锑化物半导体超晶格外延生长与表面结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以GaSb与AlSb为代表的6.1 (A|°)锑化物半导体材料及其构成的超晶格等低维结构在中长波红外探测领域有着重要的应用前景,锑化物外延生长中的表面扩散以及V族元素置换等材料问题在很大程度上制约着薄膜与低维结构的表面与界面质量。本文生长了GaSb薄膜、GaAs/GaAsSb超晶格与InAs/GaSb超晶格,研究了锑化物表面再构对外延生长中薄膜形貌、缺陷形成、Sb/As置换以及表面偏析等的影响,设计并制备了基于InAs/GaSb超晶格的势垒型红外探测器并分析了其光电性能。论文的主要研究内容包括:
     采用分子束外延制备了同质与异质GaSb薄膜,原子力显微镜图像表明薄膜表面均呈现丘形形貌,并且沿[ 110]方向拉长。通过高分辨X射线衍射(HRXRD)研究了在GaAs衬底上生长的GaSb异质薄膜<110>方向的位错密度、共格长度、晶面倾角与应变弛豫度。实验结果表明,采用AlSb缓冲层后,在[ 110]方向的位错密度下降,应变弛豫呈现各向同性。
     结合实验现象,通过第一性原理计算研究了Ga原子在GaSb(001)-(4×3)再构表面的吸附与扩散特性。研究发现,再构表面二聚体的类型以及排列方式决定着表面吸附点、鞍点的位置与吸附能。Ga原子在GaSb(001)-(4×3)表面扩散具有明显的各向异性, [ 110]方向是表面的快速扩散方向。另外,再构表面晶胞平移基矢的研究表明,AlSb(001)-c(4×4)具有的较高对称性使其相对(4×3)再构不容易发生表面晶胞错动,尤其沿[ 110]方向能有效的抑制异质外延中90°位错网相对错动而形成60°位错。
     通过HRXRD与高分辨透射电子显微镜(HRTEM)分析了Sb浸渍形成的GaAs/GaAsSb超晶格中的GaSb含量,观察到了超晶格界面处Sb富集所引入局域态的光致发光。运用热力学估计了Sb在超晶格表面发生吸附的条件。引入表面再构模型研究了GaSb覆盖GaAs(GaSb/GaAs)表面的Sb-for-As置换,发现在应变的GaSb/GaAs表面上Sb原子置换具有弱Ga-As键的As原子在能量上是占优的。表面的Sb-for-As置换能稳定GaAsSb层生长中Sb浸渍形成的GaSb,使其难以被后续GaAs生长引起的As-for-Sb所破坏。
     采用sp3s*模型与最近邻近似的经验紧束缚方法计算了GaSb、AlSb与InAs/GaSb超晶格能带结构,分析了超晶格层厚、界面类型以及表面再构引起的Sb偏析对超晶格能带结构的影响。拟合了77K下AlSb的紧束缚参数并用于含有AlSb层的InAs/GaSb超晶格(M型超晶格)的电子与空穴子带带边、有效带隙与有效质量的计算。分析了势垒层为AlGaSb的M型超晶格中Al组分变化对超晶格应变与能带结构的影响。
     采用分子束外延制备了InAs/GaSb超晶格,通过HRXRD、Raman散射与HRTEM分析了超晶格的应变与界面结构。设计并制备了有源区为InAs_8/GaSb_8,势垒区为InAs_(11)/GaSb_2/AlSb_6/GaSb_2超晶格的势垒型红外探测器。器件测试结果表明, 90K下探测器50%截止波长为4.9μm ,零偏条件下黑体探测率为2.8×10~9cm·Hz~(1/2)/W,-0.5V偏压时器件的暗电流密度为50mA/cm~2。
The Sb-based III-V semiconductor compounds and their heterostructures such as superlattices (SL) and quantum wells have attracted much attention for their applications in infrared detection recently. The material isssues such as poor surface diffusion and As/Sb exchange limit improvements of the antimonide heterostructures. The main topic in this dissertation is the study of antimonide surface reconstructions and the effects on the surface morphology, 60°dislocation formation, and Sb-for-As exchange in epitaxy. The other topic in this thesis is the design and fabrication of barrier infrared detector based on InAs/GaSb SL. The main research and achievments are as follows:
     Homoepitaxial and heteroepitaxial GaSb films were grown by molecular beam epitaxy (MBE). Atomic force microscopy (AFM) shows that all the GaSb films present mound morphology with elongation along [ 110] direction. The dislocation density, tilt and coherent length resulting from dislocation, and relaxation degree along <110> directions were characterized by high-resolution X-ray diffraction (HRXRD). The mesurements demonstrate that the AlSb buffer layer can increase relaxation degree of GaSb heteroepitaxial film along [ 110] direction with deduction of density of threading dislocation.
