高能强子—强子以及高能核—核碰撞中的强子产生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子色动力学预言在高温和/或高重子密度下核物质结构会产生相变,使得原本禁锢在强子里的夸克和胶子解禁闭.核物质的这种全新的形态被称之为夸克胶子等离子体(QGP),并能用格点QCD理论得到很好的描述,同时我们也认为大爆炸后几微秒的宇宙空间都由QGP组成。位于布鲁克海文国家实验室(BNL)的相对论重离子碰撞机(RHIC)以及位于CERN的大型强子对撞机(LHC)都在实验室里重塑了这种高温高密的极限条件。集体现象以及喷注淬火现象是两个重要的探针,被用于探测QGP的形成及其性质。从这些试验得到的数据都有力地证明了QGP是一个强相互作用态,在流体膨胀时具有非常小的粘滞系数,并且对于高能喷注来说是不透明的。
     喷注淬火作为探测QGP的一个工具,它遵循一个原理:硬部分子和介质相互作用会导致部分子能量损失以及大横动量强子谱的压低。通过对末态大横动量强子谱的介质修正的测量和唯象研究,我们能提取出介质的性质,例如喷注输运系数。另一方面,由形成的QGP的初始高压导致的密介质里的集体膨胀,以及非对心碰撞中的初始非对称几何都造成了末态强子谱的方位角各向异性。比较实验数据以及由粘滞动力学计算的各向异性流的结果,能更进一步的了解QCD物质的输运性质,更精确的给出粘滞系数的取值范围。这两个唯象研究所需的一个共同条件是了解初始粒子产生,因为初始粒子产生决定了初始能量密度分布以及后期在密介质里的时空演化。因此,高能强子碰撞和高能核碰撞中研究粒子产生是非常关键的。
     HIJING蒙特卡罗模型是一个基于两组分模型的核-核产生器.把核子-核子碰撞按照其交换横动量的大小分成Pt>p0的硬过程和pt<7的软过程。硬的部分子散射可以用微扰量子色动力学(PQCD)来描写。软的相互作用过程用Lund(?)玄模型来描写计算其反应截面。HIJING里的核效应包括一个参数化形式的冷核里的部分子分布的核遮蔽效应,以及用一个简单的部分子能量损失模型处理的末态的喷注淬火效应。
     在这篇论文里,我们在两组分模型里引入最新的部分子分布以及一系列新的参数对HIJING进行升级,来控制pp碰撞的总截面以及中心赝快度密度。用新的参数化的部分子遮蔽因子以及由多重部分子散射造成的横动量pt展宽来反映高能pA碰撞的冷核效应。应用升级后的HIJING模型,我们研究了强子谱以及多重数分布并与LHC能量下pp碰撞的实验数据进行了对比。同时我们也研究了pA碰撞的末态强子谱相对于pp碰撞的核修正。发现部分子遮蔽效应以及横动量pt展宽都影响末态中等横动量强子谱。由多重散射造成的部分子味结构的修正以及多个部分子喷注系统的强子化都导致LHC能量下pA碰撞的末态大横动量强子谱的压低。对于核-核碰撞,我们把LHC能量下Pb+Pb对心碰撞的带电强子的中心快度密度与RHIC(?)能量下的同种数据进行结合来降低胶子遮蔽参数化形式的不确定性。并且预言了LHC能量下Pb+Pb碰撞的中心快度区的带电强子多重数密度的中心度依赖。
     除了强子产生,我们还利用HIJING模型研究了由小横动量喷注产生的强子在各个方位角里的横向动量关联。在热化的早期,喷注淬火效应明显的导致了关联的扩散。随后我们对这个方位角横向动量关联在重离子碰撞后期的演化做了进一步的研究,从流体力学的基本公式出发,我们得到了一个类耗散方程。结合致密物质的流体力学方程解这个类耗散方程,并且沿着冻结超曲面计算了末态方位角横向动量关联。我们发现切向粘滞系数与熵密度的比值影响着横向动量关联的扩散。因此,末态横向动量关联所携带的信息有助于我们分析碰撞早期的小横动量喷注的热化过程以及sQGP的粘滞系数。
Quantum Chromodynamics (QCD) predicts a transition in the structure of nuclear matter at high temperature and/or high baryon density, which frees quarks and gluons from their nor-mal confinement in hadrons. This exotic form of nuclear matter, called Quark-Gluon Plasma (QGP), is well established by lattice field theory simulations and is thought to have permeated the entire universe for a few microseconds after the Big Bang. To recreate similar extreme con-ditions in the laboratory, experiments of high-energy heavy-ion collisions are carried out at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and Large Hadron Collider at CERN. Collective phenomena and jet quenching are two important probes that are used to detect the formation of QGP and study its properties in high-energy heavy-ion collisions. Data from these experiments provided convincing evidences for the formation of a strongly interacting QGP that exhibits very small shear viscosity in its hydrodynamic expansion and is also opaque to high-energy jets.
