ucrit)。分析了温度及游泳行为对对虾血浆中生理指标的影响。结果表明,温度对凡纳滨对虾的临界游速影响显著。凡纳滨对虾的临界游速随温度的升高而增加,其与温度呈线性关系:Ucirt=1.5916t+0.8892,R2=0.9992;且各温度处理组临界游速值差异显著。生理实验结果表明,温度17℃处理组实验虾血糖含量显著高于其他处理组;游泳疲劳后,在温度20和25℃处理组实验虾血糖含量显著升高;游泳疲劳导致凡纳滨对虾血浆总蛋白水平在温度28℃处理组显著下降,血浆乳酸含量在温度25和28℃处理组显著升高。实验证明,在温度29℃条件下,凡纳滨对虾的临界游速最大。
     3.盐度对凡纳滨对虾临界游速(Ucrit)和弹跳速度(Stf)及游泳疲劳后生理指标的影响
     实验测定了凡纳滨对虾在不同盐度(20‰,25‰,30‰,35‰和40‰)条件下的临界游速(Ucrit)和弹跳速度(Stf)。分析了游泳和弹跳行为及盐度的改变对对虾不同组织器官各生理指标的影响。结果表明,盐度由20‰增加到40‰时,凡纳滨对虾的Ucrit和Stf均随盐度的升高呈现先增加后降低的趋势,二者与盐度之间的相关关系可用二次方程表示:Ucirt=-0.0171s2+1.2371s+20.497,R2=0.7667;Stf=-0.2386s2+15.528s-145.12, R2=0.9693。临界游速实验所测得的最适盐度和相应最大临界游速分别为36.17‰和42.87cm/s;弹跳实验所测得的最适盐度和相应弹跳速度分别为:32.54‰和107.52cm/s。生理指标分析结果表明:盐度显著影响对虾血浆总蛋白,肝胰脏总蛋白,肌肉乳酸,血浆乳酸,血糖,肝胰脏和肌肉糖原含量。游泳疲劳导致盐度30、35和40‰处理组凡纳滨对虾的血浆总蛋白水平显著下降;而弹跳疲劳导致盐度20、25、30和35‰处理组凡纳滨对虾的肝胰脏糖原显著降低,血浆乳酸和甘油三酯含量在各盐度处理组显著升高。研究结果为评估对虾在不同盐度条件下的游泳能力及运动与渗透调节生理提供了参考依据。
     4.溶解氧对凡纳滨对虾游泳能力和游泳疲劳恢复的影响
     实验测定了凡纳滨对虾Litopenaeus vannamei在不同溶解氧条件下(T1:1.9,T2:3.8, T3:6.8, T4:13.6mg/L)的弹跳速度(Stf)、临界游速(Ucrit)和5个设定流速下的持续游泳时间。分析了游泳疲劳后各处理组实验虾血浆、肝胰脏和肌肉组织各生理指标在恢复过程中的变化,用以评价溶解氧和游泳疲劳对对虾生理机能的影响。结果表明,游泳持续时间随着流速的增加而降低,二者之间表现出幂函数关系;凡纳滨对虾的弹跳速度、临界游速和游泳能力指数(SAI)SAI=∫90000vdt均随着溶解氧的升高而逐渐增加,其与溶解氧之间的相关关系分别可用幂函数方程表示:Stf=75.621DO0.1753, R2=0.9981;Ucrit=31.534DO0.0788, R2=0.9805;SAI=27.947DO0.137, R2=0.9312。生理指标分析结果表明,溶解氧含量显著影响对虾的各种生理参数;低氧胁迫导致实验虾乳酸和能量物质含量显著增加。6.8和13.6mg/L溶解氧处理组实验虾弹跳疲劳后血糖含量显著降低,4个溶氧处理组实验虾弹跳疲劳后的血浆乳酸含量显著增加。由此说明,对虾在弹跳运动中使用无氧糖酵解提供能量,而乳酸的大量积累是导致弹跳疲劳的主要原因。游泳实验中,凡纳滨对虾在较低溶解氧条件下游泳使用无氧糖酵解和蛋白质代谢提供能量,导致体内总蛋白和糖原含量降低,乳酸含量增加。高氧条件下游泳疲劳后实验虾能量代谢底物大量消耗,而乳酸含量变化不显著,说明能量物质的大量消耗是高氧条件下游泳疲劳的主要原因。在疲劳恢复阶段,高溶解氧加快了对虾乳酸的清除和能量代谢底物的恢复。低氧驯化的实验虾在疲劳恢复阶段糖原合成能力较差,乳酸持续积累,说明此时无氧糖酵解仍占能量代谢的主要部分。研究结果为评价溶解氧对对虾游泳能力的影响,解析对虾在不同溶解氧水体中的运动疲劳生理提供了基础数据。
     5.溶解氧对凡纳滨对虾生长及生理机制的影响
     本实验以凡纳滨对虾为研究对象,在测定了溶解氧对其游泳能力影响的基础上,分析了溶解氧变化对对虾生长和存活的影响,并从生理学角度探讨了这些影响产生的内在机制。实验共分4个部分,在水温25.0±0.5℃条件下,研究了30d养殖周期内4个梯度溶解氧水平(T1:2.0±0.3、T2:4.2±0.3、T3:6.8±0.7、T4:13.6±2.1mg/L DO)对凡纳滨对虾生长及消化酶活性、呼吸代谢、能量代谢和氧化应激的影响。
     实验结果表明,溶解氧对各处理组凡纳滨对虾生长及消化酶活力的影响在养殖10d后才出现明显差异。当水体溶解氧低于4.2mg/L时实验虾生长受到抑制。低溶解氧处理组实验虾存活率较低,死亡实验虾甲壳薄软、残食等现象较多;食物转化效率和消化酶活力随水体溶解氧的升高而显著增加,高氧处理组(T4)显著高于其他处理组。低氧驯化30d的凡纳滨对虾,其窒息点显著低于正常和超饱和溶解氧处理组;实验虾的呼吸频率随溶解氧的降低而加快;养殖30d后,实验虾的鳃重比(Rgw)随溶解氧降低有升高的趋势,其变化可以用幂函数来表示:Rgw=1.2379DO-0.0786R2=0.7826;凡纳滨对虾3h耗氧率和排氨率均随溶解氧含量升高而增加,O:N随溶解氧水平升高而降低。养殖5d后,低氧处理组实验虾血浆和肝胰脏总蛋白,血糖,血浆甘油三酯和乳酸含量及肝胰脏乳酸水平均显著增加。养殖5d后, T1和T2处理组实验虾血浆及组织中的丙二醛MDA含量显著低于T3处理组,且组织中的抗超氧阴离子及超氧化物歧化酶SOD活力和总抗氧化能力与T3处理组相比均显著降低。T4处理组实验虾血浆中丙二醛含量显著低于T3处理组,且组织中的总抗氧化能力与T3处理组相比显著升高。
     研究结果表明,凡纳滨对虾在较低溶解氧水平下通过厌氧糖酵解补充能量以维持机体代谢。但是随着养殖时间的延长,低氧驯化组一度增高的各项生理指标开始逐渐降低,最终恢复到与正常处理组无显著差异。凡纳滨对虾的氧化损伤和抗氧化防御存在组织特异性,且在较低溶解氧水平下的氧化应激反应较高溶解氧水平强烈。环境条件波动时,对虾会改变代谢底物组成,降低呼吸代谢以应对缺氧胁迫,缺氧胁迫会使凡纳滨对虾生长受到抑制、死亡率升高;而超饱和溶解氧则促进对虾的饵料转化效率、保证其较高的存活率。由此推断,溶解氧是影响凡纳滨对虾生长和存活的重要环境因素之一。
     6.对虾游泳能力应用研究的探讨
     根据不同温度、盐度和溶解氧条件下对虾游泳能力的研究结果,论文在最后一章针对环境因子与对虾游泳、运动行为的相关性进行了综合分析,比较了环境因子的变化对对虾弹跳、游速和游泳时间等的影响。探讨了对虾游泳行为研究在远洋捕捞和活虾运输等方面的应用潜力。分析认为,环境因子对对虾游泳能力影响显著,海上捕捞生产要根据海区水纹环境特征制定相关作业参数;同时在对虾增殖放流活动中,放流对虾的规格、海区理化因子及流速变化等均会对放流群体的洄游、迁移产生较大影响,根据不同规格对虾的游泳能力,确定放流规格和放流海区,是提高增殖放流效果的前提条件之一。为此,本论文设计了凡纳滨对虾游泳能力查询系统,以供开展捕捞生产或增殖放流查询使用。另外,本研究根据对虾特有的行为方式,设计了涡流式活虾运输水槽,以提高在活虾运输过程中的存活率。
This paper reviews the research advances regarding the swimming performance,effects of environmental factors on the swimming ability of aquatic animals, and theeffect of dissolved oxygen (DO) concentration on the physiological ecology incrustacean. This paper also investigate the effect of different measures on the criticalswimming speed of whiteleg shrimp Litopenaeus vannamei, measures the effects oftemperature, salinity and DO concentration on the critical swimming speed (Ucrit),swimming endurance, tail-flip speed (Stf) and physiological mechanisms of whitelegshrimp L. vannamei, and studies the effect of DO concentration on the growth,survival, oxygen consumption, respiratory metabolism, and oxidative stress ofwhiteleg shrimp L. vannamei. The main results are as follows:1. The effect of different measures on the critical swimming speed of whiteleg shrimpLitopenaeus vannamei
     In the literature, the magnitude of the velocity increments (U2) and the prescribedtime interval for each swimming period (T2) vary considerably. These variations areimportant, as they can profoundly influence Ucritand by extension can profoundlyinfluence the results of intraspecific studies. This study is to compare the methods thathave been used in studies involving the critical swimming speed (Ucrit) of whitelegshrimp Litopenaeus vannamei. The Ucritof L. vannamei was determined in a flumetank at different body length (L1:6.5, L2:8.8, and L3:11.5cm), time interval (10,20,30,40, and50min) and velocity increment (1/2BL s-1,3/4BLs-1, and BL s-1). Timeinterval (T2) and velocity increment (U2) had significant effects on Ucritof L.vannamei in the three body length groups. For L1the Ucritdecreased and thenincreased as the time interval increased, whereas no significant differences occurredin this BL group. For L2, when the T2ranges between10and30min, the Ucritin U2of1/2BL s-1were significantly higher than those in the other velocity increment groups. The Ucritdecreased as the T2increased in the U2of1/2BL s-1, and the Ucritdecreasedand then increased as the T2increased in the U2of3/4BL s-1, whereas Ucritshowed nosignificant differences with the time interval in the U2of BL s-1. For L3the Ucritat U2of1/2BL s-1in T2of10and20min were significantly higher than those in the othervelocity increment groups. The Ucritdecreased as the T2increased in the U2of1/2BLs-1, whereas Ucritshowed no significant differences with time interval in the othervelocity increment groups. The standard critical swimming speed of L. vannamei wasachieved at T2of20min and U2of1/2BL s-1in all three BL groups2. The effect of temperature on the critical swimming speed (Ucrit) and physiologicresponse of whiteleg shrimp Litopenaeus vannamei
     The effect of different temperature (17,20,25, and29℃) on the criticalswimming speed (Ucirt) of whiteleg shrimp Litopenaeus vannamei was determinedunder laboratory conditions. Metabolite concentrations in plasma were measuredbefore and immediately after swimming fatigue to evaluate the physiologic effects offatigue in L. vannamei. Temperature significantly affects on the Ucritof L. vannamei.The Ucritspeed of L. vannamei increased as the temperature increased. Therelationship between temperature and Ucirtcan be described by the linear model asUcirt=1.5916t+0.8892,R2=0.9992, and the Ucirtof shrimps in different temperatureswere significantly different. The plasma glucose concentration of shrimps at17℃was significantly higher than those in the other temperature groups. After swimmingfatigue, the plasma glucose concentration of shrimps at20and25℃increasedsignificantly. The Swimming fatigue leads to severe loss of plasma total proteinconcentration in28℃, whereas the plasma lactate levels of L. vannamei increased at25and28℃after swimming fatigue. The maximum critical swimming speed of L.vannamei was at temperature29℃.3. The effect of salinity on the critical swimming speed (Ucrit), tail-flip speed (Stf) andphysiologic response of whiteleg shrimp Litopenaeus vannamei
     The critical swimming speed (Ucrit) and tail-flip speed (Stf) of whiteleg shrimpLitopenaeus vannamei that were exposed to various salinities (20‰,25‰,30‰,35‰,and40‰) were determined under laboratory conditions. Metabolite concentrations in the plasma, muscles, and hepatopancreas were measured before and immediately afterfatigue to evaluate the physiologic effects of fatigue in L. vannamei. Salinity affectsthe Ucritand Stfof L. vannamei. The Ucritand Stfincreased and subsequently decreasedas salinity increased from20‰to40‰. The relationship between salinity (s,‰) andUcritor Stfcan be described by the quadratic model as Ucirt=-0.0171s2+1.2371s+20.497,R2=0.7667; Stf=-0.2386s2+15.528s-145.12, R2=0.9693. The optimumsalinity and corresponding maximum Ucirtwere36.17‰and42.87cm/s, respectively.The optimum salinity and corresponding maximum Stfwere32.54‰and107.52cm/s,respectively. The different salinities directly affected the physiology of the shrimp,inducing changes in hepatopancreas total protein, plasma total protein, abdominalmuscle lactate, plasma lactate, plasma glucose, hepatopancreas glycogen, andabdominal muscle glycogen concentration. Fatigue from swimming led to severe lossof plasma total protein levels under20,25,30, and35‰salinity. Fatigue fromtail-flip led to severe loss of hepatopancreas glycogen under20‰salinity and plasmaglucose under25‰,30‰, and35‰salinity. The triglyceride and lactate in theplasma concentration increased significantly in a range of salinities after tail-flip.These results are of particular value in evaluating the locomotory ability of whitelegshrimp in different salinities and understanding its ecological processes to improvecapture and rearing techniques.4. The effect of dissolved oxygen concentration on the swimming ability andphysiologic response of whiteleg shrimp Litopenaeus vannamei
     In the DO concentration experiment, the effect of different dissolved oxygen(DO) levels (2.0±0.3mg/L, T1;3.8±0.4mg/L, T2;6.8±0.7mg/L, T3and13.6±2.1mg/L, T4) on the critical swimming speed (Ucrit), tail-flip speed (Stf), and swimmingendurance of whiteleg shrimp Litopenaeus vannamei was tested under laboratoryconditions. Metabolite concentrations in plasma and tissues of the experimentalshrimp were measured at control and subsequent recovery after swimming fatigue toevaluate the physiologic response of L. vannamei. Using a swimming flume, theendurance was tested at swimming speeds ranging from v1to v5.The power model(ν·tb=a) can be used to show the relationship between swimming endurance and swimming speed at any of DO concentration tested. The swimming ability index(SAI), defined as SAI=∫90000vdt (cm), was found to be DO-dependent in L.vannamei. The Ucrit,Stf, and SAI all increased as the DO concentration increased from1.9mg/L to13.6mg/L. The relationship among those can be described by the powermodel as Ucrit=31.534DO0.0788, R2=0.9805; Stf=75.621DO0.1753, R2=0.9981; andSAI=27.947DO0.137, R2=0.9312.