     The adsorption and diffusion properties of a Ga adatom deposited on GaSb(001)-α/β(4×3) were investigated by first-principles calculations. Combining with the experimental data, the calculation results have been utilized to interpret the morphology anisotropy of GaSb films: the distribution and depth of adsorption sites and saddle points are determined by the type and arrangement of the surface dimer row, and [ 110] is fast diffusion direction of Ga adatoms on the GaSb(001)-(4×3) surface. Besides, the study of bravais lattice diversity reveal that, the 60°misfit dislocations nucleation through shift of 90°dislocation array on the AlSb(001)-c(4×4) surface could be suppressed owing to the high symmetry of the reconstruction.
     HRXRD and high-resolution transmission electron microscopy (HRTEM) were performed to estimate the GaSb component of GaAs/GaAsSb SL which grown by Sb soak method. Luminescence from GaAsSb well and Sb-rich regions were observed and the Sb surface incorporation in the SL growth were analyzed thermodynamically. Furthermore, Sb-for-As exchange at the GaSb covered GaAs (GaSb/GaAs) surface was investigated using first principle calculations. Sb substitution for subsurface As atoms with weak Ga–As bonding arrangements are energetically favored at the strained GaSb/GaAs surface. After the Sb-for-As exchange, the formed GaSb layer can be stabilized against degradation from As-for-Sb exchange in the growth of GaAs/GaAsSb SL.
     Band structure of GaSb, AlSb and InAs/GaSb SL were calculated by empirical tight-binding method (ETBM) within the frame of sp3s* base sets and first-nearest-neighbor approximation. The effects of thickness, interface structure and surface segregation on band structure were analyzed. The band structure of InAs/GaSb SL modified by Al(Ga)Sb layers (M-SL) was investigated by tight-binding parameters of AlSb at 77K, which fitted to the reported band data.
     We grown the InAs/GaSb SLs with different interface type by MBE, interface structure of SLs was characterized by Raman scattering and cross-sectional HRTEM. The barrier infrared detector consisting of InAs/GaSb SL was design and fabricated. At 90K, a 5μm 50% cutoff detector exhibits a dark current 50mA/cm~2 with -0.5V bias, and a blackbody detectivity of 2.8×10~9cm·Hz~(1/2)/W with zero bias.
引文
1 Antoni Rogalski.Infrared detectors: status and trends.Progress in Quantum Electronics.2003,27(2-3):59~210
    2 P. S. Dutta,H. L. Bhat,Vikram Kumar.The physics and technology of gallium antimonide: An emerging optoelectronic material . Journal of Applied Physics.1997,81(9):5821~5870
    3 M. Razeghi.Overview of antimonide based III-V semiconductor epitaxial layers and their applications at the center for quantum devices.European Physical Journal-Applied Physics.2003,23(3):149~205
    4 Brian R. Bennett,Richard Magno,J. Brad Boos,et al.Antimonide-based compound semiconductors for electronic devices: A review . Solid-State Electronics.2005,49(12):1875~1895
    5 I. Vurgaftman,J. R. Meyer,L. R. Ram-Mohan.Band parameters for III-V compound semiconductors and their alloys.Journal of Applied Physics.2001,89(11):5815~5875
    6 Chris G. Van de Walle.Band lineups and deformation potentials in the model-solid theory.Physical Review B.1989,39(3):1871
    7 A. Rogalski,J. Antoszewski,L. Faraone.Third-generation infrared photodetector arrays.Journal of Applied Physics.2009,105(9):091101
    8 L. Esaki , R. Tsu . Superlattice and Negative Differential Conductivity in Semiconductors.IBM Journal of Research and Development.1970,14(1):61
    9夏建白,朱邦芬.半导体超晶格物理.上海科学技术出版社,1995:17~18
    10 F.Bechstedt.Principles of Surface Physics.Springer-Verlag Berlin Heidelberg,2003:1~3
    11 John Bardeen.Surface States and Rectification at a Metal Semi-Conductor Contact.Physical Review.1947,71(10):717
    12 Haijun Zhang,Chao-Xing Liu,Xiao-Liang Qi,et al.Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface . Nat Phys.2009,5(6):438~442
    13 Y. L. Chen,J. G. Analytis,J.H. Chu,et al.Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3.Science.2009,325(5937):178~181