     Jet quenching as a probe of QGP is based on the principle that the interaction between hard partons and the medium can lead to parton energy loss and suppression of large transverse momentum (pΥ) hadrons. Through measurement and phenomenological study of medium mod-ification of final large transverse momentum hadron spectra one can extract medium properties such as the jet transport coefficient. On the other hand, the high initial pressure of the formed QGP causes collective expansion of the bulk medium and in noncentral collisions with initial asymmetric geometry leads to the azimuthal anisotropy in the final hadron spectra or anisolrop-ic flow. Comparisons between experimental data and viscous hydrodynamic calculation of the anisotropic flow can provide indirect constraints on the transport properties of the QCD matter such as shear viscosity. One common condition for both of these phenomenological studies is the knowledge of initial particle production that determines the initial energy density distribution and the later space-time evolution of the bulk medium. It is therefore crucial to study particle production in high-energy hadronic and nuclear collisions.
     HIJING Monte Carlo model is based on a two-component model for hadron production in high-energy p+p, p+A, and A+A collisions. The soft and hard components are separated by a cut-off in the transverse momentum exchange. Hard parton scatterings are assumed to be described by the perturbative QCD, while soft interactions are approximated by string excitation with an effective cross section. Nuclear effects in HIJING include the nuclear shadowing of parton distributions inside cold nuclei through a parameterization and jet quenching in the final state through a simple model of parton energy loss.
     In this thesis, HIJING is updated with the latest parton distributions and a new set of the parameters in the two-component model that control total p+p cross section and the central pseudorapity density. Cold nuclear effects in high-energy p+A collisions are included with a new set of parameterization of parton shadowing and implementation of pΤ broadening through multiple parton scatterings. Within the updated HIJTNG model, we study hadron spectra and multiplicity distributions and compare to recent experimental data from p+p collisions at the LHC energies. Nuclear modification of final hadron spectra in p+A collisions relative to that in p+p collisions are also studied. Parton shadowing andpr broadening are found to influence final hadron spectra at intermediate pΤ.Modification of parton flavor composition due lo multiple scattering and hadronization of many-parton jet systems are shown to lead to suppression of final hadrons at large pΤ in p+A collisions at the Large Hadron Collider. For A+A collisions, the new data on the central rapidity density of charged hadrons in the most central Pb+Pb collisions at LHC are used to carry out a combined fit together with the RHIC data to reduce the uncertainty in the gluon shadowing parameter that controls the overall magnitude of gluon shadowing at small fractional momentum x. Predictions on the centrality dependence of charged hadron multiplicity density at mid-rapidity with reduced uncertainties are given for Pb+Pb collisions at LHC.