     The different DO concentrations directly affected the physiology of the shrimp.Lower DO concentration led to an increase in lactate and energy charge. Fatigue fromtail-flip led to a severe loss of plasma glucose under T1and T2, and the plasma lactateconcentration increased significantly in all DO groups. The tail-flip fatigue ofL.vannamei in the present study may be due to the accumulation of lactate in theplasma. L.vannamei responded to experimental lower DO and swimming stress withclassical anaerobic metabolism mainly characterized by an decrease in total protein,utilization of glycogen and triglyceride, and accumulation of lactate. At higher oxygenconcentrations, the swimming ability of the shrimp could be determined by theirmuscular capabilities or energy source. During recovery the shrimp maintained athigher DO concentration removed lactate and recovered energy charge to pre-exerciselevels more quickly than shrimp maintained at lower DO concentration. L vannameiexposed to lower DO concentrations showed a lower capacity for glyconeogenesis,accumulation of lactate, and a slow replenishment of energy charge, implying thatanaerobic glycolysis made a significant contribution to the recovery. These results areof particular value in evaluating the locomotory ability of whiteleg shrimp in differentDO concentrations and understanding its ecological processes to improve capture andrearing techniques.
     5. The effect of dissolved oxygen (DO) concentration on the growth and thephysiologic mechanism of whiteleg shrimp Litopenaeus vannamei
     Hypoxic or hyperoxic exposure can affect the physiological capabilities anddefine regulatory limits. Based on the effect of DO on the swimming ability ofwhiteleg shrimp Litopenaeus vannamei, the effect of different dissolved oxygen (DO) levels (2.0±0.3mg/L, T1;4.2±0.3mg/L, T2;6.8±0.7mg/L, T3and13.6±2.1mg/L,T4) on the growth and digestive enzyme activities, respiratory metabolism, energymetabolism and oxidative stress of L. vannamei were tested under25℃. Theexperiment lasted for30d.
     The results showed that when DO was below4.2mg/L, the growth of shrimpwas depressed. The feed conversion efficiency and digestive enzyme activitydecreased with the decrease of DO, and both of them in T4were significantly higherthan those in the other DO groups. The survival rate of shrimp in T4was higher thanthat in the other DO groups. The lethal dissolved oxygen (LDO) content of the shrimpin T1and T2were significantly lower than those in T3and T4, whereas therespiratory frequency decreased as the DO increased. The relationship between DO(mg/L) and gill weight per unit body weight (Rgw) can be described by the powermodel as: Rgw=1.2379DO-0.0786, R2=0.7826. Both oxygen consumption andammonia-N excretion by L. vannamei increased with increasing DO levels, whereasthe trend was found to be reversed in O:N. In T1and T2, the levels of the total protein,glucose, triglyceride, and lactate in plasma and the total protein and lactate inhepatopancreas of the shrimp were significantly higher than that in T3and T4. Theresults showed that when the shrimp are stressed by severe hypoxia the originalrespiration rate can not be maintained, and the shrimps have to resort to anaerobicrespiration. Most parameters were returned to homeostasis after15d of experiment.In T1and T2, the levels of malondialdehyde (MDA) in plasma and tissues of theshrimp were significantly lower than that in T3, and activities of anti-superoxideradical and superoxide dismutase (SOD) and the total antioxidant capacity status intissues were significantly lower than those in the other DO groups. In T4, the levels ofMDA in plasma of the shrimp was significantly lower than that in T3, whereas thetotal antioxidant capacity status in muscle of the shrimp was significantly higher thanthose in other DO groups.
     The results indicated that DO was an important factor affecting the amount andfitness of shrimp stock because hypoxia could cause a high rate of mortality andgrowth depression and higher DO could enhance the feed digestive activity and survival rate. The decreased oxygen consumption and ammonia-N excretion,increased respiratory frequency and transient increases in metabolic demand mayaccount for shrimp hypoxic tolerance. The noted tissue specificities of the oxidativestress most likely reflected different metabolic activities and different responses toenvironmental conditions in the examined tissues. A scheme on possible ways ofregulating antioxidant enzymes by different oxygen levels is proposed. Under thecondition of25.0±0.5°C, salinity32±1, L. vannamei showed an ability to tolerate andadapt to the change of DO concentrations.
     6. The application of study on the swimming ability of penaeid shrimp
     According to the results of the effects of temperature, salinity and dissolvedoxygen levels on the swimming ability of L.vannamei, the application of swimmingability in the shrimp were discussed in this chapter. The different environmentalfactors significantly affect the swimming ability of the shrimp. Knowledge of themaximum swimming speed and swimming endurance is important because itinfluences the ability or otherwise of shrimp to escape from various parts of the trawl.The swimming capability of shrimp also plays an important role in selecting size inshrimp stock enhancement and live transport of the shrimp. A visual software packagewas designed for swimming ability to determine the critical swimming speed andtail-flip speed at different temperature, salinity, DO and body length. A newtransportation device was designed for live transport of the shrimp based on theswimming ability, containing a recirculating system to reduce intraspecific aggression,and provision for water exchange, aeration and securing the shrimp.
引文
[1]Aardt, W., Wolmarans, C.,1987. Effects of anoxia on the hemolymph physiology and lactateaccumulations in the freshwater crab, Potamon warreni. Comp. Biochem. Physiol.88A,671-675.
    [2]Acerete, L., Balasch, J.C., Espinosa, E., Josa, A., Tort, L.,2004. Physiological responses inEurasian perch (Perca fluviatilis, L.) subjected to stress by transport and handling. Aquaculture237,167–178.
    [3]Adamczewska A.M., Morris S.,1994. Exercise in the terrestrial Christmas Island red crabGecarcoidea natalis. II. Energetics of locomotion. J. Exp. Biol.188,257-274.
    [4]Adelman I R, Smith L L.,1970. Effect of oxygen on growth and food conversion efficiency ofnorthern pike. Progr. Fisher. Cult.32,93-96.
    [5]Albert, J., Ellington, W.,1985. Patterns of energy metabolism in the stone crab, Menippemercenaria, during severe hypoxia and subsequent recovery. J. Exp. Zool.234,175-183.
    [6]Aldrich, J.C.,1975. On the oxygen concentration of the crabs Cancer pagurus (L.) and Maiasquinado (Herbst.). Comp. Biochem. Phvsiol.50a,223-228.
    [7]Allan, G.L., Maguire, G.B.,1991. Lethal levels of low dissolved oxygen and effects ofshort-term oxygen stress on subsequent growth of juvenile Penaeus monodon. Aquaculture94,27-37.
    [8]Allan, G.L., Maguire, G.E., Hopkins, S.J.,1990. Acute and chronic toxicity of ammonia tojuvenile Metapenaeus macleayi and Penaeus monodon and the influence of low dissolvedoxygen levels. Aquaculture91,265–280.
    [9]Amornpiyakrit, T., Arimoto, T.,2008. Muscle physiology in escape response of kuruma shrimp.Am. Fish. Soc. Symp.,2:1321-1334.
    [10]Anderson, S.J., Taylor, A.C., Atkinson, R.J.,1994. Anaerobic metabolism during anoxia in theburrowing shrimp Calocaris macandreae Bell (Crustacea: Thalassinidae). Comp. Biochem.Physiol. A108,515–522.
    [11]Ansaldo M., Najle, R., Luquet, C.M.,2005. Oxidative stress generated by diesel seawatercontamination in the digestive gland of the Antarctic limpet Nacella concinna. MarineEnvironmental Research59,381–390.
    [12]Ansell, A.D.,1973. Changes in oxygen consumption, heart rate and ventilation accompanyingstarvation in the decapod Crustacean Cancer poqurus. Neth. J. Sea Res.7,455-475.
    [13]Arnott, S.A., Neil, D.M., Ansell, A.D.,1998. Tail-flip mechanism and size-dependentkinematics of escape swimming in the brown shrimp Crangon Crangon. J. Exp. Biol.201,1771-1784.
    [14]Arudpragasm, K.D., Naylor, E.,1964a. Gill ventilation and the role of reversed respiratorycurrents in Carcinus maenas (L.) J. exp. Biol.41,299-307.
    [15]Arudpragasm, K.D., Naylor, E.,1964b. Gill ventilation volumes, oxygen consumption andrespiratory rhythms in Carcinus maenas (L.) J. exp. Bid.41,307-321.
    [16]Babu, M.M., Marian, M. Peter.,1998. Live transport of gravid Penaeus indicus usingcoconut mesocarp dust. Aquacultural Eng.18,149–155.
    [17]Baden, S.P., Pihl, L., Rosenberg, R.,1990. Effects of oxygen depletion on the ecology, bloodphysiology and fishery of the Norway lobster Nephrops norvegicus [J]. Mar Ecol Prog Ser,67,141-155.
    [18]Bagnyukova T.V., Storey, K.B., Lushchaka, V.I.,2003. Induction of oxidative stress in Ranaridibunda during recovery from winter hibernation. Journal of Thermal Biology28,21–28.
    [19]Bagnyukova, T.V., Storey, K.B., Lushchak, V.I.,2005a. Adaptive response of antioxidantenzymes to catalase inhibition by aminotriazole in goldfish liver and kidney. Comp. Biochem.Physiol. B142,335–341.
    [20]Bagnyukova, T.V., Vasylkiv, O.Yu., Storey, K.B., Lushchak, V.I.,2005b. Catalase inhibitionby amino triazole induces oxidative stress in goldfish brain. Brain Res.1052,180–186.
    [21]Bagnyukovaa T.V., Lushchaka, O.V., Storeyb, K.B. Lushchak, V.I.,2007. Oxidative stress andantioxidant defense responses by goldfish tissues to acute change of temperature from3to23°C. Journal of Thermal Biology32,227–234.
    [22]Bainbridge, R.,1958. The speed of swimming of fish as related to size and to the frequencyand amplitude of the tail beat. J. Exp. Biol.35,109-153
    [23]Bainbridge, R.,1960. Swimming and stamina in three fish. J. Exp. Biol.37:129–153.
    [24]Baldwin, J., Gupta, A., Iglesias, X.,1999. Scaling of anaerobic energy metabolism during tailflipping behaviour in the freshwater crayfish, Cherax destructor. Mar. Freshwater Res.,50:183-187.
    [25]Baldwin, J., Seymour, R.S., Webb, G..J.W.,1995. Scaling of anaerobic metabolism duringexercise in the estuarine crocodile (Crocodylus porosus). Comp. Biochem. Physiol. A112,285-293.
    [26]Battertocn, C.V., Cameron, J.N.,1978. Characteristics of resting ventilation and response tohypoxia, hypercapnia and emersion in the blue crab Callinectes sapidus. J. Exp. Zool.203,403-418.
    [27]Batty, R.S., Blaxter, J.H.S.1992. The effect of temperature on the burst swimmingperformance of fish larvae. J. exp. Biol.170,187-201.
    [28]Batty, R.S., Blaxter, J.H.S., Fretwell, K.,1993. Effect of temperature on the escape responsesof larval herring, Clupea harengus.Mar. Biol.115,523-528
    [29]Beamish, F.W.H.,1966. Swimming endurance of some northwest atlantic fishes. J. Fish. Res.Bd. Can.23(3),341-347
    [30]Beamish, F.W.H.,1978. Swimming capacity. In: Hoar, W.S., Randall, J.D.(Eds), FishPhysiology, vol.7. Academic Press Inc, New York, pp.101-187.
    [31]Behrens, J. W., Pr bel, K., Steffensen, J. F.,2006. Swimming energetics of the Barents Seacapelin (Mallotus villosus) during the spawning migration period. J. Exp. Mar. Biol. Ecol.331,208–216.
    [32]Bellman, K.L., Krasne, F.B.,1983. Adaptive complexity of interactions between feeding andescape in crayfish. Science221,779–781.
    [33]Berghahn, R., Wiese, K., Lüdemann, K.,1995. Physical and physiological aspects of gearefficiency in North Sea brown shrimp fisheries. Helgoland Mar. Res.49,507–518.
    [34]Bergmann, M., Moore, P.G.,2001. Survival of decapod crustaceans discarded in the Nephropsfishery of the Clyde Sea area, Scotland. ICES J. Mar. Sci.58,163–171.
    [35]Bergmann, M., Taylor, A. C., Geoffrey Moore, P.,2001. Physiological stress in decapodcrustaceans (Munida rugosa and Liocarcinus depurator) discarded in the Clyde Nephropsfishery. J. Exp. Mar. Biol. Ecol.,259,215-229.
    [36]Bickler P.E., Buck, L.T.,2007. Hypoxia tolerance in reptiles, amphibians, and fishes: Lifewith variable oxygen availability. Annual Review of Physiology69,145–170.
    [37]Bone Q.,1975. Muscular and energetic aspects of fish swimming. In: Wu TYT, Brokaw CJ,Brennen C (eds) Swimming and flyingin nature, vol2. Plenum Press, New York, pp493–528
    [38]Bone, W.R., Schoffeniels, E.,1979. Hemocyanin synthesis during hypo-osmotic stress in theshore crab Carcinus maenas (L). Comp Biochem Physiol,63,207-214.
    [39]Boutilier, R.,2001. Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol.204,3171-3181.
    [40]Boyd, C.E.,1998. Pond water aeration systems. Aquac. Eng.18,9-40.
    [41]Brauner, C. J., Iwama, G. K., Randall, D. J.,1994. The effect of short-duration seawaterexposure on the swimming performance of wild and hatchery-reared juvenile coho salmon(Oncorhynchus kisutch) during smoltification. Can. J. Fisheries. Aquat. Sci.,51,2188-2194.
    [42]Brauner, C.J, Shrimpton, J.M, Randall, D.J,1992. Effect of short-duration seawater exposureon plasma ion concentrations and swimming performance in coho salmon (Oncorhynchuskisutch) parr. Can. J. Fish. Aquat. Sci.49,2399–2405.
    [43]Brauner, C.J., Iwama, G.K., Randall, D.J.,1994. The effect of short-duration seawaterexposure on the swimming performance of wild and hatchery-reared juvenile coho salmon(Oncorhynchus kisutch) during smoltification. Can. J. Fisher. Aquat. Sci.51,2188-2194.
    [44]Brauner, C.J., Val, A.L., Randall, D.J.,1993. The effect of graded methaemoglobin levels onthe swimming performance of chinook salmon (Oncorhynchus tshawytscha). J. Exp. Biol.185,121–135.
    [45]Breen M., Dyson J., O’Neill F. G., Jones E., Haigh M.,2004. Swimming endurance ofhaddock (Melanogrammus aeglefinus L.) at prolonged and sustained swimming speeds, and itsrole in their capture by towed fishing gears. ICES J. Mar. Sci.61:1071-1079.
    [46]Brett J R, Blackburn JM. Oxygen requirements for growth of young coho (Oncorhyncuskisutch) and sockeye (O. nerka) salmon at15℃. Can. J. Fish Aquat. Sci.1981,38,399-404.
    [47]Brett, J R. Environmental factors and growth. In: Hoar, W S, Randall D J, Brett J R,(Ed.[M])Fish Physiology, Vol. VIII New York: Academic Press.,1979,599-675.
    [48]Brett, J. R.,1964. The respiratory metabolism and swimming performance of young sockeyesalmon. J. Fish. Res. Bd. Can.,21,1183-1226
    [49]Brett, J. R.,1967. Swimming performance of sockeye salmon Oncorhynchus nerka in relationto fatigue time and temperature. J. Fish. Res. Bd. Can.24,1731-1741
    [50]Brett, J.R.,1964. The respiratory metabolism and swimming performance of young sockeyesalmon. J. Fish. Res. Bd. Can.21,1183-1226.
    [51]Brett, J.R.,1967. Swimming performance of sockeye salmon (Oncorhynchus nerka) inrelation to fatigue time and temperature. J. Fish. Res. Bd. Can.24,1731-1741.