    14 H. J. Ernst,F. Fabre,R. Folkerts,et al.Observation of a growth instability during low temperature molecular beam epitaxy . Physical ReviewLetters.1994,72(1):112
    15 R. M. Tromp,R. J. Hamers,J. E. Demuth.Si(001) Dimer Structure Observed with Scanning Tunneling Microscopy.Physical Review Letters.1985,55(12):1303
    16 J. Stangl,V. Hol,G. Bauer.Structural properties of self-organized semiconductor nanostructures.Reviews of Modern Physics.2004,76(3):725
    17 Bruce A. Joyce , Dimitri D. Vvedensky . Self-organized growth on GaAs surfaces.Materials Science and Engineering: R: Reports.2004,46(6):127~176
    18 D. J. Chadi . Energy-Minimization Approach to the Atomic Geometry of Semiconductor Surfaces.Physical Review Letters.1978,41(15):1062
    19 Akihiro Ohtake . Surface reconstructions on GaAs(001) . Surface Science Reports.2008,63(7):295~327
    20 D. J. Chadi.Atomic structure of GaAs(100)-(2×1) and (2×4) reconstructed surfaces.Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films.1987,5(4):834~837
    21 D. J. Frankel,C. Yu,J. P. Harbison,et al.High-resolution electron-energy-loss spectroscopy studies of GaAs (100) surfaces.Journal of Vacuum Science & Technology B.1987,5(4):1113~1118
    22 M. D. Pashley,K. W. Haberern,W. Friday,et al.Structure of GaAs(001) (2×4)-c(2×8) Determined by Scanning Tunneling Microscopy.Physical Review Letters.1988,60(21):2176
    23 W. G. Schmidt,S. Mirbt,F. Bechstedt.Surface phase diagram of (2×4) and (4×2) reconstructions of GaAs(001).Physical Review B.2000,62(12):8087
    24 W. G. Schmidt,F. Bechstedt,J. Bernholc.GaAs(001) surface reconstructions: geometries, chemical bonding and optical properties . Applied Surface Science.2002,190(1-4):264~268
    25 G. Binnig,H. Rohrer,Ch Gerber,et al.Surface Studies by Scanning Tunneling Microscopy.Physical Review Letters.1982,49(1):57
    26 J. Tersoff,D. R. Hamann.Theory and Application for the Scanning Tunneling Microscope.Physical Review Letters.1983,50(25):1998
    27 Alexander Kley , Paolo Ruggerone , Matthias Scheffler . Novel Diffusion Mechanism on the GaAs(001) Surface: The Role of Adatom-Dimer Interaction.Physical Review Letters.1997,79(26):5278
    28 J. G. LePage,M. Alouani,Donald L. Dorsey,et al.Ab initio calculation ofbinding and diffusion of a Ga adatom on the GaAs (001)-c(4×4) surface.Physical Review B.1998,58(3):1499
    29 E. Penev,P. Kratzer,M. Scheffler.Atomic Structure of the GaAs(001)-c(4×4) Surface: First-Principles Evidence For Diversity of Heterodimer Motifs.Physical Review Letters.2004,93(14):146102
    30 E. Penev,S. Stojkovi,P. Kratzer,et al.Anisotropic diffusion of In adatoms on pseudomorphic InxGa1-xAs films: First-principles total energy calculations.Physical Review B.2004,69(11):115335
    31 Marcello Rosini,Rita Magri,Peter Kratzer.Adsorption of indium on an InAs wetting layer deposited on the GaAs(001) surface.Physical Review B.2008,77(16):165323
    32 L. J. Whitman,P. M. Thibado,S. C. Erwin,et al.Metallic III-V (001) Surfaces: Violations of the Electron Counting Model.Physical Review Letters.1997,79(4):693
    33 Conor Hogan,Rita Magri,Rodolfo Del Sole.Spontaneous Formation of Surface Antisite Defects in the Stabilization of the Sb-Rich GaSb(001) Surface.Physical Review Letters,104(15):157402
    34 W. Barvosa-Carter,A. S. Bracker,J. C. Culbertson,et al.Structure of III-Sb(001) Growth Surfaces: The Role of Heterodimers . Physical Review Letters.2000,84(20):4649
    35 M. C. Righi,Rita Magri,C. M. Bertoni.First-principles study of Sb-stabilized GaSb(001) surface reconstructions.Physical Review B.2005,71(7):075323
    36 Yi Liu , Roland E. Allen . Electronic structure of the semimetals Bi and Sb.Physical Review B.1995,52(3):1566
    37 E. J. Koerperick,L. M. Murray,D. T. Norton,et al.Optimization of MBE-grown GaSb buffer layers and surface effects of antimony stabilization flux.Journal of Crystal Growth,312(2):185~191
    38 J. E. Bickel,Chris Pearson,J. Mirecki Millunchick.Sb incorporation at GaAs(001)-(2×4) surfaces.Surface Science.2009,603(1):14~21