     In addition to hadron production, we also studied transverse momentum correlation in az-imuthal angle of produced hadrons due to mini-jets within the HIJING model in high-energy heavy-ion collisions. Quenching of mini-jets during the thermalization is shown to lead to sig-nificant diffusion (broadening) of the correlation. Evolution of the transverse momentum density fluctuation that gives rise to such correlation in azimuthal angle in the later stage of heavy-ion collisions is further investigated within a linearized diffusion-like equation and is shown to be determined by the shear viscosity of the evolving dense matter. Such a diffusion equation for the transverse momentum fluctuation is solved with initial values given by HIJING and together with the hydrodynamic equation for the bulk medium. The final transverse momentum corre-lation in azimuthal angle is calculated along the freeze-out hyper-surface and is found further diffused for larger values of shear viscosity to entropy density ratio η/s~0.2-0.4.
引文
[1]P. Jacobs and X.-N. Wang, Prog. Part. Nucl. Phys.54,443 (2005) [hep-ph/0405125].
    [2]B. Muller, J. Schukraft and B. Wyslouch, Ann. Rev. Nucl. Part. Sci.62,361 (2012) [arX-iv:1202.3233 [hep-ex]].
    [3]See, for example, F. Halzen and A Martin, Quarks and Leptons (John Wiley, New York, 1984).
    [4]Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, Nature 443,675 (2006) [hep-lat/0611014].
    [5]R. Rapp and J. Wambach, Adv. Nucl. Phys.25,1 (2000) [hep-ph/9909229].
    [6]T. Matsui and H. Satz, Phys. Lett. B 178,416 (1986).
    [7]X. L. Zhu, P. F. Zhuang and N. Xu, Phys. Lett. B 607,107 (2005) [nucl-th/0411093].
    [8]X. N. Wang and M. Gyulassy, Phys. Rev. Lett.68,1480 (1992).
    [9]J. Y. Ollitrault, Phys. Rev. D 46,229 (1992).
    [10]S. Voloshin and Y. Zhang, Z. Phys. C 70,665 (1996) [hep-ph/9407282].
    [11]P. F. Kolb, J. Sollfrank and U. W. Heinz, Phys. Rev. C 62,054909 (2000) [hep-ph/0006129].
    [12]STAR Collaboration (Ackermann, K.H. et al.) Phys.Rev.Lett.86 (2001) 402-407
    [13]H. H Gutbrod, A. M. Poskanzer, H. G. Ritter, Rep. Prog. Phys.52,267 (1989).
    [14]J. Barrette et al, Phys. Rev. Lett.73,2532 (1994).
    [15]X. N. Wang, Phys. Rev. D 43,104 (1991).
    [16]J. P. Blaizot and A. H. Mueller, Nucl. Phys. B 289,847 (1987).
    [17]K. Kajantie, P. V. Landshoff and J. Lindfors, Phys. Rev. Lett.59,2527 (1987). K. J. Eskola, K. Kajantie and J. Lindfors, Nucl. Phys. B 323,37 (1989).
    [18]A. Jahns, C. Spieles, H. Sorge, H. Stocker and W. Greiner, Phys. Rev. Lett.72,3464 (1994); H. Sorge, R. Mattiello, H. Stocker and W. Greiner, ibid.68,286 (1992).
    [19]B. Andersson, G. Gustafson and B. Nilsson-Almqvist, Nucl. Phys. B281,289 (1987); B. Nilsson-Almqvist and E. Stenlund, Comp. Phys. Comm.43,387 (1987).
    [20]A. Capella, U. Sukhatme and J. Tran Thanh Van, Z. Phys. C3,329 (1980); J. Ranft, Phys. Rev. D 37,1842 (1988); Phys. Lett. 188B,379 (1987).
    [21]K. Werner, Z. Phys. C42,85 (1989); Phys. Rep.232,87 (1993).
    [22]T. Sjostrand and M. van Zijl, Phys. Rev. D 36,2019 (1987); T. Sjostrand, Comp. Phys. Commun.39,347 (1986); T. Sjostrand and M. Bengtsson, ibid.43,367 (1987).
    [23]K. J. Eskola and M. Gyulassy, Phys. C 47,2329 (1993).