    [52]Brett, J.R.,1982. The swimming speed of adult pink salmon, Oncorhynchus gorbuscha, at20°C and a comparison with sockeye salmon, O. nerka. Can. Tech. Rep. Fish. Aquat. Sci. No.1143.
    [53]Bridges, C.R., Brand, A.R.,1980. The effect of hypoxia on oxygen consumption and bloodlactate levels of some marine crustacea. Comp. Biochem. Physiol.65A,399-409.
    [54]Bruce, B. D., Stevens, J. D., Malcolm, H.,2006. Movements and swimming behaviour ofwhite sharks (Carcharodon carcharias) in Australian waters. Mar Biol.150,161–172.
    [55]Brusca, R.C., Brusca, G.J.,1990. Invertebrates. Sinauer Inc., Sunderland, MA.922pp.
    [56]Buentello J A, Gatlin D M, Neill W H.2000. Effects of water temperature and dissolvedoxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictaluruspunctatus). Aquaculture,182,339-352.
    [57]Butler, P.J., Day, N., Namba, K.,1992. Interactive effects of seasonal temperature and low pHon resting oxygen uptake and swimming performance of adult brown trout, Salmo trutta. J.Exp. Biol.165:195–212.
    [58]Butler, P.J., Taylor, E.W., McMahon, B.R.,1978. Respiratory and circulatory changes in thelobster (Homarus vulgaris) during long-term exposure to moderate hypoxia. J. Exp. Biol.73,131-146.
    [59]Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B.,1988. Critical review of rateconstants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals. Phys.Chem. Ref. Data17,513–517.
    [60]Cabiscol, E., Levine, R.L.,1995. Carbonic anhydrase: III. Oxidative modification in vivo andloss of phosphatase activity during aging. J. Biol. Chem.270,14742–14747.
    [61]Carlsona, J. K., Parsonsa, G. R.,2001. The Effects of Hypoxia on Three Sympatric SharkSpecies: Physiological and Behavioral Responses. Env. Biol. Fish.61,427–433.
    [62]Chang, E.S., O'Connor, J.D.,1983. Metabolism and transport of carbohydrates and lipids. In:Mantel, L.H.(Ed.), The Biology of Crustacea, vol.5. Internal Anatomy and PhysiologicalRegulation. Academic Press, New York, pp.263–287.
    [63]Charmantier, G., Soyez, C., Aquacop,1994. Effect of molt stage and hypoxia onosmoregulatory capacity in the penaeid shrimp Penaeus vannamei. J Exp Mar Biol Ecol,178,233-246.
    [64]Chatelier, A., McKenzie, D. J., Claireaux, G.,2005. Effects of changes in water salinity uponexercise and cardiac performance in the European seabass (Dicentrarchus labrax). Mar. Biol.147,855–862.
    [65]Chen J.C., Nan, F.H.,1992. Effects of temperature, salinity and ambient ammonia on lethaldissolved oxygen of Penaeus chinensis. Comp. Biochem. Physiol. C101,459–461.
    [66]Chen, J.C., Kou, T.T.,1998. Hemolymph acid-balance, oxyhemocyanin, and protein levels ofMacrobrachium rosenbergii at different concentrations of dissolved oxygen. J Crustac Biol,18,437-441.
    [67]Chen, N., Yang, X., Li, X., Liu, H., Lin, G., Li, F., Zhang, H. Lin, L.,1992. The biology of thepeaeidae (Original book edited by Dall, W,, Hill, B.J., Rothlisberg, P.C., Starples, D.J.,1990).Ocean University of Qingdao Press, Qingdao.
    [68]Cheng W., Liu C.H., Kuo C.M.,2003Effects of dissolved oxygen on hemolymph parametersof freshwater giant prawn, Macrobrachium rosenbergii (de Man). Aquaculture220,843–856.
    [69]Cheng, W., Liu, C.H., Yan, D.F., Chen, J.C.,2002. Hemolymph oxyhemocyanin, protein,osmolality and electrolyte levels of whiteleg shrimp Litopenaeus vannamei in relation to sizeand molt stage. Aquaculture,211,325-339.
    [70]Cheong, T. S., Kavvas, M. L., Anderson, E. K.,2006. Evaluation of Adult White SturgeonSwimming Capabilities and Applications to fishway Design. Environ Biol Fish.77,197–208.
    [71]Claireaux G., Dutil J.D.,1992. Physiological response of the atlantic cod (gadus morhua) tohypoxia at various environmental salinities. J. exp. Biol.163,97-118
    [72]Claireaux, G., Couturier, C., Groison, A.,2006. Effect of temperature on maximum swimmingspeed and cost of transport in juvenile European sea bass (Dicentrarchus labrax). J. Exp. Biol.,209,3420-3428.
    [73]Claireaux, G., Webber, D.M., Kerr, S.R., Boutilier, R.G.,1995. Physiology and behaviour offree-swimming Atlantic cod (Gadus morhua) facing fluctuating salinity and oxygenationconditions. J. Exp. Biol.198,61–69.
    [74]Clark, J.V.,1986. Inhibition of moulting in Penaeus semisulcatus (De Haan) by long-termhypoxia. Aquaculture52,253–254.
    [75]Claybrook D.L.,1983. Nitrogen metabolism. In: Martel LH (eds) The Biology of Crustacea,Internal anatomy and physiological regulation. Academic Press, New York, pp163-213.
    [76]Cochran, R.E., Burnett, L.E.,1996. Respiratory responses of the salt marsh animals, Fundulusheteroclitus, Leiostomus xanthurus, and Palaemonetes pugio to environmental hypoxia andhypercapnia and to the organophosphate pesticide, azinphosmethyl. J. Exp. Mar. Biol. Ecol.195,125–144.
    [77]Coiro L L, Poucher S L, Miller D C. Hypoxic effects on growth of Palaemonetes vulgarislarvae and other species: using constant exposure data to estimate cyclic exposure response. J.Exp. Mar. Biol. Ecol.,2000,247,243–255.
    [78]Cooper, R.U., Clough, L.M., Farwell, M.A., West, T.L.,2002. Hypoxia-induced metabolic andantioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. J. Exp. Mar. Biol.Ecol.279,1-20.
    [79]Corner, E.D.S., Newell, B.S.,1967. On the nutrition and metabolism of zooplankton IV Theforms of nitrogen excreted by Calanus J. mar biol. Ass. U. K.4,113-120.
    [80]Cromarty, S. I., Cobb, J. S. and Kass-Simon, G.,1991. Behavioral analysis of the escaperesponse in the juvenile lobster Homarus americanus over the molt cycle. J. Exp. Biol.158,565–581.
    [81]Cumberlidge, N., Uglow, R.F.,1977. Heart and scaphognathite activity in the shore crabCarcinus maenas (L.) J. exp. Mar. Biol. Ecol.28,87-107.
    [82]Dabrowski, K., Lee, K.J., Guz, L., Verlhac, V., Gabaudan, J.,2004. Effects of dietary ascorbicacid on oxygen stress (hypoxia and hyperoxia), growth and tissue vitamin concentrations injuvenile rainbow trout (Oncorhynchus mykiss). Aquaculture233,383–392.
    [83]Dahlberg, M. L. Shumway, D. L. Doudoroff, O.1968. Influence of dissolved oxygen andcarbon dioxide on swimming performance of largemouth bass and coho salmon. J. Fish. Res.Bd Can.2S149-70.
    [84]Dakin, W.J.,1938. The habits and life-history of a penaeid prawn (Penaeus plebejus Hesse).Proceedings of the Zoological Society of London A.108,163-183.
    [85]Dall, W.,1958. Observations on the biology of the greentail prawn, Metapenaeus mastersii(Haswell)(Crustacea Decapoda: Penaeidae). Australian Journal of Maeine and FreshwaterResearch9,111-134.
    [86]Dall, W.,1964. Studies on the physiology of a shrimp, Merapenaeus mastersii (Haswell).Aust
    [87]Dall, W., Hill, B.J., Rothlisberg, P.C., Staples, D. J.,1990. Biology of the Penaeidae. In:Blaxter, J.H.S., Southward, A.J, eds. Advances in Marine Biology. London: Academic Press,27,17-340.
    [88]Dall, W., Moriarty, D. J.W.,1983. Nutrition and digestion. In: The biology of crustacean,(Mantel, L. H. editor). Academic Press, New York, USA.5,215-261.
    [89]Dall, W., Smith, D.M.,1986. Oxygen consumption and ammonia-N excretion in fed andstarved tiger prawns Penaeus esculentus Haswell. Aquaculture55,23–33.
    [90]Daniel, T.L., Meyh fer, E.,1989. Size limits in escape locomotion of carridean shrimp. J. exp.Biol.143,245–265.
    [91]Dauble, D. D., Moursund, R. A., Bleich, M. D.,2006. Swimming Behaviour of JuvenilePacific Lamprey, Lampetra tridentata. Env. Biol. Fish.75,167–171.
    [92]David R. and Colin B.,1991. Effects of environmental factors on exercise in fish. J. exp. Biol.160,113-126
    [93]Davis, G. E., Foster, J., Warren, C. E. Doudoroff, P.1963. The influence of oxygenconcentration on the swimming performance of juvenile Pacific salmon at varioustemperatures. Trans. Am. Fish. Soc.92,111-124.
    [94]Davis, J.C.,1975. Minimal dissolved oxygen requirements of aquatic life with emphasis onCanadian species: a review. J Fish Res Board Can,32(12),2295-2332.
    [95]Day, N., Butler, P. J.,2005. The effects of acclimation to reversed seasonal temperatures onthe swimming performance of adult brown trout Salmo trutta. J. Exp. Biol.208,2683-2692.
    [96]De Boeck, G., van der Ven, K., Hattink, J., Blust, R.,2006. Swimming performance andenergy metabolism of rainbow trout, common carp and gibel carp respond differently tosublethal copper exposure. Aquatic Toxicol.,80,92–100.
    [97]DeFur, P.L., Mangum, C.P., Reese, J.E.,1990. Respiratory responses of the blue crabCallinectes sapidus to longterm hypoxia. Biol. Bull.178,46–54.
    [98]Dejours, P.,1978. L'oxygene et le dioxyde de carbone dans les milieux ambiants etbiologiques. J. Physiol.(Paris),74,113-119.
    [99]Di Giulio R.T., Washburn, P.C., Wenning, J.R., Winston, G.W., Jewell, C.S.1989. Biochemicalresponses in aquatic animals: A review of determinants of oxidative stress. EnvironmentalToxicology and Chemistry8,1103–1123.
    [100]Dickson, K. A., Donley, J. M., Sepulveda, C., Bhoopat, L.,2002. Effects of temperature onsustained swimming performance and swimming kinematics of the chub mackerel Scomberjaponicus. J. Exp. Biol.205,969–980.
    [101]Dizdaroglu, M.,1993. Chemistry of free radical damage to DNA and nucleoproteins. In:Halliwell, B., Aruoma, O.I.(Eds.), DNA and Free Radicals. Ellis Horwood, Ltd., Chichester,pp.19–39.
    [102]Dobson, G.P., Hochachka, P.W.,1987. Role of glycolysis in adenylate depletion and repletionduring work and recovery in teleost white muscle. J. exp. Biol.129,125-140.
    [103]Dobson, G.P., Parkhouse, W.S., Hochachka, P.W.,1987. Regulation of anaerobicATP-generating pathways in trout fast-twitch skeletal muscle. Am. J. Physiol.253,186-194.
    [104]Doulos S K, Kindschi G A. Effects of oxygen supersaturation on the culture of cutthroat trout,Oncorhynchus clarki Richardson, and rainbow trout, Oncorhynchus mykiss Richardson. Aquac.Res.,1990,21,39-46.
    [105]Driedzic, W.R.,1978. Carbohydrate metabolism in the perfused dogfish heart. Physiol. Zool.51,42-50.
    [106]Drucker, E.G.,1996. The use of gait transition speed in comparative studies of fishlocomotion. Am. Zool.36,555-566
    [107]Dunn, J.F., Hochachka, P.W.,1986. Metabolic responses of trout (Salmo gairdneri) to acuteenvironmental hypoxia. J. Exp. Biol.123,229-242.
    [108]Durstewitz, G, Terwilliger, N.,1995. Northern blot analysis of the differential expression ofhemocyanin subunits in various tissues and developmental stages of the Dungeness crab(Carcinus magister). Physiol Zool,68,149.
    [109]Edsall D A, Smith C E.1990. Performance of rainbow trout and Snake River cutthroat troutreared in oxygen-supersaturated water. Aquaculture,90,251-259.
    [110]Edwards, D.H.,1995. The neural mechanisms of social dominance status in crustaceans. In:Burrows, M., Matheson, T., Newland, P.L., Schuppe, H.(Eds.), In Nervous Systems andBehaviour, Proceedings of the Fourth International Congress of Neuroethology, p.3. Stuttgart:Thieme Medical Publishers. Inc.
    [111]Egusa, S.,1961. Studies on the respiration of the ‘kuruma’ prawn, Penaeus japonicus Bate. II.Preliminary experiments on its oxygen consumption. Bull. Jpn. Soc. Sci. Fish.27,650–659.
    [112]England, W.R., Baldwin, J.1985. Anaerobic energy metabolism in the tail musculature of theAustralian yabby Cherax destructor (Crustacea, Decapoda, Parastacidae). Regulation ofanaerobic glycolysis. Comp. Biochem. Physiol. B80,327-35.
    [113]England, W.R., Baldwin, J.,1983. Anaerobic energy metabolism in the tail musculature ofthe Australian yabby Cherax destructor (Crustacea, Decapoda, Parastacidae): role ofphosphagens and anaerobic glycolysis during escape behaviour. Physiol. Zool.56,614-622.
    [114]Farlinger, S., Beamish, F. W. H.,1977. Effects of time and velocity increments on thecritical swimming speed of largemouth bass Micropterus salmoides.. Trans. Am. Fisher. Soc.106,436-439
    [115]Farrell, A. P., Steffensen, J. F.,1987. An analysis of the energetic cost of the branchial andcardiac pumps during sustained swimming. Fish Physiol. Biochem.,4,73-79.
    [116]Farrell, A.P., Bennett, W., Devlin, R.H.,1997. Growth-enhanced transgenic salmon can beinferior swimmers. Can. J. Zool.75,335–337.
    [117]Farrell, A.P., Johansen, J.A., Steffensen, J.F., Moyes, C.D., West, T.G., Suarez, R.K.,1990.Effects of exercise training and coronary ablation on swimming performance, heart size, andcardiac enzymes in rainbow trout, Oncorhynchus mykiss. Can. J. Zool.68,1174–1179.
    [118]Farrell, A.P., Johansen, J.A., Suarez, R.K.,1991. Effects of exercise-training on cardiacperformance and muscle enzymes in rainbow trout, Oncorhynchus mykiss. Fish Physiol.Biochem.9,303–312.
    [119]Farrell, A.P., Steffensen, J.F.,1987. An analysis of the energetic cost of the branchial andcardiac pumps during sustained swimming. Fish. Physiol. Biochem.4,73-79.
    [120]Felton, G.W.,1995. Oxidative stress of vertebrates and invertebrates. In: Ahmad, S.(Ed.),Oxidative Stress and Antioxidant Defense in Biology. Chapman and Hall, New York, pp.356–434.
    [121]Field, R. H., Taylor, A. C., Neil, D. M.,1991. Factors affecting swimming ability and itsrecovery in the Norway lobster (Nephrops norvegicus). J. Mar. Biol. Assn. UK,71,707-742.