    39 Jessica E. Bickel,Normand A. Modine,Chris Pearson,et al.Elastically induced coexistence of surface reconstructions.Physical Review B.2008,77(12):125308
    40 Frank Grosse,William Barvosa-Carter,Jenna J. Zinck,et al.Atomistics of III-V semiconductor surfaces: Role of group V pressure,2002,Journal of VacuumScience & Technology B:1178~1181
    41 J. W. Matthews,A. E. Blakeslee.Defects in epitaxial multilayers: I. Misfit dislocations.Journal of Crystal Growth.1974,27:118~125
    42 J. H. Park,T. K. Lee,Y. K. Noh,et al.Temperature and excitation power dependence of photoluminescence from high quality GaSb grown on AlSb and GaSb buffer layers.Journal of Applied Physics.2009,105(4):043516
    43 S. H. Huang,G. Balakrishnan,A. Khoshakhlagh,et al.Strain relief by periodic misfit arrays for low defect density GaSb on GaAs . Applied Physics Letters.2006,88(13):131911
    44 W. Qian,M. Skowronski,R. Kaspi.Dislocation Density Reduction in GaSb Films Grown on GaAs Substrates by Molecular Beam Epitaxy.Journal of The Electrochemical Society.1997,144(4):1430~1434
    45 Joon-Hyung Kim,Tae-Yeon Seong,N. J. Mason,et al.Morphology and defect structures of GaSb islands on GaAs grown by metalorganic vapor phase epitaxy.Journal of Electronic Materials.1998,27(5):466~471
    46 W. Qian,M. Skowronski,R. Kaspi,et al.Nucleation of misfit and threading dislocations during epitaxial growth of GaSb on GaAs(001) substrates.Journal of Applied Physics.1997,81(11):7268~7272
    47 Ruiting Hao,Yingqiang Xu,Zhiqiang Zhou,et al.Growth of GaSb layers on GaAs (001) substrate by molecular beam epitaxy.Journal of Physics D: Applied Phyics.2007,40(4):1080~1084
    48 H. S. Kim,Y. K. Noh,M. D. Kim,et al.Dependence of the AlSb buffers on GaSb/GaAs(001) heterostructures.Journal of Crystal Growth.2007,301-302:230~234
    49 S.V. Ivanov,P.D. Altukhov,T.S. Argunova,et al.Molecular beam epitaxy growth and characterization of thin GaSb layers on GaAs(100) substrates .Semiconductor Science and Technology.1993,8(5):347~356
    50 Shenghong Huang,Ganesh Balakrishnan,Diana L. Huffaker.Interfacial misfit array formation for GaSb growth on GaAs.Journal of Applied Physics.2009,105(10):103104
    51 Subra Suresh L. B. Freund.Thin film materials: stress, defect formation, and surface evolution.Cambridge University Press,2003:424~425
    52 J. M. Kang,M. Nouaoura,L. Lassabatere,et al.Accommodation of lattice mismatch and threading of dislocations in GaSb films grown at differenttemperatures on GaAs (001).Journal of Crystal Growth.1994,143(3-4):115~123
    53 Sun Xiaoguang,Wang Shuling,J. S. Hsu,et al.GaAsSb: a novel material for near infrared photodetectors on GaAs substrates.Selected Topics in Quantum Electronics, IEEE Journal of.2002,8(4):817~822
    54 T. T. Chen,C. H. Chen,W. Z. Cheng,et al.Optical studies of strained type II GaAs0.7Sb0.3/GaAs multiple quantum wells.Journal of Applied Physics.2003,93(12):9655~9658
    55 T. T. Chen,W. S. Su,Y. F. Chen,et al.Nature of persistent photoconductivity in GaAs0.7Sb0.3/GaAs multiple quantum wells.Applied Physics Letters.2004,85(9):1526~1528
    56 Terence Brown,April Brown,Gary May.Anion exchange at the interfaces of mixed anion III--V heterostructures grown by molecular beam epitaxy.Journal of Vacuum Science & Technology B.2002,20:1771~1776
    57 Takeshi Miura, Takanori Nakai , Koichi Yamaguchi . Atomically-controlled GaSb-termination of GaAs surface and its properties . Applied Surface Science.2004,237(1-4):242~245
    58 Joel A. Appelbaum,G. A. Baraff,D. R. Hamann.GaAs(100): Its spectrum, effective charge, and reconstruction patterns.Physical Review B.1976,14(4):1623
    59 M. D. Pashley.Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001) . Physical Review B.1989,40(15):10481
    60 L. J. Whitman,B. R. Bennett,E. M. Kneedler,et al.The structure of Sb-terminated GaAs(001) surfaces.Surface Science.1999,436(1-3):L707~L714
    61 B. Z. Nosho,B. V. Shanabrook,B. R. Bennett,et al.Initial stages of Sb2 deposition on InAs(001).Surface Science.2001,478(1-2):1~8