    [24]B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Phys. Rep.97,31 (1983).
    [25]T. Sjostrand, Comput. Phys. Commun.27,243 (1982).
    [26]X.-N. Wang and M. Gyulassy, Phys. Rev. D 44,3501 (1991); Comp. Phys. Commun.83, 304(1994).
    [27]X. N. Wang and M. Gyulassy, Phys. Rev. D 44,3501 (1991).
    [28]M. Gyulassy and X. N. Wang, Comput. Phys. Commun.83,307 (1994).
    [29]X. N. Wang, Phys. Rept.280,287 (1997).
    [30]S. E. Vance, M. Gyulassy and X. N. Wang, Phys. Lett B 443,45 (1998).
    [31]S. E. Vance and M. Gyulassy, Phys. Rev. Lett.83,1735 (1999).
    [32]V. T. Pop, M. Gyulassy, J. Barrette, C. Gale, X. N. Wang and N. Xu, Phys. Rev. C 70, 064906 (2004).
    [33]B. Zhang, C. M. Ko, B. A. Li and Z. W. Lin, Phys. Rev. C 61,067901 (2000).
    [34]T. K. Gaisser and F. Halzen, Phys. Rev. Lett.54,1754 (1985).
    [35]P. L'Heureux, B. Margolis and P. Valin, Phys. Rev. D 32,1681 (1985).
    [36]G. Pancheri and Y. N. Srivastava, Phys. Lett. B 182 (1986) 199.
    [37]L. Durand and P. Hong, Phys. Rev. Lett.58,303 (1987). L. Durand and H. Pi, Phys. Rev. D 38,78 (1988).
    [38]J. Dias de Deus and J. Kwiecinski, Phys. Lett. B 196,537 (1987).
    [39]R. C. Hwa, Phys. Rev. D 37,1830 (1988).
    [40]A. Capella, U. Sukhatme and J. Tran Thanh Van, Z. Phys. C 3,329 (1979).
    [41]T. K. Gaisser, F. Halzen and A. D. Martin, Phys. Lett. B 166,219 (1986).
    [42]T. Sjostrand and M. van Zijl, Phys. Rev. D 36,2019 (1987). T. Sjostrand, Comput. Phys. Commun.39,347 (1986).
    [43]W. R. Chen and R. C. Hwa, Phys. Rev. D 39,179 (1989).
    [44]D. W. Duke and J. F. Owens, Phys. Rev. D 30,49 (1984).
    [45]J. W. Cronin et al, Phys. Rev. D 11,3105 (1975).
    [46]D. J. Gross and F. Wilczek, Phys. Rev. Lett.30,1343 (1973).
    [47]H. D. Politzer, Phys. Rept.14,129 (1974).
    [48]S. Bethke, J. Phys. G 26, R27 (2000) [hep-ex/0004021].
    [49]M. Creutz, Phys. Rev. D 21,2308 (1980).
    [50]S. Necco and R. Sommer, Nucl. Phys. B 622,328 (2002)
    [51]M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147,385 (1979).
    [52]A. Chodos, R. L. Jaffe, K. Johnson and C. B. Thorn, Phys. Rev. D10,2599 (1974).
    [53]F. Karsch, Nucl. Phys. A 698,199 (2002)
    [54]F. Karsch, E. Laermann and A. Peikert, Nucl. Phys. B 605,579 (2001) [hep-lat/0012023].
    [55]Z. Fodor, Nucl. Phys. A 715,319 (2003) [hep-lat/0209101].
    [56]E. Braaten and R. D. Pisarski, Nucl. Phys. B 337,569 (1990).
    [57]J. P. Blaizot, E. Iancu and A. Rebhan, Phys. Lett. B 470,181 (1999) [hep-ph/9910309].
    [58]Z. Fodor, S. D. Katz and K. K. Szabo, Phys. Lett. B 568,73 (2003) [hep-lat/0208078].