    [122]Fields, J.,1983. Alternatives to lactate acid: possible advantages. J. Exp. Zool.228,445-457.
    [123]Fisher, R., Bellwood, D.R.,2002. The influence of swimming speed on sustained swimmingperformance of late-stage reef fish larvae. Mar Biol,140,801-807.
    [124]Forster M.E., Waldron F.M., Taylor H.H.,1989. Recovery from exhausting exercise in abimodally breathing crab, Leptograpsus variegates (Decapoda: Grapsidae) J. Exp. Mar. Biol.Ecol.127,165-173
    [125]Foss A, Evensen T H, iestad V.,2002. Effects of hypoxia and hyperoxia oi1growth and foodconversion efficiency in the spotted wolfsh Anarhichas minor (Olafsen). Aquae. Res.,33,437-444.
    [126]Foss A, Vollen T, iestad V.2003. Growth and oxygen consumption in nom1al and O2supersaturated water,and interactive effects of O2saturation and ammonia on growth inspotted wolfish (Anarhichas minor Olafsen). Aquaculture,224,105-l16.
    [127]Fotheringham N, Weissberg G H.1979. Some causes, consequences and potentialenvironmental impacts of oxygen depletion in the Northern Gulf of Mexico. In: Kusakin O G(Ed.[M]). Proceedings of11th Annual Offshore Technology Conference.11th AnnualOffshore Technology Conference, Houston, TX,1979,2205–2208.
    [128]Fry F E J.1971. The effect of environmental factors on the physiology of fish. In: Hoar W S,Randall D J.(Eds.[M]). Fish Physiology, vol.6. Academic Press, New York,1-98.
    [129]Fry, E. J., Hart, S. J.1948. Cruising speed of goldfish in relation to water temperature. J. Fish.Res. Bd. Can.,7,169-175
    [130]Fry, F.E.J.,1947. Effects of the environment on animal activity. Studies Biological Series55,Ontario Fisheries Research Lab. Pub.68. University of Toronto, pp.1-45.
    [131]Fuiman, L. A., Batty, R. S.,1997. What a drag it is getting cold: partitioning the physical andphysiological effects of temperature on fish swimming. J. Exp. Biol.,200.1745-1755.
    [132]Fukunaga, K., Suzuki, T., Takama, K.,1991. Effect of ozone on the compositions of gill anderythrocyte membrane lipids and proteins of Japanese charr (Salvelinus leucomaenis). Comp.Biochem. Physiol. B100,481-487.
    [133]Fulton, C. J., Bellwood, D. R.,2004. Wave exposure, swimming performance, and thestructure of tropical and temperate reef fish assemblages. Mar. Biol.144,429-437.
    [134]G de G.1984. Effects of oxygen deprivation during anoxia and muscular work on the energymetabolism of the crayfish, Orconectes limosus. Comp. Biochem. Physiol. A77,495-502
    [135]Gade, G.,1983. Energy metabolism of arthropods and mollusks during environmental andfunctional anaerobiosis. J. Exp. Zool.228,415-429.
    [136]Galgani F.1985. Regulation de l'activite des proteases digestives de Penaeus japonicus Bateen relation avec la temperature. J. Exp. Mar. Biol. Ecol.,94,11-18.
    [137]Gallaugher, P., Axelsson, M., Farrell, A.P.,1992. Swimming performance andhaematological variables in splenectomized rainbow trout, Oncorhynchus mykiss. J. Exp. Biol.171,301–314.
    [138]Gallaugher, P., Thorarensen, H., Farrell, A.P.,1995. Hematocrit in oxygen transport andswimming in rainbow trout (Oncorhynchus mykiss). Resp. Physiol.102,279–292.
    [139]Ganga U, James P S B R. Influence of different levels of ambient oxygen on growth andmetabolite changes in laboratory reared Penaeus indicus. Central Marine Fisheries ResearchInstitute Special Publication,1993.
    [140]Gay, I.E.,1957A comparative study of the gill area of crabs. Biol. Bull.112,34-42.
    [141]Gibson, R., Barker, P.L.,1979. The decapod hepatopancreas. Oceanogr. Mar. Biol. Ann. Rev.17,285–346.
    [142]Goolish, E.M.,1991. Aerobic and anaerobic scaling in fish. Biol. Rev.66,33-56.
    [143]Gracia-López, V., Rosas-Vázquez, C., Brito-Pérez, R.,2006. Effects of salinity onphysiological conditions in juvenile common snook Centropomus undecimalis Comp.Biochem. Physiol. A145,340-345.
    [144]Graham, J.B., Dewar, H., Lai, N.C., Lowell, W.R., Arce, S.M.,1990. Aspects of sharkswimming performance determined using a large water tunnel. J. Exp. Biol.151,175-192.
    [145]Green, B. S., Fisher, R.,2004. Temperature influences swimming speed, growth and larvalduration in coral reef fish larvae. J. Exp. Mar. Biol. Ecol.299,115–132.
    [146]Gregory, T.R., Wood, C.M.,1998. Individual variation and interrelationships betweenswimming performance, growth rate, and feeding in juvenile rainbow trout (Oncorhynchusmykiss). Can. J. Fish. Aquat. Sci.55,1583-1590.
    [147]Gregory, T.R., Wood, C.M.,1999. Interactions between individual feeding behaviour, growth,and swimming performance in juvenile rainbow trout (Oncorhynchus mykiss) fed differentrations. Can. J. Fish. Aquat. Sci.56,479-486.
    [148]Guan, L., Snelgrove, P. V. R., Gamperl, A. K.,2008. Ontogenetic changes in the criticalswimming speed of Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthornsculpin) larvae and the role of temperature. J. Exp. Mar. Biol. Ecol.,360,31-38.
    [149]Guerriero, G., DiFinizio, A., Ciarcia, G.,2002. Stress-induced changes of plasma antioxidantsin aquaculture sea bass, Dicentrarchus labrax. Comp. Biochem. Physiol., A132,205–211.
    [150]Guppy, M., Fuery, C.J., Flanigan, J.E.,1994. Biochemical principles of metabolic depression.Comp. Biochem. Physiol. B109,175–189.
    [151]Hagerman L., S ndergaard T., Weile K., Hosie D., Uglow R. F.,1990Aspects of bloodphysiology and ammonia excretion in Nephrops norvegicus under hypoxia. Comp. Biochem.Physiol. A97,51-55
    [152]Hagerman, L.,1983. Haemocyanin concentration of juvenile lobster (Homarus gammarus)in relation to moulting cycle and feeding conditions. Mar Biol,77,11-17.
    [153]Hagerman, L.,1986. Haemocyanin concentration in the shrimp Crangon crangon (L.) afterexposure to moderate hypoxia. Comp. Biochem. Physiol.85A,721–724.
    [154]Hagerman, L., Sondergaard, T., Weile, K., Hosie, D., Uglow, R.F.,1990. Aspects of bloodphysiology and ammonia excretion in Nephrops norvegicus. Comp. Biochem. Physiol.97A,51–55.
    [155]Hagerman, L., Szaniawska, A.,1994. Haemolymph nitrogen compounds and ammonia effluxrates under anoxia in the brackish water isopod Saduria entomodon. Mar. Ecol. Prog. Ser.,103,285–289.
    [156]Hagerman, L., Uglow, R.F.,1984. The influence of hypoxia on the blood regulation of thebrackish water shrimp Palaemonetes varians Leach. J. Exp. Mar. Biol. Ecol.76,157–165.
    [157]Hagerman, L., Uglow, R.F.,1985. Effects of hypoxia on the respiratory and circulatoryregulation of Nephrops norvegicus. Mar. Biol.87,273–278.
    [158]Hagerman, L., Weber, R.E.,1981. Respiratory Rate, Haemolymph Oxygen Tension andHaemocyanin Level in the Shrimp Palaemon adspersus Rathke. J. Exp. Mar. Biol. Ecol.54,13–20.
    [159]Hall M.R. Van Ham E.H.1998.The Effects of Different Types of Stress on Blood Glucose inthe Giant Tiger Prawn Penaeus monodon. J. World Aquacult. Soc.29,290-299.
    [160]Halliwell, B., Gutteridge, J.M.C.,1989. Free Radicals in Biology and Medicine,2nd ed.Clarendon Press, Oxford, UK.
    [161]Halliwell, B., Gutteridge, J.M.C.,1999. Free Radicals in Biology and Medicine,3rd ed.Clarendon Press, Oxford.
    [162]Hamasaki, K., Kitada, S.,2006. A review of kuruma prawn Penaeus japonicus stockenhancement in Japan. Fish. Res.,80,80-90.
    [163]Hammer, C.,1995. Fatigue and exercise tests with fish. Comp. Biochem. Physiol. A.112,1-20
    [164]Hammill, E., Wilson, R. S., Johnston, I. A.,2004. Sustained swimming performance andmuscle structure are altered by thermal acclimation in male mosquito fish. J. Therm. Biol.29,251–257.
    [165]Harper S.Y., Reiber C.,1999. Influence of hypoxia on cardiac functions in the grass shrimp(Palaemonetes pugio Holthuis) Comp. Biochem. Physiol. A124,569-573.
    [166]Harper, S.L., Reiber, C.L.,2006. Metabolic, respiratory and cardiovascular responses toacute and chronic hypoxic exposure in tadpole shrimp Triops longicaudatus. J. Exp. Biol.209,1639–1650.
    [167]Harris, R. R., Andrews, M. B.,2005a. Physiological changes in the Norway lobster Nephropsnorvegicus (L.) escaping and discarded from commercial trawls on the West Coast of ScotlandII. Disturbances in haemolymph respiratory gases, tissue metabolites and swimmingperformance after capture and during recovery. J. Exp. Mar. Biol. Ecol.320,195-210.
    [168]Harris, R.R, Andrews, M.B.,2005b. Physiological changes in the Norway lobster Nephropsnorvegicus (L.) escaping and discarded from commercial trawls on the West Coast of Scotland1. Body fluid volumes and hemolymph composition after capture and during recovery. J. Exp.Mar. Biol. Ecol.320,179–193.
    [169]Hawkins, D.K., Quinn, T.P.,1996. Critical swimming speed and associated morphology ofjuvenile coastal cutthroat trout (Oncorhynchus clarki clarki), steelhead trout (Oncorhynchusmykiss), and their hybrids. Can. J. Fish. Aquat. Sci.53,1487-1496.
    [170]He, P. G.1991. Swimming endurance of the Atlantic cod, Gadus morhua L., at lowtemperatures. Fish. Res.12,65-73
    [171]He, P.,2003. Swimming behaviour of winter flounder (Pleuronectes americanus) on naturalfishing grounds as observed by an underwater video camera. Fish. Res.60,507–514.
    [172]He, P., Wardle, C.S.,1988. Endurance at intermediate swimming speeds of Atlantic mackerel,Scomber scombrus L., herring, Clupea harengus L., and saithe, Pollachius virens L. J. FishBiol.35:255-266.
    [173]Head G., Baldwin J.,1986. Energy metabolism and the fate of lactate during recovery fromexercise in the Australian freshwater crayfish Cherax destructor. Aust. J. Mar. Freshw. Res.,37,641-646.
    [174]Heath, A.G.,1988. Anaerobic and aerobic energy metabolism in brain and liver tissue fromrainbow trout (Salmo gairdneri) and bullhead catfish (Ictalurus nebulosus). J. Exp. Zool.248,140-146.
    [175]Hemmings, C. C.,1969. Observations on the behaviour of fish during capture by the Danishseine, and their relation to herding by trawl bridles. FAO Fish. Rep.,62,645-655
    [176]Herbert, N. A., Steffensen, J. F.,2006. Hypoxia increases the behavioural activity ofschooling herring: a response to physiological stress or respiratory distress? Mar. Biol.149,1217–1225.
    [177]Hermes-Lima M.,2004. Oxygen in biology and biochemistry: role of free radicals. In: Storey,K.B.(Ed.), Functional Metabolism: Regulation and Adaptation. Wiley-Liss, Hoboken, pp319–368.
    [178]Hermes-Lima M., Storey, J.M., Storey, K.B.,1998. Review: Antioxidant defenses andmetabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comp.Biochem. Physiol. B120,437-448.
    [179]Hermes-Lima, M.,2004. Oxygen in biology and biochemistry: role of free radicals. In:Storey, K.B.(Ed.), Functional Metabolism: Regulation and Adaptation. Wiley-Liss, Hoboken,pp319–368.
    [180]Hermes-Lima, M., Zenteno-Savín, T.,2002. Animal response to drastic changes in oxygenavailability and physiological oxidative stress. Comp. Biochem. Physiol. C133,537–556.
    [181]Herreid, C.F.,1980. Review: hypoxia in invertebrates. Comp. Biochem. Physiol.67A,311–320.
    [182]Hervant, F., Garin, D., Mathieu, J., Freminet, A.,1999. Lactate metabolism and glucoseturnover in the subterranean crustacean Niphargus virei during post-hypoxic recovery. J. Exp.Biol.202,579-592.
    [183]Hervant, F., Mathieu, J., Garin, D., Freminet, A.,1995. Behavioral, ventilatory, andmetabolic responses to severe hypoxia and subsequent recovery of the hypogean Niphargushenorhodanensis and the epigean Gammarus fossarum (Crustaea: Amphipoda). Physiol. Zool.68,223-244.
    [184]Hill, A.D., Strang, R.H.C., Taylor, A.C.,1991a. Radioisotope studies of the energymetabolism of the shore crab Carcinus maenas (L.) during environmental anoxia and recovery.J. Exp. Mar. Biol. Ecol.150,51-62.
    [185]Hill, A.D., Taylor, A.C., Strang, R.H.C.,1991b. Physiological and metabolic responses ofthe shore crab Carcinus maenas (L.) during environmental anoxia and subsequent recovery. JExp Mar Biol Ecol,150,31-50.
    [186]Hill, B.J.,1985. Effect of temperature on duration of emergence, speed of movement andcatchability of the prawn Penaeus esculentus. In: Rothlisberg, P.C., Hill, B.J., Staples, D.J., edsSecond Australian National Prawn Seminar. pp.77-83. NPS2, Cleveland, Australia.
    [187]Hochachka, P. Lutz, P.,2001. Mechanism, origin, and evolution of anoxia tolerance inanimals. Comp. Biochem. Physiol. B,130,435-459.
    [188]Hochachka, P., Rupert, J. Monge, C.1999. Adaptation and conservation of physiologicalsystems in the evolution of human hypoxia tolerance. Comp. Biochem. Physiol. A,124,1-17.
    [189]Hochachka, P., Somero, G.,1984. Limiting oxygen availability. In: Biochemical Adaptation.Princeton, NJ: Princeton University Press,145-181.
    [190]Hochachka, P.W.,1988. Metabolic suppression and oxygen availability. Can. J. Zool.66,152-158.
    [191]Hochachka, P.W., Emmett, B., Suarez, R.K.,1988. Limits and constraints in the scaling ofoxidative and glycolytic enzymes in homeotherms. Can. J. Zool.66,1128-1138.
    [192]Hochachka, P.W., Lutz, P.L.,2001. Review: Mechanism, origin, and evolution of anoxiatolerance in animals. Comp Biochem Physiol, B,130,435-459.
    [193]Hopkins J.S., Stokes, A.D., Browdy, C.L., Sandifer, P.A.,1991. The relationship betweenfeeding rate, paddle-wheel aeration rate and expected dawn dissolved oxygen in intensiveshrimp ponds. Aquacult. Eng.10,281–290.