    62 G. A. Sai-Halasz,R. Tsu,L. Esaki.A new semiconductor superlattice.Applied Physics Letters.1977,30(12):651~653
    63 D. L. Smith,C. Mailhiot.Proposal for strained type II superlattice infrared detectors.Journal of Applied Physics.1987,62(6):2545~2548
    64 Ruiting Hao,Yingqiang Xu,Zhiqiang Zhou,et al.MBE growth of very short period InAs/GaSb type-II superlattices on (001)GaAs substrates . Journal of Physics D: Applied Phyics.2007,40(21):6690~6693
    65 Gail J. Brown.Type-II InAs/GaInSb superlattices for infrared detection: an overview,2005,SPIE:65~77
    66 Manijeh Razeghi,Binh-Minh Nguyen,Pierre-Yves Delaunay,et al.State-of-the-art Type II antimonide-based superlattice photodiodes for infrared detection and imaging,2009,SPIE:74670T
    67 A. Rogalski.Competitive technologies for third generation infrared photon detectors.Bjorn, F. Andresen, Gabor, F. FulopPaul, R. Norton,2006,SPIE:62060S
    68史衍丽,余连杰,田亚芳.InAs/(In)GaSbⅡ类超晶格红外探测器研究现状.红外技术.2007,29(11):621~626
    69 Frank Szmulowicz . Numerically stable Hermitian secular equation for the envelope-function approximation for superlattices.Physical Review B.1996,54(16):11539
    70 Frank Szmulowicz.Numerically stable secular equation for superlattices via transfer-matrix formalism and application to InAs/In0.23Ga0.77Sb and InAs/In0.3Ga0.7Sb/GaSb superlattices.Physical Review B.1998,57(15):9081
    71 F. Szmulowicz,H. Haugan,G. J. Brown.Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation.Physical Review B.2004,69(15):155321
    72 Gregory C. Dente,Michael L. Tilton.Pseudopotential methods for superlattices: Applications to mid-infrared semiconductor lasers . Journal of Applied Physics.1999,86(3):1420~1429
    73 Ron Kaspi,Charles Moeller,Andrew Ongstad,et al.Absorbance spectroscopy and identification of valence subband transitions in type-II InAs/GaSb superlattices.Applied Physics Letters.2000,76(4):409~411
    74 Rita Magri , Alex Zunger . Effects of interfacial atomic segregation and intermixing on the electronic properties of InAs/GaSb superlattices.Physical Review B.2002,65(16):165302
    75 Yajun Wei,Manijeh Razeghi.Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering.Physical Review B.2004,69(8):085316
    76 H. J. Haugan,F. Szmulowicz,K. Mahalingam,et al.Short-period InAs/GaSb type-II superlattices for mid-infrared detectors.Applied Physics Letters.2005,87(26):261106
    77 G. R. Booker,P. C. Klipstein,M. Lakrimi,et al.Growth of InAs/GaSb strained layer superlattices. II.Journal of Crystal Growth.1995,146(1-4):495~502
    78 F. Szmulowicz,H. J. Haugan,G. J. Brown,et al.Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors,2005,SPIE:595708
    79 N. Herres,F. Fuchs,J. Schmitz,et al.Effect of interfacial bonding on the structural and vibrational properties of InAs/GaSb superlattices.Physical Review B.1996,53(23):15688~15705
    80 D. H. Chow,R. H. Miles,A. T. Hunter.Effects of interface stoichiometry on the structural and electronic properties of Ga1 - xInxSb/InAs superlattices,1992,Journal of Vacuum Science & Technology B:888~891
    81 J. B. Rodriguez,P. Christol,L. Cerutti,et al.MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection.Journal of Crystal Growth.2005,274(1-2):6~13
    82 B. Satpati,J. B. Rodriguez,A. Trampert,et al.Interface analysis of InAs/GaSb superlattice grown by MBE.Journal of Crystal Growth.2007,301-302:889-892
    83 R. Kaspi,J. Steinshnider,M. Weimer,et al.As-soak control of the InAs-on-GaSb interface.Journal of Crystal Growth.2001,225(2-4):544~549
    84 E. Plis,S. Annamalai,K. T. Posani,et al.Midwave infrared type-II InAs/GaSb superlattice detectors with mixed interfaces.Journal of Applied Physics.2006,100(1):014510
    85 Yajun Wei,Andrew Hood,Haiping Yau,et al.Uncooled operation of type-II InAs/GaSb superlattice photodiodes in the midwavelength infrared range.Applied Physics Letters.2005,86(23):233106
    86 E. H. Aifer,J. G. Tischler,J. H. Warner,et al.Dual band LWIR/VLWIR type-II superlattice photodiodes,2005,SPIE:112~122