    [59]C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F. Karsch, E. Laermann and C. Schmidt, Phys. Rev. D 68,014507 (2003) [hep-lat/0305007].
    [60]Y. L. Dokshitzer, D. Diakonov and S. I. Troian, Phys. Rept.58,269 (1980).
    [61]A. H. Mueller, Phys. Rept.73,237 (1981).
    [62]J. C. Collins, D. E. Soper and G. F. Sterman, Nucl. Phys. B 261,104 (1985).
    [63]V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys.15,438 (1972) [Yad. Fiz.15,781 (1972)].
    [64]Y. L. Dokshitzer, Sov. Phys. JETP 46,641 (1977) [Zh. Eksp. Teor. Fiz.73,1216 (1977)].
    [65]G. Altarelli and G. Parisi, Nucl. Phys. B 126,298 (1977).
    [66]E. Eichten, I. Hinchliffe, K. D. Lane and C. Quigg, Rev. Mod. Phys.56,579 (1984) [Addendum-ibid.58,1065 (1986)].
    [67]The Pomeron, proceedings of VII Rencontre de Moriond, Meribel-Les-Allues, March 4-16,1973, Vol. n, edited by J. Tran Thanh Van, Orsay 1975.
    [68]L. V. Gribov, E. M. Levin and M. G. Ryskin, Phys. Reports 100,1 (1983); Nucl. Phys. B188,555 (1981); Zh. Eksp. Teor. Fiz.80,2132 (1981).
    [69]A. Donnachie and P. V. Landshoff, Nucl. Phys. B267,690 (1986); ibid. B2M,322 (1984); Phys. Lett.296B,227 (1992).
    [70]Z. Koba, H. N. Nielsen, and P. Olesen, Nucl. Phys. BAQ,817 (1972); For a review of the scaling properties, see articles in Elastic and Diffractive Scatterings, edited by B. Nicolescu and J. Tran Thanh Van (Editions Frontieres, Frances,1985).
    [71]V. A. Abramovskii, O. V. Kancheli, and V. N. Gribov,1972 Rochester Conference Pro-ceedings, p.389; V. A. Abramovskii, V. N. Gribov, and O. V. Kancheli, Yad. Fiz.18,595 (1973) [Sov. J. Nucl. Phys.308 (1974)].
    [72]See, for example, I. Schiff, Quantum Mechanics (McGraw-Hill, New York,1964).
    [73]R. J. Glauber, Lectures in Theoretical Physics, edited by W. E. Brittin and L. G. Danham (Interscience, New York,1959), Vol. I; R. J. Glauber and G. Mathias, Nucl. Phys. B 21, 135 (1970); V. A. Abramovski, V. N. Gribov, and O. V. Kancheli, Yad. Fiz.18,595 (1973) [Sov. J. Nucl. Phys.18,308 (1974)].
    [74]L. Durand and H. Pi, Phys. Rev. Lett.303 (1987).
    [75]V. N. Gribov, Sov. Phys. JETP 26,414 (1968); see also articles in The Pomeron, Pro-ceedings of Ⅷ Rencontre de Moriond, Vol. Ⅱ, edited by J. Tran Thanh Van (CNRS Publications).
    [76]J. H. Weis, Acta Physica Polonica 51,85 (1976).
    [77]N. Amos et al, Nucl. Phys. B 262,689 (1985); L. A. Fajardo et al, Phys. Rev. D 24,461 (1987).
    [78]T. T. Chou and C. N. Yang, Phys. Rev. Lett.22,1213 (1968); T. T. Chou and C. N. Yang, Phys. Rev. D 170,1591 (1968).
    [79]S. J. Brodsky and H. J. Lu, Phys. Rev. Lett.64,1342 (1990).
    [80]J. Dias de Deus, Nucl. Phys. B 59 231 (1973); B 252,369 (1985).
    [81]A. W. Chao and C. N. Yang, Phys. Rev. D 8,2063 (1973).