    [194]Hopkins, S. R. Powell, F.,2001. Common themes of adaptation to hypoxia–insights fromcomparative physiology. Adv. Exp. Med. Biol.502,153-167.
    [195]Hoppeler, H. and Vogt, M.,2001. Hypoxia training for sea-level performance-traininghigh-living low. Adv. Exp. Med. Biol.502,61-73.
    [196]Huddart, R., Arthur, D.R.,1971. Shrimps in relation to oxygen depletion and its ecologicalsignificance in a polluted estuary. Environment Pollution2,13–35.
    [197]Hughes, G.M., Knights, B., Scammell, C.A.,1969. The distribution of PO2, and hydrostaticpressure changes within the branchial chambers in relation to gill ventilation of the shore crabCarcinus maenas (L.). J. exp. Biol.51,203-220.
    [198]Hunt von Herbing, I.,2002. Effects of temperature on larval fish swimming performance: theimportance of physics to physiology. J. Fish Biol.,61.865–876.
    [199]Ikeda, T.,1977. The effect of laboratory conditions on the extrapolation of experimentalmeasurements to the ecology of marine zooplankton. Ⅳ. Changes In respiration and excretionrates of boreai zooplankton species maintained under fed and starved conditions. Mar. Biol.41,241-252.
    [200]Jain, K. E., Farrell, A. P.,2003. Influence of seasonal temperature on the repeat swimmingperformance of rainbow trout Oncorhynchus mykiss. J. Exp. Biol.206,3569-3579.
    [201]James, A., Wyban, J., Sweeney, N.,1991. Production of postlarvae: preparing shrimp forshipping. In: The Oceanic Institute Shrimp Manual, chapter4. Oceanic Institute, Hawaii, USA,p.67.
    [202]Janssens, B., Childress, J.J., Baguet, F., Rees, J.-F.,2000. Reduced enzymatic antioxidativedefense in deep-sea fish. J. Exp. Biol.203,3717–3725.
    [203]Jeffery, S., Revill, A.,2002. The vertical distribution of southern North Sea Crangoncrangon (brown shrimp) in relation to towed fishing gears as influenced by water temperature.Fish. Res.,55,319-323.
    [204]Jentoft, S., Aastveit, A.H., Torjesen, P.A., Andersen,.,2005. Effects of stress on growth,cortisol and glucose levels in non-domesticated Eurasian perch (Perca fluviatilis) anddomesticated rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol., A141,353-358.
    [205]Jiang J. Study of oxygen consumption rate, CO2exhaust, respiratory quotient and toleranceto low dissolved oxygen in four shrimp species. Journal of Zhanjiang Ocean University,1999,19,10-16.
    [206]Jobling M. Fish Bioenergetics. London: Chapman&Hall.,1994.
    [207]Johnson, I., Uglow, R.F.,1987. The effects of hypoxia on ion regulation and acid-basebalance in Carcinus maenas (L.). Comp. Biochem Physiol,86A,261-267.
    [208]Johnson, L., Rees, C.J.C.,1988. Oxygen consumption and gill surface area in relation tohabitat and lifestyle of four crab species. Comp. Biochem. Physiol. A89,243–246.
    [209]Johnson, T.P., Cullum, A.J., Bennett, A.F.,1998. Partitioning the effects of temperature andkinematic viscosity on the C-start performance of adult fishes. J exp Biol,201,2045-2051.
    [210]Johnston, M. A., Davies, P. S.,1972. Carbohydrates of the hepatopancreas and blood tissuesof Carcinus. Comp. Biochem. Physiol. B,41,433-443.
    [211]Johnston, M. A., Davies, P. S., Elder, H. Y.,1971. Possible hepatic function for crustaceanblood cells. Nature230,471.
    [212]Jones D.R.,1971. The effect of hypoxia and anaemia on the swimming performance ofrainbow trout (salmo gairdneri). J. Exp. Biol.55,541-551.
    [213]Jones, D.R., Kiceniuk, J.W., Bamford, O.S.,1974. Evaluation of the swimming performanceof several fish species from the MacKenzie River. J. Fisher. Res. Bd. Can.31,1641-1647.
    [214]Jouve, A., Truchot, J.P.,1978. Influence de l'oxygenatio de I'eau sur la consommationd'oxygene et la ventilation branchiale du crabe, Carcinus maenas (L.). C.R. Acad. Sci.,286,331-334.
    [215]Kasai, H.,1997. Analysis of a form of oxidative DNA damage8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat. Res.387,147–163.
    [216]Kawabe, R., Naito Y., Sato, K., Miyashita, K., Yamashita, N.,2004. Direct measurement ofthe swimming speed, tailbeat, and body angle of Japanese flounder (Paralichthys olivaceus).ICES J. Mar. Sci.61,1080-1087.
    [217]Keen, J.E., Farrell, A.P.,1994. Maximum prolonged swimming speed and maximum cardiacperformance of rainbow trout, Oncorhynchus mykiss, acclimated to two different watertemperatures. Comp. Biochem. Physiol. A.108,287–295.
    [218]Keller, R.,1992. Crustacean neuropeptides: Structures, functions and comparative aspects.Experimentia48,439-448.
    [219]Kelly, J.T., Klimleya, A.P., and Crockerb, C.E.2007. Movements of green sturgeon,Acipenser medirostris, in the San Francisco Bay estuary. California. Environ. Biol. Fish.79,281-295
    [220]Kelly, S.A., Havrilla, C.M., Brady, T.C., Abramo, K.H., Levin, E.D.,1998. Oxidative stressin toxicology: established mammalian and emerging piscine model systems. Environ. HealthPerspect.106,375–384.
    [221]Kleinholz, L. H.1949. Studies in the regulation of blood-sugar concentration in crustaceans.I. Normal values and experimental hyperglycemia in Lihinia emarginuta. Biol. Bull.96,218-227.
    [222]Ko. K.S., Suzuki, M., Kondo, Y.,1970. An elementary study on behaviour of commonshrimp to moving net. Bull. Jpn. Soc. Sci. Fish.36,556-562.
    [223]Kodric-Brown, A., Nicoletto, P.F.,1993. The relationship between physical condition andsocial status in pupfish Cyprinodon pecosensis. Anim. Behav.46,1234–1236.
    [224]Kolok, A. S.,1991. Photoperiod alters the critical swimming speed of juvenile largemouthbass, Micropterus salmoides, acclimated to cold water. Copeia,4,1085–1090.
    [225]Kolok, A. S.,1999. Interindividual variation in the prolonged locomotor performance ofectothermic vertebrates: a comparison of fish and herpetofaunal methodologies and a briefreview of the recent fish literature. Can. J. Fish. Aquat. Sci.56,700–710.
    [226]Kolok, A. S., Sharkey, D.,1997. Effect of freshwater acclimation on the swimmingperformance and plasma osmolarity of the euryhaline gulf killifish. Trans. Am. Fish. Soc.,126.866–870.
    [227]Kolok, A.S, Plaisance, E.P., Abdelghani, A.,1998. Individual variability in the swimmingperformance of fish: an overlooked source of variation in toxicity studies. Environ. Toxicol.Chem.17,282–285.
    [228]Kolok, A.S.1992a. The swimming performances of individual largemouth bass (Micropterussalmoides) are repeatable. J. Exp. Biol.170,265–270.
    [229]Kolok, A.S.1992b. Morphological and physiological correlates with swimming performancein juvenile largemouth bass acclimatized to winter and summer conditions. Am. J. Physiol.(Regul. Integr. Comp. Physiol.),263,1042–1048.
    [230]Kolok, A.S., Farrell, A.P.,1994a. Individual variation in the swimming performance andcardiac performance of northern squawfish, Ptychocheilus oregonensis. Physiol. Zool.67,706-722.
    [231]Kolok, A.S., and Farrell, A.P.1994b. The relationship between maximum cardiac output andswimming performance in northern squawfish, Ptychocheilus oregonensis, the effect ofcoronary artery ligation. Can. J. Zool.72,1687-1690.
    [232]Kolok, A.S., Oris, J.T.,1995. The relationship between specific growth rate and swimmingperformance in male fathead minnows, Pimephales promelas. Can. J. Zool.73,2165-2167.
    [233]Koumoundouros, G., Sfakianakis, D.G., Divanach, P., Kentouri, M.,2002. Effect oftemperature on swimming performance of sea bass juveniles. J Fish Biol,60,923-932.
    [234]Kramer D L.1987. Dissolved oxygen and fish behavior. Environ. Biol. Fish.,18,81-92.
    [235]Lallier, F.H., Walsh, P.J.,1992. Metabolism of isolated hepatopancreas cells from theblue-crab (Callinectes sapidus) under simulated postexercise and hypoxic conditions. Physiol.Zool.65,712-723.
    [236]Le Moulac G, Klein B, Sellos D, Van Wormhoudt A.1996. Adaptation of trypsin,chmotrypsin and a-amylase to casein level and protein source in Penaeus vannamei (CrustaceaDecapoda). J. Exp. Mar. Biol. Ecol.,208,107-125.
    [237]Le Moullac G, VanWormhoudt A, Aquacop.1994. Adaptation of digestive enzymes to dietaryprotein, carbohydrate and fibre levels and influence of protein and carbohydrate quality inPenaeus vannamei larvae (Crustacea, Decapoda). Aquat.Living Resour.,7,203-210.
    [238]LeBlanc, B.D., Overstreet, R.M.,1991. Efficacy of calcium hypoclorite as a disinfectantagainst the shrimp virus Baculouirus penaei. J. Aquat. Anim. Health3,141-145.
    [239]Lee P G, Smith L L, Lawrence A L.1984. Digestive protease of Penaeus vannamei Boone:relationship between enzyme activity, size and diet. Aquaculture,42,225-239.
    [240]Lee, C.G., Farrell, A.P., Lotto, A., MacNutt, M.J., Hinch, S.G., Healey, M.C.,2003. Theeffect of temperature on swimming performance and oxygen consumption in adult sockeye(Oncorhynchus nerka) and coho (O. kisutch) salmon stocks. J exp Biol,206,3239-3251.
    [241]Lefrancois C., Amat J.N., Domenici P., Kostecki C., Ferrari R.,2007. The effect of oxygenand temperature on the energetics of swimming in Mugil cephalus Com. Biochem. Physiol., A146,75-86.
    [242]Leis, J. M., Clark, D. L.,2005. Feeding greatly enhances swimming endurance ofsettlement-stage reef-fish larvae of damselfishes (Pomacentridae). Ichthyol Res.52,185-188.
    [243]Li, Y., Li, J., Wang, Q.,2006. The effects of dissolved oxygen concentration and stockingdensity on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeuschinensis. Aquaculture256,608-616.
    [244]Liao, I.C., Chien, Y.H.,1994. Culture of kuruma prawn in Asia. World Aquaculture25,18-33.
    [245]Liao, I.C., Murai, T.,1986. Effects of dissolved oxygen, temperature and salinity on theoxygen consumption of the grass shrimp, Penaeus monodon. In: Maclean, J.L., Dizon, L.B.,Hosilos, L.V.(Eds) The First Asian Fisheries Forum, Manila, Philippines,1986.
    [246]Lin H.R.,1999. The physiology of fishes. Guangdong Higher Education Press. GuangdongChina P.57
    [247]Liu H., Qu, K., Zhang, Q., Li, J.,2005. Study on dissolved oxygen consumption both inindustrial and pond cultures of shrimps. Mar. Fish. Res.,26,52-56.
    [248]Loudon, C.,1988. Development of Tenebrio molitor in low oxygen levels. J. Insect Physiol.34,97-103.
    [249]Lovett D L, Felder DL.1990. Ontogenic change in digestive enzyme activity of larval andpostlarval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Biol. Bull.,178,144-159.
    [250]Lushchak V.I.,2002. Oxidative stress in bacteria. In P. Johnston, Boldyrev, A.A.(Eds.),Oxidative stress at molecular, cellular and organ levels (pp45-65). Trivandrum, India:Research Signpost.
    [251]Lushchak V.I. Bagnyukova, T.V.,2006a. Temperature increase results in oxidative stress ingoldfish tissues.1. Indices of oxidative stress. Comp. Biochem. Physiol. C143,30-35.
    [252]Lushchak V.I., Bagnyukova, T.V.,2006b. Temperature increase results in oxidative stress ingoldfish tissues.2. Antioxidant and associated enzymes. Comp. Biochem. Physiol. C143,36-41.
    [253]Lushchak V.I., Bagnyukova, T.V.,2006c. Effects of different environmental oxygen levels onfree radical processes in fish. Comparative Biochemistry and Physiology B144,283–289.
    [254]Lushchak V.I., Bagnyukova, T.V.,2007. Hypoxia induces oxidative stress in tissues of a goby,the rotan Perccottus glenii. Comparative Biochemistry and Physiology B148,390–397.
    [255]Lushchak V.I., Bagnyukova, T.V. Lushchak, O.V. Storey, J.M. Storey, K.B.,2005a. Hypoxiaand recovery perturb free radical processes and antioxidant potential in common carp(Cyprinus carpio) tissues. The International Journal of Biochemistry&Cell Biology37,1319–1330.
    [256]Lushchak V.I., Bagnyukova, T.V., Husak, V.V., Luzhna, L.I., Lushchak, O.V. Storey, K.B.,2005b. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidantenzymes in goldfish tissues. The International Journal of Biochemistry&Cell Biology37,1670–1680.
    [257]Lushchak, V.I., Lushchak, L.P., Mota, A.A., Hermes-Lima, M.,2001. Oxidative stress andantioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am. J.Physiol.280,100–107.
    [258]Lygren, B., Hamre, K., Waagb, R.,2000. Effect of induced hyperoxia on the antioxidantstatus of Atlantic salmon Salmo salar L. fed three different levels of dietary vitamin E. Aquac.Res.31,401–407.
    [259]MacKay R D.,1974. A note on minimal levels of oxygen required to maintain life inPenaeus schmitti. In Avault J W,(Eds.[M]). Proceedings of the Fifth Annual Workshop of theWorld Mariculture Society. Workshop of the World Mariculture Society, Charleston, SC, USA,1974,21.
    [260]Macnutt, M.J., Hinch, S.G., Farrell, A.P., Topp, S.,2004. The effect of temperature andacclimation period on repeat swimming performance in cutthroat trout. J Fish Biol,65,342-353.
    [261]Main, J., Sangster, G.I.,1981. A study of the fish capture process in a bottom trawl by directobservations from a towed underwater vehicle. Scott. Fish. Res. Rep. No.23.
    [262]Mangum, C.P.,1980. Respiratory function of the hemocyanins. Am. Zool.20,19–38.
    [263]Marcon, J.L.,1996. Estresse oxidativo em duas espe′cies de teleo′steos amazo nicos,Astronotus ocellatus e Colossoma macropomum, expostos a diferentes tenso es de oxige nio:uma abordagem comparativa (PhD Thesis). Manaus, Instituto Nacional de Pesquisas daAmazo nia, INPA/FUA.
    [264]Marnett, L.J.,1999. Lipid peroxidation–DNA damage by malondialdehyde. Mutat. Res.424,83–95.
    [265]Martinez E, Aguilar M, Trejo L, Hernandez I, Diaz-Iglesia E, Soto L A, Sanchez A, Rosas C.1998. Lethal low dissolved oxygen concentrations for postlarvae and early juvenile Penaeussetiferus at different salinities and pH. J. World Aquacult. Soc.,29,221-229.
    [266]Martinez, E., Aguilar, M., Trejo, L., Hernandez, I., Diaz-Iglesia, E., Soto, L.A., Sanchez, A.,Rosas, C.,1998. Lethal low dissolved oxygen concentrations for postlarvae and early juvenilePenaeus setiferus at different salinities and pH. J. World Aquacul. Soci.29,221-229.