    87 Binh-Minh Nguyen,Darin Hoffman,Pierre-Yves Delaunay,et al.Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier.Applied Physics Letters.2007,91(16):163511
    88 G. J. Brown , F. Szmulowicz , R. Linville , et al . Type-II superlattice photodetector on a compliant GaAs substrate.Photonics Technology Letters, IEEE.2000,12(6):684~686
    89 Binh-Minh Nguyen , Darin Hoffman , Edward Kwei-wei Huang , etal.Demonstration of midinfrared type-II InAs/GaSb superlattice photodiodes grown on GaAs substrate.Applied Physics Letters.2009,94(22):223506
    90 S. Abdollahi Pour,B-M. Nguyen,S. Bogdanov,et al.Demonstration of high performance long wavelength infrared type II InAs/GaSb superlattice photodiode grown on GaAs substrate.Applied Physics Letters.2009,95(17):173505
    91 S. Maimon,G. W. Wicks.nBn detector, an infrared detector with reduced dark current and higher operating temperature.Applied Physics Letters.2006,89(15):151109
    92 J. B. Rodriguez,E. Plis,G. Bishop,et al.nBn structure based on InAs/GaSb type-II strained layer superlattices.Applied Physics Letters.2007,91(4):043514
    93 A. Khoshakhlagh,J. B. Rodriguez,E. Plis,et al.Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer superlattice detectors.Applied Physics Letters.2007,91(26):263504
    94 H. S. Kim,E. Plis,J. B. Rodriguez,et al.Mid-IR focal plane array based on type-II InAs/GaSb strain layer superlattice detector with nBn design.Applied Physics Letters.2008,92(18):183502
    95 A. Khoshakhlagh,H. S. Kim,S. Myers,et al.Long wavelength InAs/GaSb superlattice detectors based on nBn and pin design,2009,SPIE:72981P
    96 Manijeh Razeghi,Yajun Wei,Junjik Bae,et al.Type II InAs/GaSb superlattices for high-performance photodiodes and FPAs,2003,SPIE:501~511
    97 M. Walther,J. Schmitz,R. Rehm,et al.Growth of InAs/GaSb short-period superlattices for high-resolution mid-wavelength infrared focal plane array detectors.Journal of Crystal Growth.2005,278(1-4):156~161
    98 R. Rehm,M. Walther,J. Schmitz,et al.Dual-colour thermal imaging with InAs/GaSb superlattices in mid-wavelength infrared spectral range.Electronics Letters.2006,42(10):577~578
    99 A. Y. Cho,K. Y. Cheng.Growth of extremely uniform layers by rotating substrate holder with molecular beam epitaxy for applications to electro-optic and microwave devices.Applied Physics Letters.1981,38(5):360~362
    100 A. S. Bracker,M. J. Yang,B. R. Bennett,et al.Surface reconstruction phase diagrams for InAs, AlSb, and GaSb.Journal of Crystal Growth.2000,220(4):384~392
    101 P. Hohenberg , W. Kohn . Inhomogeneous Electron Gas . PhysicalReview.1964,136(3B):B864
    102 W. Kohn,L. J. Sham.Self-Consistent Equations Including Exchange and Correlation Effects.Physical Review.1965,140(4A):A1133
    103 D. M. Ceperley,B. J. Alder.Ground State of the Electron Gas by a Stochastic Method.Physical Review Letters.1980,45(7):566
    104 J. P. Perdew,Alex Zunger.Self-interaction correction to density-functional approximations for many-electron systems.Physical Review B.1981,23(10):5048
    105 R.S. Wadhwa I.M. Tsidilkovski.Band structure of semiconductors.Pergamon press,1982:47~61
    106 D. R. Hamann , M. Schluer , C. Chiang . Norm-Conserving Pseudopotentials.Physical Review Letters.1979,43(20):1494
    107 Paolo Giannozzi , Stefano Baroni , Nicola Bonini , et al . QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials .Journal of Physics: Condensed Matter.2009,21(39):1~20
    108 Charles B. Duke . Semiconductor Surface Reconstruction: The Structural Chemistry of Two-Dimensional Surface Compounds.Chemical Reviews.1996,96(4):1237~1260
    109 G.P. Srivastava.Theory of semiconductor surface reconstruction.Reports on Progress in Physics.1997,60(5):561~613
    110 G.P. Srivastava . Theoretical modelling of semiconductor surfaces and interfaces.Vacuum.2000,57(2):121~129
    111 Kenji Shiraishi.A New Slab Model Approach for Electronic Structure Calculation of Polar Semiconductor Surface.The Physical Society of Japan.1990,59(10):3455~3458
    112王恩哥.薄膜生长中的表面动力学(I).物理学进展.2003,23(1):1~61