    [82]W. R. Chen and R. C. Hwa, Phys. Rev. D 36,760 (1987); R. C. Hwa and X. N. Wang, ibid. 39,2561,2573 (1989).
    [83]U. Amladi, in High Energy Collisions 1973, Proceedings of the Fifth International Confer-ence, Stony Brook, New York, edited by C. Quigg (AIP, New York,1973), p.47.
    [84]K. Alpgard et al, Phys. Lett. B 131,309 (1983); G. J. Alner et. al., Phys. Lett. B 138,304 (1984); R. Battiston et al., Phys. Lett. B 117,126 (1982).
    [85]B. Durand and I. Sarcevic, Phys. Rev. D 35,2693 (1987).
    [86]M. Arneodo et al. [New Muon Collaboration], Nucl. Phys. B 481,3 (1996).
    [87]P. Bordalo et al, Phys. Lett. B 193,373 (1987); D. M. Alde et al, Phys. Rev. Lett. 64, 2479 (1990).
    [88]P. B. Straub et al, Phys. Rev. Lett. 68,452 (1992).
    [89]A. Bialas, M. Bleszynski and W. Czyz, Nucl. Phys. B 111,461 (1976).
    [90]A. Capella and J. Tran Thanh Van, Z. Phys. C 23,165 (1984) [Erratum-ibid. C 25,102 (1984)].
    [91]B. Andersson, G. Gustafson and B. Nilsson-Almqvist, Nucl. Phys. B 281,289 (1987). B. Nilsson-Almqvist and E. Stenlund, Comput. Phys. Commun.43,387 (1987).
    [92]J. Ranft, Phys. Rev. D 37,1842 (1988). J. Ranft, Phys. Lett. B 188,379 (1987).
    [93]X. N. Wang and M. Gyulassy, Phys. Rev. Lett.68,1480 (1992).
    [94]X. N. Wang and M. Gyulassy, Phys. Rev. D 45,844 (1992).
    [95]M. Gluck, E. Reya and A. Vogt, Z. Phys. C 67,433 (1995).
    [96]S. Y. Li and X. N. Wang, Phys. Lett. B 527,85 (2002) [arXiv:nucl-th/0110075].
    [97]V. Topor Pop, M. Gyulassy, J. Barrette, C. Gale, S. Jeon and R. Bellwied, Phys. Rev. C 75, 014904 (2007).
    [98]U. Amaldi and K. R. Schubert, Nucl. Phys. B 166,301 (1980).
    [99]M. Bozzo et al. [UA4 Collaboration], Phys. Lett. B 147,392 (1984).
    [100]G. J. Alner et al. [UA5 Collaboration], Z. Phys. C 32,153 (1986).
    [101]N. A. Amos et al. [E710 Collaboration], Phys. Rev. Lett.63,2784 (1989).
    [102]R. M. Baltrusaitis et al, Phys. Rev. Lett.52,1380 (1984).
    [103]T. Hara et al, Phys. Rev. Lett.50,2058 (1983). L. Durand and P. Hong, Phys. Rev. Lett. 58,303 (1987).
    [104]G. J. Alner et al [UA5 Collaboration], Z. Phys. C 33,1 (1986).
    [105]F. Abe et al. [CDF Collaboration], Phys. Rev. D 41,2330 (1990).
    [106]B. Alper et al. [British-Scandinavian Collaboration], Nucl. Phys. B 87,19 (1975).
    [107]C. Albajar et al. [UA1 Collaboration], Nucl. Phys. B 335,261 (1990).
    [108]F. Abe etal. [CDF Collaboration], Phys. Rev. Lett.61,1819 (1988).
    [109]W. Thome et al. [Aachen-CERN-Heidelberg-Munich Collaboration], Nucl. Phys. B 129, 365 (1977).
    [110]J. Whitmore, Phys. Rept.10,273 (1974). W. M. Morse et al, Phys. Rev. D 15,66 (1977). C. P. Ward et al, Nucl. Phys. B 153 (1979) 299.