    [267]Mason, R.P., Mangum, C.P., Godette, G..,1983. The influence of inorganic ions andacclimation salinity of hemocyanin oxygen binding in the blue crab Callinectes sapidus. BiolBull,164,104-123
    [268]Mauro, N., Malecha, S.,1984. Intraspecific comparison of hemocy anin oxygen afiinity andthe effects of hypoxia on oxygen consumption in Macrobrachium rosenbergii. Comp.Biochem. Physiol.77A,631-633.
    [269]Mayzaud, P.,1973. Respiration and nitrogen excretion of zooplankton.11. Studies of themrtabolic characteristics of starved anlrnals. Mar. Blol.21.19-28
    [270]Mayzaud, P., Conover, R.J.,1988.0: N atomic ratio as a tool to describe zooplanktonmetabolism. Mar. Ecol. Prog. Ser.45,29-302.
    [271]Mayzaud. P.,1976. Respiration and nitrogen excretion of zooplankton. IV. The influence ofstarvation on the metabolism and the biochemical composition of some species. Mar. Biol.37:47-58
    [272]McDonaid, D.G., McMahon, B.R., Wood, C.M.,1977. Patterns of heart and scaphognathiteactivity in the crab Cancer magister. J. exp. Zool.202,123-136.
    [273]McGaw, I.J., Airriess, C.N., McMahon, B.R.,1994. Patterns of haemolymph flow variationin decapod crustaceans. Mar. Biol.121,53-60.
    [274]McGraw W, Teichert-Coddington D.R, Rouse D.B, Boyd C.E.2001. Higher minimumdissolved oxygen concentrations increase penaeid shrimp yields in earthen ponds. Aquaculture,199,311-321.
    [275]McKenzie, D.J., Cataldi, E., Owen, S., Taylor, E.W., Bronzi, P.,2001a. Effects of acclimationto brackish water on the growth, respiratory metabolism and exercise performance of Adriaticsturgeon (Acipenser naccarii). Can. J. Fish. Aquat. Sci.58,1104-1112.
    [276]McKenzie, D.J., Cataldi, E., Taylor, E.W., Cataudella, S., Bronzi, P.,2001b. Effects ofacclimation to brackish water on tolerance of salinity challenge by Adriatic sturgeon(Acipenser naccarii). Can. J. Fish. Aquat. Sci.58,1113–1120.
    [277]McMahon, B., Wilkens, J.,1975. Respiratory and circulatory responses to hypoxia in thelobster, Homanrs americanus. J. Exp. Biol.62,637-655
    [278]McMahon, B.R.,1988. Physiological responses to oxygen depletion in intertidal animals.Am. Zool.28,39-53.
    [279]McMahon, B.R.,2001. Respiratory and circulatory compensation to hypoxia in crustaceansRespiration. Physiology128,349-364.
    [280]McMahon, B.R., Burggren, W.W., Wilkens, J.L.,1974. Respiratory responses to long-termhypoxic stress in the crayfish Orconectes virilis. J. Exp. Biol.60,195-206.
    [281]Menz A, Blake B F. Experiments on the growth of Penaeus vannamei Boone. J. Exp. Mar.Biol. Ecol.,1980,48,99-111.
    [282]Mercaldo-Allen, R.,1991. Changes in the blood chemistry of the American lobster, Homarusamericanus, Edwards,1837, over themolt cycle. J. Shellfish Res.10,147–156.
    [283]Michiels, C., Raes, M., Toussaint, O., Remacle, J.,1994. Importance of Seglutathioneperoxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic.Biol. Med.17,235–248.
    [284]Moore, L.E., Smith, D.M., Loneragan, N.R.,2000. Blood refractive index and whole-bodylipid content as indicators of nutritional condition for penaeid prawns (Decapoda: Penaeidae).J. Exp. Mar. Biol. Ecol.244,131–143.
    [285]Morris S., Adamczewska A.M.,2002. Utilisation of glycogen, ATP and arginine phosphate inexercise and recovery in terrestrial red crabs, Gecarcoidea natalis. Comp. Biochem. Physiol.A133,813–825.
    [286]Morris, S.,1991. Respiratory gas exchange and transport in crustaceans: ecologicaldeterminants. Mem. Queensl. Mus.31,241-261.
    [287]Mugnier, C., Justou, C.,2004. Combined effect of external ammonia andmolt stage on theblue shrimp Litopenaeus stylirostris physiological response. J. Exp.Mar. Biol. Ecol.309,35–46.
    [288]Mugnier, C., Soyez, C.,2005. Response of the blue shrimp Litopenaeus stylirostris totemperature decrease and hypoxia in relation to molt stage. Aquaculture,244,315-322.
    [289]Muir, B.S., Hughes, G.M.,1969. Gill dimensions for three species of tunny. J. exp. Biol.51,271-285.
    [290]Nagaoka, S., Okauchi, Y., Urano, S., Nagashima, U.,1990. Kinetic and ab initio study of theprooxidation of vitamin E: hydrogen abstraction from fatty esters and egg yolk lecithin. J. Am.Chem.112,8921-8924.
    [291]Nauen J.C., Shadwick R.E.,2001. The dynamics and scaling of force production during thetail-flip escape response of the California spiny lobster panulirus interruptus, J. Exp. Biol.204,1817-1830
    [292]Nauen, J.C., Shadwick, R.E.,1999. The scaling of acceleratory aquatic locomotion: bodysize and tail-flip performance of the California spiny lobster panulirus interruptus. J. Exp.Biol.,202,3181-3193
    [293]Nelson, J.A.,1990. Muscle metabolite response to exercise and recovery in yellow perch(Perca flavescens): Comparison of populations from naturally acidic and neutral waters.Physiol. Zool.63,886-908.
    [294]Nelson, J.A., Tang, Y., Boutilier, R.G.,1994. Differences in exercise physiology between twoAtlantic cod (Gadus morhua) populations from different environments. Physiol. Zool.67,330–354.
    [295]Nelson, J.A., Tang, Y., Boutilier, R.G.,1996. The effects of salinity change on the exerciseperformance of two Atlantic cod (Gadus morhua) populations inhabiting differentenvironments. J. Exp. Biol.199,1295-1309.
    [296]Newland, P. L., Chapman, C. J., Neil, D. M.,1988. Swimming performance and enduranceof Norway lobster Nephrops norvegicus. Mar. Biol.,98,345-350.
    [297]Newland, P. L., Neil, D. M., Chapman, C. J.,1992. Escape swimming in the Norway Lobster.J. Crustacean Biol.12,342-353.
    [298]Nicoletto, P.F.,1991. The relationship between male ornamentation and swimmingperformance in the guppy, Poecilia reticulata. Behav. Ecol. Sociobiol.28:365–370.
    [299]Nicoletto, P.F.,1993. Female sexual responses to conditiondependent ornaments in the guppy,Poecilia reticulata. Anim. Behav.46:441–450.
    [300]Nordlie, F. G., Walsh, S. J., Haney, D. C. Nordlie, T. F.,1991. The influence of ambientsalinity on routine metabolism in the teleost Cyprinodon variegatus Lacepède. J. Fish Biol.,38,115–122.
    [301]Ocampo L, Ezquerra J M.2002. Digestive protease activity in juvenile farfantepenaeuscaliforniensis as a function of dissolved oxygen and temperature. Aquac. Res.,33,1073-1080.
    [302]Ocampo, Victoria L.1998. Effect of dissolved oxygen and temperature on the growth,respiratory metabolism and energetics of brown shrimp (Penaeus californiensis) juveniles.Cent.de Investigaciones Biologicas del Noroeste. La Paz, Baja California Sur, Mexico,32
    [303]Ojanguren, A.F., Braňa, F.,2000. Thermal dependence of swimming endurance in juvenilebrown trout. J Fish Biol,56,1342-1347.
    [304]Parrish, B. B., Blaxter, J. H. S., Pope, J. A. Osborn, R. H.,1969. Underwater photography offish behaviour in response to trawl. FAO Fish.Rep.62,873-884
    [305]Parsons, G.R., Sylvester, J.L.,1992. Swimming efficiency of the white crappie, Pomoxisannularis. Copeia,1033-1038.
    [306]Pascual, C., Sánchez, A., Sánchez, A., Vargas-Albores, F., LeMoullac, G., Rosas, C.,2003.Haemolymph metabolic variables and immune response in Litopenaeus setiferus adult males:the effect of an extreme temperature. Aquaculture218,637-650.
    [307]Paterson, B.D.,1993. The rise in inosine monophosphate and L-lactate concentration inmuscle of live penaeid prawn (Penaeus japonicus, Penaeus monodon) stressed by the storageout of water. Comp. Biochem. Physiol. B106,395-400.
    [308]Paterson, B.D., Thorne, M.J.,1995. Measurements of oxygen uptake, heart and gill bailerrates of the callianassid burrowing shrimp Trypaea australiensis Dana and its responses to lowoxygen tensions. J. Exp. Mar. Biol. Ecol.194,39-52.
    [309]Peake, S., Barth, C., Mckinley, R. S.,1997. Effect of recovery parameters on criticalswimming speed of juvenile rainbow trout Oncorhynchus mykiss.. Can. J. Zool.75,1724-1727
    [310]Pearson M. P., Spriet L.L. Stevens E.D.,1990. Effect of sprint training on swim performanceand white muscle metabolism during exercise and recovery in rainbow trout (salmo gairdneri).J. exp. Biol.149,45-60
    [311]Pearson, M.P., Stevens, E.D.,1991. Splenectomy impairs aerobic swim performance in trout.Can. J. Zool.69,2089-2092.
    [312]Peck, M. A., Buckley, L. J., Bengtson, D. A.,2006. Effects of temperature and body size onthe swimming speed of larval and juvenile Atlantic cod (Gadus Morhua) Implications forIndividual-based Modelling. Env. Biol. Fish.,75:419-429.
    [313]Pérez-Rostro, C.I., Racotta, I.S., Ibarra, A.M.,2004. Decreased genetic variation inmetabolic variables of Litopenaeus vannamei shrimp after exposure to acute hypoxia. J. Exp.Mar. Biol. Ecol.302,189-200.
    [314]Peterson, R. H., Harmon, P.,2001. Swimming ability of pre-feeding striped bass larvae.Aquacult. Int.9,361–366.
    [315]Pillai, B.R., Diwan, A.D.,2002. Effects of acute salinity in oxygen consumption andammonia excretion rates of the marine shrimp Metapenaeus monoceros. J Crustacean Biol,22,45-52.
    [316]Plaut I.2001. Review Critical swimming speed: its ecological relevance. Comp. Biochem.Physiol. A131,41-50.
    [317]Plaut, I.,2000. Resting metabolic rate, critical swimming speed and routine activity of theeuryhaline cyprinodontid, Aphanius Dispar, acclimated to wide range of salinities. Physiol.Biochem. Zool.73(5),590-596.
    [318]Ponce-Palafox, J., Martinez-Palacios, C. A., Ross, L. G.,1997. The effects of salinity andtemperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei,Boone,1931. Aquaculture,157,107-115.
    [319]Pritchard, A., Eddy, S.,1979. Lactate formation in Callianassa californiensis and Upogebiapugettensis. Mar. Biol.50,249-253.
    [320]Racotta, I.S., Palacios, E.,1998. Hemolymph metabolic variables in response toexperimental manipulation stress and serotonin injection in Penaeus vannamei. J World AquacSoc,29,351-356.
    [321]Radford, C.A., Marsden, I.D., Davison, W., Taylor, H.H.,2005. Haemolymph glucoseconcentrations of juvenile rock lobsters, Jasus edwardsii, feeding on different carbohydratediets. Comp. Biochem. Physiol., A140,241-249.
    [322]Randall, D., Brauner, C.,1991. Effects of environmental factors on exercise in fish. J. Exp.Biol.160,113-126.
    [323]Regnard, P.1893. Sur un dispositif qui permet de mesurer la vitesse de translation d'unpoisson se mouvant dans I'eau. Cr Seauc Soc Biol, Paris, Ser,9,81-83
    [324]Regnault, M.,1979. Ammonia excretion of sand shrimp Crangon crangon (L) during themoult cycle. J. Comp. Physiol.133,199-204.
    [325]Regnault, M.,1981. Respiration and ammonia excretion of the shrimp Crangon crangon L.:metabolism response to prolonged starvation. J. Comp. Physiol.141,549-555.
    [326]Regnault, M.,1993. Effect of a severe hypoxia on some aspects of nitrogen metabolism inthe crab Cancer pagurus. Mar. Behav. Physiol.22,131-140.
    [327]Regnault, M., Aldrich, J.C.,1988. Short-term effect of hypoxia and ammonia excretion andrespiration rates in the crab Carcinus maenas. Mar. Behav. Physiol.13,257-271.
    [328]Regoli F., Gorbi, S., Frenzilli, G., Nigro, M., Corsi, I., Focardi, S., Winston, G.W.,2002.Oxidative stress in ecotoxicology: From the analysis of individual antioxidants to a moreintegrated approach. Marine Environmental Research54,419-423.
    [329]Reiber, C.L.,1995. Physiological adaptations of crayfish to the hypoxic environment. Am.Zool.35,1-11.
    [330]Reiber, C.L., McMahon, B.R.,1998. Progressive hypoxia’s effects on the crustaceancardiovascular system: a comparison of the freshwater crayfish (Procambarus clarkii) and thelobster (Homarus americanus). J. Comp. Physiol. B168,168-176.
    [331]Reidy, S.P., Kerr, S.R., Nelson, J.A.,2000. Aerobic and anaerobic swimming performance ofindividual Atlantic Cod. J. Exp. Biol.203,347-357.
    [332]Reidy, S.P., Nelson, J.A., Tang, Y., Kerr, S.R.,1995. Post-exercise metabolic rate in AtlanticCod (Gadus morhua) and its dependence upon the method of exhaustion. J. Fish. Biol.47,377-386.
    [333]Renaud M.L.,1986. Detecting and avoiding oxygen deficient sea water by brown shrimp,Penaeus aztecus (Ives), and white shrimp Penaeus setiferus (linnaeus). J. Exp. Mar. Biol. Ecol.98,283–292.
    [334]Rice-Evans, C.A., Diplock, A.T., Symons, M.C.R.,1991. Techniques in free radical research.In: Burton, R.H., Knippenberg, P.H.(Eds.), Laboratory Techniques in Biochemistry andMolecular Biology. Elsevier, Amsterdam, pp.147–149.
    [335]Richards, J.G., Farrell, A.P., Brauner, C.J.,2009. Fish Physiology Vol.27: Hypoxia.Academic Press, San Diego,488.
    [336]Ritola, O., Livingstone, D.R., Peters, L.D., Lindstr m-Sepp, P.,2002a. Antioxidantprocesses are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to ozone andoxygen-supersaturated water. Aquaculture210,1–19.
    [337]Ritola, O., Peters, L.D., Livingstone, D.R., Lindstr m-Sepp, P.,2002b. Effects of in vitroexposure to ozone and/or hyperoxia on superoxide dismutase, catalase, glutathione and lipidperoxidation in red blood cells and plasma of rainbow trout, Oncorhynchus mykiss (Walbaum).Aquac. Res.33,165-175.
    [338]Robertson, L., Bray, W., Leung-Trujillo, J., Lawrence, A.,1987. Practical molt staging ofPenaeus setiferus and Penaeus stylirostris. J. World Aquacult. Soc.18,180-185.