    113 Axel Gross,Matthias Scheffler.Ab initio quantum and molecular dynamics of the dissociative adsorption of hydrogen on Pd(100).Physical Review B.1998,57(4):2493
    114 Marcello Rosini,Maria Clelia Righi,Peter Kratzer,et al.Indium surface diffusion on InAs (2×4) reconstructed wetting layers on GaAs(001).Physical Review B.2009,79(7):075302
    115 Peter H?nggi,Peter Talkner,Michal Borkovec.Reaction-rate theory: fifty years after Kramers.Reviews of Modern Physics.1990,62(2):251
    116 Berinder Brar,Devin Leonard.Spiral growth of GaSb on (001) GaAs using molecular beam epitaxy.Applied Physics Letters.1995,66(4):463~465
    117 B. Z. Nosho,B. R. Bennett,E. H. Aifer,et al.Surface morphology of homoepitaxial GaSb films grown on flat and vicinal substrates.Journal of Crystal Growth.2002,236(1-3):155~164
    118 Zhiqiang Zhou,Yingqiang Xu,Ruiting Hao,et al.Molecular Beam Epitaxy of GaSb on GaAs Substrates with AlSb Buffer Layers . Chinese Physics Letters.2009,26(018101)
    119 K. Chuasiripattana,G. P. Srivastava.Ab initio study of atomic geometry and electronic states of GaSb(001) reconstructions . Surface Science . 2006 ,600(18):3803~3808
    120 Graeme Henkelman,Hannes Jonsson.Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points.The Journal of Chemical Physics.2000,113(22):9978~9985
    121 Daniel Sheppard,Rye Terrell,Graeme Henkelman.Optimization methods for finding minimum energy paths.The Journal of Chemical Physics.2008,128(13):134106
    122 A.Y. Babkevich,R.A. Cowley,N.J. Mason,et al.X-ray scattering from dislocation arrays in GaSb.Journal of Physics: Condensed Matter.2002,14(49):133505~113528
    123 Chao Jiang,Hiroyuki Sakaki.Controlling anisotropy of GaSb(As)/GaAs quantum dots by self-assembled molecular beam epitaxy.Physica E: Low-dimensional Systems and Nanostructures.2006,32(1-2):17~20
    124 Chao Jiang,Takuya Kawazu,Shigeki Kobayashi,et al.Molecular beam epitaxial growth of very large lateral anisotropic GaSb/GaAs quantum dots.Journal of Crystal Growth.2007,301-302:828~832
    125 A. Palma,E. Semprini,A. Talamo,et al.Diffusion constant of Ga, In and As adatoms on GaAs (001) surface: molecular dynamics calculations.Materials Science and Engineering B.1996,37(1-3):135~138
    126 A. Ishii,K. Fujiwara,S. Tsukamoto,et al.Structure of GaSb/GaAs(001) surface using the first principles calculation.Journal of Crystal Growth.2007,301-302:880~883
    127 Naoki Kakuda,Shiro Tsukamoto,Akira Ishii,et al.Surface reconstructions on Sb-irradiated GaAs(001) formed by molecular beam epitaxy.MicroelectronicsJournal.2007,38(4-5):620~624
    128 Richard L. Schwoebel , Edward J. Shipsey . Step Motion on Crystal Surfaces.Journal of Applied Physics.1966,37(10):3682~3686
    129 P. Gay,P. B. Hirsch,A. Kelly.The estimation of dislocation densities in metals from X-ray data.Acta Metallurgica.1953,1(3):315~319
    130 C. G. Dunn,E. F. Kogh.Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe.Acta Metallurgica.1957,5(10):548~554
    131 G. K. Williamson,W. H. Hall.X-ray line broadening from filed aluminium and wolfram.Acta Metallurgica.1953,1(1):22~31
    132 W H Hall.X-Ray Line Broadening in Metals.Proceedings of the Physical Society. Section A ,62(11):741
    133许振嘉.半导体的检测与分析.科学出版社,2007:104~120
    134 D. K. Biegelsen,R. D. Bringans,J. E. Northrup,et al.Surface reconstructions of GaAs(100) observed by scanning tunneling microscopy.Physical Review B.1990,41(9):5701
    135 R. R. Wixom,N. A. Modine,G. B. Stringfellow.Theory of surfactant (Sb) induced reconstructions on InP(001).Physical Review B.2003,67(11):115309
    136 O. Romanyuk,V. M. Kaganer,R. Shayduk,et al.Staircase model of GaSb(001) (1×3) and c (2×6) phases.Physical Review B.2008,77(23):235322
    137 O. Romanyuk,F. Grosse,W. Braun.Stoichiometry and Bravais lattice diversity: An ab initio study of the GaSb(001) surface.Physical Review B.2009,79(23):235330
    138邱永鑫.InAs/GaSb超晶格界面微结构研究.哈尔滨工业大学博士论文.2008:66~67
    139 S. I. Molina,A. M. Beltran,T. Ben,et al.High resolution electron microscopy of GaAs capped GaSb nanostructures.Applied Physics Letters.2009,94(4):043114