    [111]R. Nouicer et al [PHOBOS Collaboration], J. Phys. G 30, S1133 (2004).
    [112]K. Aamodt et al [ALICE Collaboration], Eur. Phys. J. C 65,111 (2010); Eur. Phys. J. C 68,345 (2010).
    [113]V. Khachatryan et al. [CMS Collaboration], JHEP 1002,041 (2010).
    [114]V. Khachatryan et al. [CMS Collaboration], Phys. Rev. Lett 105,022002 (2010).
    [115]V. Khachatryan et al. [CMS Collaboration], JHEP 1009,091 (2010).
    [116]K. Aamodt et al. [ALICE Collaboration], Phys. Lett. B 693,53 (2010).
    [117]B. W. Harris and J. F. Owens, Phys. Rev. D 65 (2002) 094032.
    [118]H. Zhang, J. F. Owens, E. Wang and X. N. Wang, Phys. Rev. Lett.98,212301 (2007).
    [119]X. N. Wang and M. Gyulassy, Phys. Rev. Lett.86,3496 (2001).
    [120]K. J. Eskola, K. Kajantie and K. Tuominen, Phys. Lett. B 497,39 (2001).
    [121]Z. W. Lin, S. Pal, C. M. Ko, B. A. Li and B. Zhang, Phys. Rev. C 64,011902 (2001).
    [122]D. Kharzeev and M. Nardi, Phys. Lett. B 507,121 (2001).
    [123]M. Hirai, S. Kumano and M. Miyama, Phys. Rev. D 64,034003 (2001).
    [124]N. Armesto et al, J. Phys. G 35,054001 (2008).
    [125]S. S. Adler et al [PHENIX Collaboration], Phys. Rev. C 71,034908 (2005) [Erratam-ibid. C 71,049901 (2005)].
    [126]M. Gyulassy and X. N. Wang, Nucl. Phys. B 420,583 (1994).
    [127]R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne and D. Schiff, Nucl. Phys. B 484, 265 (1997).
    [128]U. A. Wiedemann, Nucl. Phys. B 588,303 (2000)
    [129]M. Gyulassy, P. Levai and I. Vitev, Nucl. Phys. B 594,371 (2001)
    [130]X. F. Guo and X. N. Wang, Phys. Rev. Lett.85,3591 (2000); X. N. Wang and X. F. Guo, Nucl. Phys. A 696,788 (2001).
    [131]B. I. Abelev etal [STAR Collaboration], arXiv:nucl-ex/0703016. C. P. Ward et al, Nucl. Phys. B 153 (1979) 299.
    [132]Gyulassy, M. et al. Phys. Lett. B 538 (2002) 282-288
    [133]Wang, Enke et al. Phys. Rev. Lett.89 (2002) 162301
    [134]Eskola, K.J. et al. JHEP 0904 (2009) 065
    [135]Vitev, Ivan et al. Phys.Rev.Lett.89 (2002) 252301
    [136]Quiroga-Arias, Paloma et al. Nucl.Phys. A855 (2011) 498-501
    [137]Barnafoldi, G.G. et al. Phys.Rev. C85 (2012) 024903
    [138]Neufeld, R.B. et al. Phys.Lett. B704 (2011) 590-595
    [139]Xing, Hongxi et al. Nucl.Phys. A879 (2012) 77-106
    [140]McLerran, Larry D. et al. Phys.Rev. D49 (1994) 2233-2241
    [141]Kharzeev, Dmitri et al. Phys.Rev. D68 (2003) 094013
    [142]Jalilian-Marian, Jamal et al. Phys.Rev. D85 (2012) 014017
    [143]Deng, Wei-Tian et al. Phys.Rev. C83 (2011) 014915
    [144]PHOBOS Collaboration (Alver, B. et al.) Phys.Rev. C83 (2011) 024913