    [339]Rochu, D., Fine, J.M.,1978. Antigenic structure of the hemocyanin in six species of decapodCrustacea. Comp Biochem Physiol,59A,145-150.
    [340]Rome, L. C, Loughna, P. T. Goldspink, G.,1984. Muscle fiber recruitment as a function ofswim speed and muscle temperature in carp. Am. J. Physiol.,247,272-279.
    [341]Rome, L. C, Loughna, P. T. Goldspink, G.,1985. Temperature acclimation improvessustained swimming performance at low temperatures in carp. Science,228,194-196.
    [342]Rome, L. C. and Sosnicki, A. A.,1990. The influence of temperature on mechanics of redmuscle in carp. J. Physiol., Lond.427,151-169
    [343]Rome, L. C.,1986. The influence of temperature on muscle and locomotory performance. InLiving in the Cold: Physiological and Biochemical Adaptations (ed. H. C. Heller, H. J.Musacchia and L. C. H. Wang), pp.485-495. New York: Elsevier.
    [344]Rome, L.C., Choi, I., Lutz, G. and Sosnicki, A.A.,1992. The influence of temperature onmuscle function in fast swimming scup. I. Shortening velocity and muscle recruitment duringswimming. J. Exp. Biol.163,259-279
    [345]Rome, L. C., Funke, R. P., Alexander, R. M,1990. The influence of temperature on musclevelocity and sustained performance in swimming carp. J. exp. Biol.154,163-178.
    [346]Rome, L.C., Choi, I.-H., Luts, G., Sosnicki, A.,1992. The influence of temperature onmuscle function in the fast swimming scup. I. Shortening velocity and muscle recruitmentduring swimming. J. Exp. Biol.163,259-279.
    [347]Rosas C, Sanchez A, D′az-Iglesia E, Brito R, Martinez E, Soto LA.1997. Critical dissolvedoxygen level to Penaeus setiferus and P. schmitti postlarvae (PL1018) exposed to salinitychanges. Aquaculture,152,259-272.
    [348]Rosas, C., Bolongaro-Crevena, A., Sanchez, A., Gaxiola, G., Soto, L.A., Escovar, E.,1995.Role of the digestive gland in the energetic metabolism of Penaeus setiferus. Biol Bull,189,168-174.
    [349]Rosas, C., Cuzon, G., Taboada, G., Pascual, C., Gaxiola, G., Van Wormhoudt, A.,2001.Effect of dietary protein and energy levels (P/E) on growth, oxygen consumption,haemolymph and digestive gland carbohydrates, nitrogen excretion and osmotic pressure ofLitopenaeus vannamei and L. setiferus juveniles (Crustacea, Decapoda; Penaeidae). AquacultRes,32,1-20.
    [350]Rosas, C., Martinez, E., Gaxiola, G., Brito, R., Díaz-Iglesia, E., Soto, L.A.,1999. The effectof dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmoticpressure of Penaeus setiferus (Linnaeus) juveniles. J. Exp. Mar. Biol. Ecol.234,41-57.
    [351]Rosas, C., Martinez, E., Gaxiola, G., Brito, R., Díaz-Iglesia, E., Soto, L.A.,1998. Effect ofdissolved oxygen on the energy balance and survival of Penaeus setiferus juveniles. Mar. Ecol.Prog. Ser.174,67-75.
    [352]Rosas, C., Sanchez, A., Díaz-Iglesia, E., Soto, L.A., Gaxiola, G., Brito, R.,1996. Effect ofdietary protein level on apparent heat increment and post-prandial nitrogen excretion ofPenaeus setiferus, P. schmitti, P. duorarum and P. notialis postlarvae. J. World Aquacult. Soc.27,92–102.
    [353]Rosas, C., Sánchez, A., Díaz-Iglesia, E., Soto, L.A., Gaxiola, G., Brito, R., Bacs, M.,Pcdroza, R.,1995. Oxygen consumption and ammonia excretion of Penaeus setiferus, P.schmitti, P. duorarum and P. notialis postlarvae fed purified test diets: effect of protein levelon substrate metabolism. Aquat. Living Resour.,8,161–169.
    [354]Rosas, C., Sánchez, A., Escobar, E., Soto, L., Bolongaro-Crevenna, A.,1992. Dailyvariations of oxygen consumption and glucose hemolymph level related tomorphophysilogical and ecological adaptations of crustacea. Comp. Biochem. Physiol. A101,323–328.
    [355]Ross, S.W., Dalton, D.A., Kramer, S., Christensen, B.L.,2001. Physiological (antioxidant)responses of estuarine fishes to variability in dissolved oxygen. Comp. Biochem. Physiol. C,Comp. Pharmacol. Toxicol.130,289–303.
    [356]Ruppert, E.E., Fox, R.S., Barnes, R.D.,2003. Invertebrate Zoology a Functional EcologyApproach. Brooks Cole College Publishing, Orlando, FL.1008pp.
    [357]Santos, E., Colares, E.,1986. Blood glucose regulation in an intertidal crab, Chusmagnathusgrunulata. Comp. Biochem. Physiol.83A,673-675
    [358]Saunders, R.L.,1963. Respiration of the Atlantic cod. J. Fish. Res. Bd Can.20,373–385.
    [359]Schmidt-Neilsen K.,1984. Scaling: why is animal size so important? Cambridge UniversityPress, Cambridge
    [360]Schmitt, A.S.C., Uglow, R.,1997. Haemolymph constituent levels and ammonia efflux ratesof Nephrops norvegicus during emersion. Mar. Biol.127,403–410.
    [361]Seidman, E.R., Lawrence, A.L.,1985. Growth, feed digestibility, and proximate bodycomposition of juvenile Penaeus vannamei and Penaeus monodon grown at different dissolvedoxygen levels. J. World Maricult. Soc.16,333-346.
    [362]Senkbeil, E.G., Wriston, J.C.J.,1981. Hemocyanin synthesis in the American lobsterHomarus americanus. Comp. Biochem. Physiol. B68,163–171.
    [363]Sepuveda, C., Dickson, K. A.,2000. Maximum sustainable speeds and cost of swimming injuvenile Kawakawa tuna (euthynnus affinis) and chub mackerel (scomber japonicus). J. Exp.Biol.,203:3089–3101.
    [364]Shaylaja K. Rengarajan, K.,1993. Tolerance limits of salinity, temperature, oxygen and pHby the juveniles of prawn Penaeus indicus H. Milne Edwards. CMFRI special publication.1993.
    [365]Sies, H.,1991. Oxidative stress: introduction. In: Sies, H.(Ed.), Oxidative Stress: Oxidantsand Antioxidants. Academic Press, San Diego, pp.21-48.
    [366]Sims, D. W.,2000. Filter-feeding and cruising swimming speeds of basking sharks comparedwith optimal models: they filter-feed slower than predicted for their size. J. Exp. Mar. Biol.Ecol.249,65–76.
    [367]Smith, T.I.J., Wannamaker, A.J.,1983. Shipping studies with juvenile and adult Malaysianprawns (Macrobrachium rosenbergii de Man). Aquacultural Eng.2,287–300.
    [368]Solis-Ibarra, R., Rendon-Rodriguez, S.,1994. Laboratory observations on displacementspeed of the white shrimp Penaeus vannamei (Crustacea: Decapoda). Mar. Ecol. Prog. Ser.,103,309-310.
    [369]Somero, G.N., Childress, J.J.,1990. Scaling of ATP-supplying enzymes, myofibrillar proteinsand buffering capacity in fish muscle: relationship to locomotory habit. J. Exp. Biol.149,319-333.
    [370]Spanier E., Weihs D., Almog-ShtayerG.,1991. Swimming of the Mediterranean slipperlobster. J. Exp. Mar. Biol. Ecol.145,15-31.
    [371]Spicer, J.I., Hill, A.D., Taylor, A.C., Strang, R.H.C.,1990. Effect of aerial exposure onconcentration of selected metabolites in blood of Norwegian lobster Nephrops norvegicus(Crustacea: Nephropoidea). Mar. Biol.105,129–135.
    [372]Spotts, D.,1983. Oxygen consumption and whole body lactate accumulation duringprogressive hypoxia in the tropical freshwater prawn, Macrobrachium rosenbergii. J. Exp.Zool.226,19-27.
    [373]Stadtman, E.R.,1993. Oxidation of free amino acid residues in proteins by radiolysis and bymetal-catalyzed reactions. Annu. Rev. Biochem.62,797–821.
    [374]Stentiford, G. D., Neila, D. M., Atkinson, R. J. A., Bailey, N.,2000. An analysis of swimmingperformance in the Norway lobster, Nephrops norvegicus L. infected by a parasiticdinoflagellate of the genus Hematodinium. J. Exp. Mar. Biol. Ecol.247,169-181.
    [375]Stobutzki I. C.,1998. Interspecific variation in sustained swimming ability of late pelagicstage reef fish from two families (Pomacentridae and Chaetodontidae). Coral Reef.17,111-119.
    [376]Stobutzki, I. C., Bellwood, D. R.,1994. An analysis of the sustained swimming abilities ofpre-and post-settlement coral reef fishes. J. Exp. Mar. Biol. Ecol.175,275-286.
    [377]Storey, K.B.,1996. Oxidative stress: animal adaptations in nature. Braz. J. Med. Biol. Res.29,1715–1733.
    [378]Swanson, C.,1998. Interactive effects of salinity on metabolic rate, activity, growth andosmoregulation in the euryhaline milkfish (Chanos chanos). J. Exp. Biol.201,3355-3366.
    [379]Szweda, L.I., Stadtman, E.R.,1992. Iron-catalyzed oxidative modification ofglucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Biol. Chem.267,3096-3100.
    [380]Tallmark, B., Evans, S.,1986. Substrate related differences in antipredator behaviour of twogobiid fish species and the brown shrimp and their adaptive value. Mar. Ecol. Prog. Ser.29,217–222.
    [381]Taylor, A.C., Spicer, J.I.,1987. Metabolic responses of the prawns Palaemon elegans and P.serratus (Crustacea: Decapoda) to acute hypoxia and anoxia. Mar. Biol.95,521–530.
    [382]Taylor, E.B., Foote, C.J.,1991. Critical swimming velocities of juvenile sockeye salmon andkokanee, the anadromous and nonanadromous forms of Oncorhynchus nerka (Walbaum). J.Fish Biol.38,407–419.
    [383]Taylor, E.B., McPhail, J.D.,1986. Prolong and burst swimming in anadromous andfreshwater threespine stickleback, Gasterosteus aculeatus. Can. J. Zool.64,416-420.
    [384]Teal, J., Carey, F.,1967. The metabolism of marsh crabs under conditions of reduced oxygenpressure. Physiol. Zool.40,83-91.
    [385]Telford, M.1974. The effects of stress on blood sugar composition of the lobster, Homarusamericanus. Can. J. Zool.46,819-826.
    [386]Thorarensen, H., Gallaugher, P., Farrell, A.P.,1996. Cardiac output in swimming rainbowtrout, Oncorhynchys mykiss, acclimated to seawater. Physiol. Zool.69,139-153.
    [387]Thorarensen, H., Gallaugher, P.E., Kiessling, A.K., Farrell, A.P.,1993. Intestinal bloodflow in swimming chinook salmon (Oncorhynchus tshawytscha) and the effects of haematocriton blood flow distribution. J. Exp. Biol.179,115-129.
    [388]Tolleya, S.G., Torresb, J.J.,2002. Energetics of swimming in juvenile common snook,Centropomus undecimalis. Env. Biol. Fish.,63:427-433.
    [389]Truchot, J.P.,1992. Respiratory function of arthropod hemocyanins. In: Mangum, C.P.(Ed.),Blood and Tissue Oxygen Carriers. Advances in Comparative and Environmental Physiology,vol.13. Springer Verlag, Berlin, pp.377-410.
    [390]Truchot, J.P., Jouve-Duhamel, A.,1985. Oxygen consumption of Penaeus japonicus atvarious oxygenation levels: Effects of temperature and acclimation to hypoxic environmentalconditions. IFREMER Centre de Brest. Actes de Colloques.
    [391]Tsukamoto, K., Kajihara, T., Nishiwaki, M.1975. Swimming ability of fish. Bull. Jpn. Soc.Sci. Fish.4,167-174.
    [392]Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M.,2006. Molecular biomarkersof oxidative stress in aquatic organisms in relation to toxic environmental pollutants.Ecotoxicol. Environ. Saf.64,178-189
    [393]van Raaij, M.T.M., Pit, D.S.S., Balm, P.H.M., Steffens, A.B., van den Thillart, G.E.E.J.M.,1996. Behavioral strategy and the physiological stress response in rainbow trout exposed tosevere hypoxia. Hormon Behav,30,85-92.
    [394]Van Wormhoudt A.,1973. Variation des protéases, des amylases et des protéines solubles aucours du développement larvaire chez Palaemon serratus. Mar. Biol.,19,245-248.
    [395]VanWormhoudt A., Favrel P.,1988. Electrophoretlc characterization of Paluemon elegans(Crustacea, Decapoda) cu-amylase system: study of amylase polymotphtsm during themtermolt cycle. Camp. Biochem. Physiol. B89,201-207.
    [396]Vargas-Albores, F., Guzmán, M.A., Ochoa, J.L.,1993. An anticoagulant solution forhaemolymph collection and prophenoloxidase studies of penaeid shrimp (Penaeuscaliforniensis). Comp. Biochem. Physiol., A,106,299-303.
    [397]Veiseth E., Fj ra S.O., Bjerkeng B., Skjervold P.O.,2006. Accelerated recovery of Atlanticsalmon (Salmo salar) from effects of crowding by swimming. Comp. Biochem. Physiol. B144,351–358.
    [398]Vermeer, G.K.,1987. Effects of air exposure on desiccation rate, haemolymph chemistry, andescape behaviour of the spiny lobster, Palinurus argus. Fish. Bull. U.S.85,45-51.
    [399]Videler, J.J.,1993. Fish Swimming. Chapman&Hall, London.
    [400]Víg, é, Nemcsók, J.,1989. The effects of hypoxia and paraquat on the superoxide dismutaseactivity in different organs of carp, Cyprinus carpio L. J. Fish Biol.35,23–25.
    [401]Villareal, H., Rivera, J.A.,1993. Effect of temperature and salinity on the oxygenconsumption of laboratory produced Penaeus californiensis postlarvae. Comp BiochemPhysiol, A106,103-107.
    [402]Virani, N.A., Rees, B.B.,2000. Oxygen consumption, blood lactate and interindividualvariation in the gulf killifish, Fundulus grandis, during hypoxia and recovery. Comp. Biochem.Physiol. A126,397-405.
    [403]Vogel S.,1994. Life in moving fluids: the physical biology of flow,2nd edn. PrincetonUniversity Press, Princeton, N.J.
    [404]Waldle, C. S.,1983. Fish reactions to towed fishing gears. Experimental biology at sea,London,(Macdonald A. G. Priede, I. G.)167-195
    [405]Wang G R, Jin J J.2003. Experiment and application of pureoxygenreleasing stone (inChina). Fish. Modern,3,27-28.
    [406]Wang Y., Heigenhauser G.J.F., Wood C.M.,1994. Integrated responses to exhaustive exerciseand recovery in rainbow trout white muscle: acid–base, phosphogen, carbohydrate, lipid,ammonia, fluid volume and electrolyte metabolism. J. exp. Biol.195,227-258.
    [407]Wang, G.R., Jin, J.J.,2003. Experiment and application of pureoxygenreleasing stone (inChina). Fish. Modern.3,27-28.