    140 P. Lautenschlager,M. Garriga,S. Logothetidis,et al.Interband critical points of GaAs and their temperature dependence.Physical Review B.1987,35(17):9174
    141 M. Krijn.Heterojunction band offsets and effective masses in III-V quaternary alloys.Semiconductor Science and Technology.1991,6(1):27~31
    142 X. H. Wang,L. W. Guo,H. Q. Jia,et al.Control performance of a single-chipwhite light emitting diode by adjusting strain in InGaN underlying layer.Applied Physics Letters.2009,94(11):111913
    143 Toshiyuki Kaizu , Masamitu Takahasi , Koichi Yamaguchi , et al . In situ determination of Sb distribution in Sb/GaAs(001) layer for high-density InAs quantum dot growth.Journal of Crystal Growth.2008,310(15):3436~3439
    144 M. C. Righi,Rita Magri,C. M. Bertoni.Study of arsenic for antimony exchange at the Sb-stabilized GaSb(001) surface . Applied Surface Science . 2006 ,252(15):5271~5274
    145 Per-Olov Lowdin.On the Non-Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals.The Journal of Chemical Physics.1950,18(3):365~375
    146 J. C. Slater,G. F. Koster.Simplified LCAO Method for the Periodic Potential Problem.Physical Review.1954,94(6):1498
    147谢希德,陆栋.固体能带理论.复旦大学出版社,1999:27~37
    148 D. J. Chadi,M. L. Cohen.Tight-binding calculations of the valence bands of diamond and zincblende crystals.physica status solidi (b).1975,68(1):405~419
    149 P. Vogl,Harold P. Hjalmarson,John D. Dow.A Semi-empirical tight-binding theory of the electronic structure of semiconductors+.Journal of Physics and Chemistry of Solids.1983,44(5):365~378
    150 Timothy B. Boykin.Incorporation of incompleteness in the kp perturbation theory.Physical Review B.1995,52(23):16317
    151 Timothy B. Boykin,Gerhard Klimeck,R. Chris Bowen,et al.Effective-mass reproducibility of the nearest-neighbor sp3s* models: Analytic results.Physical Review B.1997,56(7):4102
    152 E. Matatagui , A. G. Thompson , Manuel Cardona . Thermoreflectance in Semiconductors.Physical Review.1968,176(3):950
    153 Hans Landolt,O. Madelung,Richard B?rnstein.Numerical data and functional relationships in science and technology.Springer-Verlag Berlin Herdelberg,1987:66~71
    154 J. Steinshnider,J. Harper,M. Weimer,et al.Origin of Antimony Segregation in GaInSb/InAs Strained-Layer Superlattices.Physical Review Letters.2000,85(21):4562
    155 Jeffery Houze,Sungho Kim,Seong-Gon Kim,et al.Structure of AlSb(001)and GaSb(001) surfaces under extreme Sb-rich conditions.Physical Review B (Condensed Matter and Materials Physics).2007,76(20):205303
    156 B-M. Nguyen,M. Razeghi,V. Nathan,et al.Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes,2007,SPIE:64790S
    157 Binh-Minh Nguyen,Darin Hoffman,Pierre-Yves Delaunay,et al.Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes.Applied Physics Letters.2008,93(16):163502
    158 R. M. Feenstra,D. A. Collins,D. Z. Y. Ting,et al.Interface roughness and asymmetry in InAs/GaSb superlattices studied by scanning tunneling microscopy.Physical Review Letters.1994,72(17):2749
    159邱永鑫,李美成,赵连城.InAs/GaInSb应变层超晶格材料的界面结构.功能材料.2005,36(9):1316~1323
    160 Z. Pan,Y. T. Wang,Y. Zhuang,et al.Investigation of periodicity fluctuations in strained (GaNAs)1(GaAs)m superlattices by the kinematical simulation of x-ray diffraction.Applied Physics Letters.1999,75(2):223~225
    161 S. G. Lyapin,P. C. Klipstein,N. J. Mason,et al.Raman Selection Rules for the Observation of Interface Modes in InAs/GaSb Superlattices.Physical Review Letters.1995,74(16):3285
    162 I. Sela,C. R. Bolognesi,L. A. Samoska,et al.Study of interface composition and quality in AlSb/InAs/AlSb quantum wells by Raman scattering from interface modes.Applied Physics Letters.1992,60(26):3283~3285
    163 G. Bishop,E. Plis,J.B. Rodriguez,et al.nBn detectors based on InAs/GaSb type-II strain layer superlattice . J. Vac. Sci. Technol. B . 2008 , 26(3) :1145~1148
    164 B.-M. Nguyen,S. Bogdanov,S. Abdollahi Pour,et al.Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection.Applied Physics Letters.2009,95(18):183502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700