    [145]STAR Collaboration (Adams, J. et al.) Phys.Lett. B637 (2006) 161-169
    [146]Hwa, Rudolph C. et al. Phys.Rev.Lett.93 (2004) 082302
    [147]Kopeliovich, B.Z. Phys.Lett. B243 (1990) 141-143
    [148]Andersson, Bo et al. Phys.Rept.97 (1983) 31-145
    [149]PHENIX Collaboration (Adler, S.S. et al.) Phys.Rev.Lett.91 (2003)
    [150]STAR Collaboration (Adams, J. et al.) Phys.Rev.Lett.91 (2003) 072304
    [151]Wang, Xin-Nian Phys.Rev. C61 (2000) 064910
    [152]ALICE Collaboration (Aamodt, K et al.) Phys.Rev.Lett.105 (2010) 252301
    [153]Frankfurt, L. et al. Phys.Rev. D71 (2005) 054001
    [154]ALICE Collaboration (Aamodt, K. et al.) Eur.PhysJ. C68 (2010) 89-108
    [155]ALICE Collaboration (Aamodt, K. et al.) Phys.Lett. B696 (2011) 30-39
    [156]CMS Collaboration (Chatrchyan, Serguei et al.) Eur.Phys.J. C72 (2012) 1945
    [157]Leonidov, A. et al. Eur.Phys.J. C71 (2011) 1537
    [158]Casalderrey-Solana, J. et al. JHEP 1108 (2011) 015
    [159]Mehtar-Tani, Yacine et al. Phys.Rev.Lett.106 (2011) 122002
    [160]Beraudo, Andrea et al. JHEP 1207 (2012) 144
    [161]PHOBOS Collaboration (Back, B.B. et al.) Phys.Rev.Lett.85 (2000) 3100-3104
    [162]PHENIX Collaboration (Adcox, K. et al.) Phys.Rev.Lett.87 (2001) 052301
    [163]STAR Collaboration (Adler, C. et al.) Phys.Rev.Lett.87 (2001) 112303
    [164]Kajantie, K. et al. Phys.Rev.Lett.59 (1987) 2527
    [165]Eskola, K.J. et al. Nucl.Phys. B323 (1989) 37
    [166]Eskola, K.J. et al. Phys.Lett. B374 (1996) 20-24
    [167]Heinz, Ulrich W. AIP Conf.Proc.739 (2005) 163-180
    [168]PHENIX Collaboration (Adcox, K. et al.) Phys.Rev.Lett.88 (2002) 022301
    [169]STAR Collaboration (Adler, C. et al.) Phys.Rev.Lett.90 (2003) 082302
    [170]Wang, Xin-Nian Phys.Rev. D46 (1992) 1900-1902
    [171]H. Song and U. W. Heinz, Phys. Rev. D 77, (2008) 064901
    [172]PHENIX Collaboration (Adler, S.S. et al.) Phys.Rev.Lett.97 (2006) 052301
    [173]Stephanov, Misha A. et al. Phys.Rev. D60 (1999) 114028
    [174]Jeon, S. et al. Phys.Rev.Lett.85 (2000) 2076-2079
    [175]Stephanov, Misha A. Phys.Rev. D65 (2002) 096008
    [176]Aziz, Mohamed Abdel et al. Phys.Rev. C70 (2004) 034905
    [177]Gavin, Sean et al. Phys.Rev.Lett.97 (2006) 162302
    [178]Wang, Meijuan et al. J.Phys. G36 (2009) 064070
    [179]Kharzeev, Dmitri et al. Nucl.Phys. A748 (2005) 627-640
    [180]Kolb, Peter F. et al. In Hwa, R.C. (ed.) et al.634-714
    [181]STAR Collaboration (Adams, John et al.) J.Phys. G32 (2006) L37-L48
    [182]Gyulassy, Miklos et al. NucllPhys. A750 (2005) 30-63
    [183]Policastro, G. et al. Phys.Rev.Lett.87 (2001) 081601

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700