    [408]Wardle, C.S.,1993. Fish behaviour and fishing gear. In Behaviour of teleost fishes.2nd ed.Edited by T.J. Pitcher. Chapman and Hall, London, U.K. pp.609-643.
    [409]Watkins, T.B.,1996. Predator-mediated selection on burst swimming performance intadpoles of the Pacific tree frog, Pseudacris regilla. Physiol. Zool.69,154-167.
    [410]Webb, P. W.,1979. Mechanics of escape responses in crayfish (Orconectes virilis). J. Exp.Biol.79,245–263.
    [411]Webb, P.W., Kostecki, P.T.,1984. The effect of size and swimming speed on locomotorkinematics of rainbow trout. J. Exp. Biol.,109:77-95.
    [412]Webb, P.W.,1993. Swimming. In: Evans, D.H.(Ed.). The Physiology of Fishes. CRC Press,Boca Raton, pp.47-73.
    [413]Webster, S. G.,1996. Measurement of crustacean hyperglycaemic hormone levels in theedible crab. J. Exp. Biol199,1579–1585.
    [414]Wei L.Z., Zhang X.M, Huang G.Q.2009. Effects of Limited Dissolved Oxygen Supply onthe Growth and Energy Allocation of Juvenile Chinese Shrimp, Fenneropenaeus chinensis [J].J. World Aquacult. Soc.,40,483-492.
    [415]Wei, L.Z., Zhang, X.M., Li, J., Huang, G.Q.,2008. Compensatory growth of Chinese shrimp,Fenneropenaeus chinensis following hypoxic exposure. Aquacult. Int.16,455–470.
    [416]Weinstein, R.B., Full, R.J.,1992. Intermittent exercise alters endurance in an eight-leggedectotherm. Am. J. Physiol.262,852–859.
    [417]Wen, X., Ku,Y., Luo, J.,2003. Studies on the oxygen consumption rate and asphyxiant pointof the red swamp crawfish, Procambrus clarkii. Journal of Dalian Fisheries University18,170–174.
    [418]Wheatley, M.G., Taylor, E.W.,1981. The effect of progressive hypoxia on heart rate,ventilation, respiratory gas exchange, and acid–base status in the crayfish Austropotamobiuspallipes. J Exp Biol,92,125-141.
    [419]White, T.F.C.,1975. Factors affecting catchability of a penaeid shrimp Penaeus esculentus.In: Young, P.C. ed. First Australian National Prawn Seminar, pp.115-137. AustralianGovernment Publishing Service, Canberra.
    [420]Wileman, D.A., Sangster, G.I., Breen, M., Ulmestrand, M., Soldal, A.V., Harris, R.R.,1999.Roundfish and Nephrops survival after escape from commercial fishing gear. Final report tothe EC (FAIR-CT95-0753), Brussels.
    [421]Wilhelm Filho, D., Boveris, A.,1993. Antioxidant defenses in marine fish: II. Elasmobranchs.Comp. Biochem. Physiol. C106,415–418.
    [422]Wilhelm Filho, D., Giulivi, C., Boveris, A.,1993. Antioxidant defenses in marine fish: I.Teleosts. Comp. Biochem. Physiol. C106,409–413.
    [423]Wilhelm Filho, D., Marcon, J.L.,1996. Antioxidant defenses in fish of the Amazon. In: Val,A.L., Almeida-Val, V.M.L., Randal, D.J.(Eds.), Physiology and Biochemistry of the Fishes ofthe Amazon. INPA, Manaus, pp.299–312.
    [424]Wilhelm Filho, D., Torres, M.A., Marcon, J.L., Fraga, C.G., Boveris, A.,2000. Antioxidantdefenses in vertebrates-emphasis on fish and mammals. Trends Comp. Biochem. Physiol.7,37–45.
    [425]Wilhelm Filho, D., Torres, M.A., Tribess, T.A., Pedrosa, R.C., Soares, C.H.L.,2001.Influence of season and pollution on the antioxidant defenses in the cichlid fish acara′(Geophagus brasiliensis). Braz. J. Med. Biol. Res.34,719–726.
    [426]Wilhelm Filhoa D, Torresa M A, Zaniboni-Filhob E, Pedrosa R C. Effect of different oxygentensions on weight gain, feed conversion, and antioxidant status in piapara, Leporinuselongatus (Valenciennes,1847). Aquaculture,2005,244,349-357.
    [427]Wilkens, J.L.,1999. Evolution of the cardiovascular system in crustacea. Am. Zool.39,199-214.
    [428]Wilkes, P.R.H., McMahon, B.R.,1982. Effect of maintained hypoxic exposure on thecrayfish Orconectes rusticus.Ⅰ. Ventilatory, acid-base and cardio-vascular adjustments. J. exp.Biol.98,119-137.
    [429]Willmer, P., Stone, G., Johnston, I.,2000. The nature and levels of adaptation. InEnvironmental Physiology of Animals (Willmer, P., Stone, G., Johnston, I., eds.), pp.1-17.Oxford: Blackwell Science.
    [430]Wilson, R.W., Bergman, H.L., Wood, C.M.,1994. Metabolic costs and physiologicalconsequences of acclimation to aluminum in juvenile rainbow trout (O. mykiss).2: Gillmorphology, swimming performance, and aerobic scope. Can. J. Fish. Aquat. Sci.51,536-544.
    [431]Wilson, R.W., Wood, C.M.,1992. Swimming performance, whole body ions, and gill Alaccumulation during acclimation to sublethal aluminum in juvenile rainbow trout(Oncorhynchus mykiss). Fish Physiol. Biochem.10,149-159.
    [432]Wine, J.J., Krasne, F.B.,1972. The organisation of escape behaviour in the crayfish. J. Exp.Biol.56,1-18.
    [433]Winger P. D., He P., Walsh S. J.,1999. Swimming endurance of American plaice(Hippoglossoides platessoides) and its role in fish capture. ICES J. Mar. Sci.,56:252-265.
    [434]Winger, P. D., Walsh, S. J., He, P. G., Brown, J. A.,2004. Simulating trawl herding in flatfish:the role of fish length in behaviour and swimming characteristics. J. Mar. Sci.61,1179-1185.
    [435]Winger, P.D., He, P., Walsh, S.J.,2000. Factors affecting the swimming endurance andcatchability of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci.6,1200-1207.
    [436]Winger, P.D., He, P.G., Walsh, S.J.1999. Swimming endurance of American plaice(Hippoglossoides platessoides) and its role in fish capture. ICES J. Mar. Sci.56:252–265.
    [437]Winger, P.D., He, P.G., Walsh, S.J.,2000. Factors affecting the swimming endurance andcatchability of Atlantic cod (Gadus morhua) Can. J. Fish. Aquat. Sci.57,1200–1207.
    [438]Winston, G.W., Di Giulio, R.T.,1991. Prooxidant and antioxidant mechanisms in aquaticorganisms. Aquat. Toxicol.19,137–161.
    [439]Woo, N.Y.S., Kelly, S.P.,1995. Effects of salinity and nutritional status on growth andmetabolism of Sparus sarba in a closed seawater system. Aquaculture135,229–238.
    [440]Wu, L., Dong, S.,2002. Effects of protein restriction with subsequent realimentation ongrowth performance of juvenile Chinese shrimp (Fenneropenaeus chinensis). Aquaculture210,343–358.
    [441]Wu, R.S.S., Lam, P.K.S., Wan, K.L.,2002. Tolerance to, and avoidance of, hypoxia by thepenaeid shrimp (Metapenaeus ensis). Environ Pollut,118,351-355.
    [442]Yamochi, S., Ariyama, H. Sano, M.,1995. Occurrence and hypoxic tolerance of the juvenileMetapenaeus ensis at the mouth of the Yodo River, Osaka. Fisheries science61,391–395.
    [443]Yanase, K., Eayrs, S., Arimoto, T.,2007. Influence of water temperature and fish length onthe maximum swimming speed of sand flathead, Platycephalus bassensis Implications fortrawl selectivity. Fish. Res.84,180-188.
    [444]Ye, X., Randall, D.J.,1991. The effect of water pH on swimming performance in rainbowtrout (Salmo gairdneri). Fish Physiol. Biochem.9,15–21.
    [445]Yoganandhan, K., Thirupathi, S., Sahul Hameed, A.S.,2003. Biochemical, physiological andhematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus.Aquaculture221,1-11.
    [446]Young, P.S., Cech Jr., J.J.,1993. Improved growth, swimming performance, and musculardevelopment in exercise-conditioned young-of-the-year striped bass (Morone saxatilis). Can. J.Fisher. Aquat. Sci.50,703-707.
    [447]Yu X.M., Zhang X.M., Duan Y., Zhang P.D., Miao Z.Q.,2010. Effects of temperature,salinity, body length, and starvation on the critical swimming speed of whiteleg shrimp,Litopenaeus vannamei Com. Biochem. Physiol., A157,392–397.
    [448]Yu X.M., Zhang X.M., Zhang P.D., Yu C.G.,2009a. Swimming ability and physiologicalresponse to swimming fatigue in kuruma shrimp, Marsupenaeus japonicus. Afr. J.Biotechnol.8,1316-1321.
    [449]Yu, X.M., Zhang X.M., Zhang P.D., Yu C.G.,2009b. Critical swimming speed, tail-flip speedand physiological response to exercise fatigue in kuruma shrimp, Marsupenaeus japonicus.Comp. Biochem. Physiol. A153,120–124.
    [450]Zang, W., Zhu, Z., Dai, X., Zhao, F., Lu, Y., Xu, G., Xu, R.,1992. Studies on the correlationbetween the instantaneous velocity of consumed oxygen of Chinese prawn and the aquaticenvironment. Fisheries Science&Technology Information19,100–103.
    [451]Zebe, E.,1982. Anaerobic metabolism in Upogebia pugettensis and Callianassacaliforniensis (Crustacea, Thalassinidea). Comp. Biochem. Physiol. B72,613–617.
    [452]Zenteno-Savín T., Saldierna, R., Ahuejote-Sandoval, M.,2006. Superoxide radicalproduction in response to environmental hypoxia in cultured shrimp. Comp. Biochem. Physiol.C142,301–308.
    [453]Zernov, S.A.,1934. General Hydrobiology. State Publisher of Biological and MedicalLiterature, Moscow, Leningrad.
    [454]Zhang P.D, Zhang X.M., Li J., Huang G.Q.,2006a. Swimming ability and physiologicalresponse to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei Comp. Biochem.Physiol., A145,26–32
    [455]Zhang, P.D., Zhang, X.M., Li, J., Huang, G.Q.,2006b. The effects of body weight,temperature, salinity, pH, light intensity and feeding condition on lethal DO levels of whitelegshrimp, Litopenaeus vannamei (Boone,1931). Aquaculture256,579–587.
    [456]Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q.,2007. The effects of temperature andsalinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem.Physiol.,147A,64-69.
    [457]Zou, E., Du, N., Lai, W.,1996. The Effects of Severe Hypoxia on Lactate and GlucoseConcentrations in the Blood of the Chinese Freshwater Crab Eriocheir sinensis (Crustacea:Decapoda). Comp. Biochem. Physiol.A114,105–109.
    [458]Zou, E., Lai, W., Du, N.,1993. The effects of acute progressive hypoxia on the respirationrate of the Chinese crab, Eriocheir sinensis. Zool. Res.14,327-334.
    [459]陈琴,陈晓汉,罗永巨,黄钧,李福贵,宁良坤,2001.南美白对虾耗氧率和窒息点的初步测定.水利渔业,21(2),14–15.
    [460]崔建云,籍保平,王平华,1999.采用多层浅屉高密度活运东方对虾.中国农业大学学报,4(4),51-54.
    [461]邓景耀,1997.对虾放流增殖的研究.海洋渔业,19(1),1-6.
    [462]樊宁臣,俞关良,戴芳钰,刘英林,陈光武,牟作山,1989.渤海对虾放流增殖的研究.海洋水产研究,10,27-36.
    [463]官之梅,刘文郁,陈佩熏.1981.几种淡水经济鱼类游泳能力的研究.鱼类学论文集(第一辑),133-140
    [464]何大仁,蔡厚才,1998.鱼类行为学.厦门大学出版社.
    [465]蒋小勤,杜德锋,周骏.2007.行波推进仿生机器鱼.海军工程大学学报,19(5),1-5
    [466]井爱国,张秀梅,李文涛,2005.花鲈、许氏平鲉游泳能力的初步实验研究.中国海洋大学学报,35(6),973-976.
    [467]李健,孙修涛,赵法箴.水温和溶解氧含量对中国对虾摄食影响的观察[J].水产学报,1993,333-336.
    [468]林龙信,沈林成,谢海斌.2008.单柔性长鳍波动仿生推进器的设计与实现.兵工学报,29(3),364-368
    [469]林卫强,李适宇,2002.夏季伶仃洋COD、DO的垂向分布及其影响因素.中山大学学报(自然科学版),41,82–86.
    [470]罗琳,李适宇,厉红梅,2005.夏季珠江口水域溶解氧的特征及影响因素.中山大学学报(自然科学版),44,118–122.
    [471]宁修仁,史君贤,蔡昱明,刘诚刚,2004.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报,26(6),96–106.
    [472]潘鲁青,金彩霞,2008.甲壳动物血蓝蛋白研究进展.水产学报,32(3):484-491.
    [473]王芳,董双林,董少帅,黄国强,潘鲁青.光照周期对中国对虾(Fenneropenaeuschinensis)稚虾3种消化酶比活力昼夜变化节律的影响[J].海洋与湖沼,973,2003,36-41.
    [474]王玢.人体及动物生理学.北京:高等教育出版社,1999,282-283.
    [475]王慧,来琦芳,房文红,2007. K+对中国明对虾幼虾生存及耗氧率、窒息点的影响.中国水产科学,14(3),493–497.
    [476]王克行,1996.虾蟹类增养殖学.中国农业出版社.
    [477]韦柳枝,2010.低溶解氧对中国明对虾生长的影响及其机制的实验研究。[博士学位论文]。青岛,中国海洋大学.
    [478]肖国强,潘鲁青,冉宪宝,王桓台,王国峰.低盐度地下卤水养殖南美白对虾的研究[J].海洋科学,2002,26(12),36-40.
    [479]徐勇,曲克明,马绍赛.过饱和溶氧对大菱鲆生长及消化酶的影响[J].渔业现代化,2008,35,24-27。
    [480]于晓明,2009.三种对虾游泳能力及其游泳生理的比较实验研究。[博士学位论文],青岛,中国海洋大学。
    [481]于晓明,张秀梅,张沛东,2009.凡纳滨对虾的游泳能力及游泳疲劳后的生理反应中国水产科学,16(4),533-540.
    [482]臧维玲,林喜臣,戴习林,姚庆祯,江敏,罗春芳,徐桂荣,丁福江.淡化方式与盐度对凡纳滨对虾幼虾生长的影响[J].上海水产大学学报,2003,12(4),308-312.
    [483]张沛东,张秀梅,李健.对虾的行为生态学研究进展Ⅰ.对虾的行为习性.应用生态学报,2006,17,127-130.
    [484]赵慧慧,吴垠,王炳刚,李韬,张洪,2007.循环养殖系统中溶氧水平对虹鳟消化酶活性及消化吸收率的影响.大连水产学院学报,22,198-202.
    [485]周仕杰,何大仁,吴清天.1993.几种幼鱼曲线游泳能力的比较研究.海洋与湖沼,24(6),621-626
    [486]http://www.fao.org/fishery/species/3404/en

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700