生物网络的结构辨识与参数估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用工程学和系统科学方法,分别以离散一阶线性、离散二阶线性、离散非线性、连续非线性、连续-离散非线性状态空间模型框架对动态生物网络进行了描述,并对生物网络的结构辨识和参数估计方法进行了探索,这为环境和药物干扰下系统动态特性分析及其控制研究奠定了基础。具体内容如下:
     (1)提出和发展了约束性扩展卡尔曼滤波。网络结构约束是基因网络的参数估计区别于工程技术中的参数估计的显著标志。在工程技术领域中,我们一般不考虑系统的结构,但是基因网络是有结构的。有的基因之间具有相互作用,有的基因之间没有相互作用。基因网络参数估计算法中必须包含网络结构性约束。
     (2)与Hao Xiong和Yoonsuck(2008)合作独立提出了调控网络的二阶线性状态空间模型。发展了用扩展卡尔曼滤波估计基因网络的二阶线性状态空间模型。基于芯片表达数据的调控网络通常采用一阶线性状态空间模型。针对调控网络,Hao和Yoonsuck用EM算法估计二阶线性模型的参数,而我们用扩展卡尔曼滤波来估计同样模型的参数。
     (3)把扩展卡尔曼滤波用于非线性代谢网络、信号转导网络的动力学方程的参数估计,发展了可用于一般非线性动态系统的扩展卡尔曼滤波参数估计方法。
     (4)提出用Rao-blackwellised粒子滤波对非线性生物网络进行参数估计。
     (5)生物网络一般为具有离散观测数据的连续动态系统。这种生物网络更适合用混合非线性状态空间模型来描述。我们尝试估计这类混合非线性模型的生物网络的参数,发展了连续-离散非线性状态空间模型参数估计算法,并将其应用于JAK-STAT信号转导通路。
     (6)信号转导网络和基因调控网络的数据多数是多次实验的面板数据。目前还没有现成的针对面板数据的参数估计算法。本研究发展处理面板数据的参数估计方法,将采样数写入状态空间模型,并对扩展卡尔曼滤波算法和Rao-Blackwellised粒子滤波算法重新进行推导。
     (7)发展了新的EKF_EM混合算法:以EKF方法同时估计状态和参数,同时采用EM算法估计系统噪音协方差矩阵和观测噪音协方差矩阵。算法精度得到一定程度的提高。
     (8)首次采用分布估计算法搜索流行病数据的动态模型,并与遗传算法进行比较,发展了与遗传算法或分布估计算法结合的扩展卡尔曼滤波算法。
Our study focused on developing methods to recognize the biological network and estimate its parameters. Identification of the dynamic biological networks is a tough but vital work. Without the estimated parameters in the identification of dynamic biological networks, any quantitative analysis of the biological process could not be implemented. Up to date, little related work has been reported in the literature, except of the existing methods used in simple applications. The methods have not been developed corresponding to biological networks identification and parameter estimation. State-space approach to modelling biological networks is presented in this report. We are mainly devoted to the following eight aspects on structure identification and parameters estimation:
     (1) We put forward and develop extended kalman filter with structural constraints. Structural constraints are the main distinctive characteristics during applying extended kalman filter algorithm in genetic networks area and in engineering technology area. The latter usually has not been taken into account in structural information. However, genetic networks have structural information. For example, there are mutual interactions between some genes, but they may be not between others. Structural constraints can help trim the number of parameters that need estimate and alleviate over-fitting, which are especially acute given the limited amount of data we have.
     (2) Hao Xiong and we cooperatively and independently develop a second-order dynamics model in genetic networks and present the extended kalman filter to estimate the parameters in the second-order linear state-space model for gene regulation networks. The Gene regulation networks based on microarray gene expression profile data are usually adopted one-order linear state-space model. Hao and Yoonsuck used expectation maximization (EM) to estimate the parameters in the second-order linear state-space model for gene regulation networks, while we implement the extended kalman filter to estimate the parameters in second-order linear state-space model for gene regulation networks.
     (3) This is the first study to use the iterated extended kalman filter to estimate the parameters in nonlinear state-space model for biological networks and to develop extended kalman filter to estimate the parameter in general nonlinear state-space model for biological networks.
     (4) We are the first one to propose rao-blackwellised particle filter algorithm to estimate the parameters in nonlinear state-space model for biological networks, and also the first one to adopt rao-blackwellised particle filter algorithm to estimate the parameter in general nonlinear dynamic system.
     (5) This is the first time to implement continuous-time extended kalman filter for linear and nonlinear continuous-time dynamics with continuous-time measurements in the biological networks. We program the Hybrid extended kalman filter for linear and nonlinear continuous-time dynamics with discrete-time measurements in biology networks.
     (6) We deal with panel data in our parameter estimation algorithm. Multiple samples in the time-course data are seldom appeared in engineer application but it is common in biology data. So, we incorporate multiple samples into the state-space equation. Since mathematical model becomes more complex, the derived process of EKF and RBPF algorithm were more difficult. We finished all programs and had the absolute patent right.
     (7) This is the first study to use EM algorithm to estimate system noise covariance Q and measurement noise covariance R during adopting extend kalman filter to estimate the parameter in nonlinear dynamical state-space models for gene regulation and signal transduction networks. Since the state and state error covariance in the EKF depend on the initial values of parameters system noise covariance Q and the measurement noise covariance R. Thus, we consider a simple recursive procedure for estimation of the parameters Q and R. the precision of the algorithm is greatly improved.
     (8) We use the estimation of distribution algorithm for the first time to search the networks of epidemic disease data and compare it with genetic algorithm. Experiment results showed that the estimation of distribution algorithm has the following advantages: fast convergence speed, consume little time, easy to obtain the optimal solution and do not destroy the relationships between the variables.
引文
[1]H.Kitano.Computational Systems Biology[J].Nature,2002,420:206-210.
    [2]吴家睿.论”Systems Biology”的译名问题[J].科学,2005,57(4):
    [3]Hood L.A personal view of molecular technology and how it has changed biology [J].Journal of Proteome Research,2002,1(5):399-409.
    [4]H.Kitano.Perspectives on systems biology[J].New Generation Computing,2000,18(3):199-216.
    [5]N.Weiner.Cybernetics or control and communication in the animal and the machine[M].MIT press,1948:196.
    [6]L.V.Bertalanffy.General System Theory:foundations,development,applications [M].New York:Braziler,1968:295.
    [7]M.A.Savageau.Biochemical systems theory and metabolic control theory:fundamental similarities and differences[J].Mathematical Biosciences,1987,86:127.
    [8]E.O.Voit.生物化学系统的计算分析[砌.世图出版公司,2004,1:544.
    [9]吴家睿,系统生物学面面观[J].Website:http://www.kexuemag.com/artdetail.asp?name=489
    [10]H.Kitano.Foundations of Systems Biology[M].MIT Press,2001:320.
    [11]H.Kitano.Systems Biology:a Brief Overview[J].Science,2002,295(5560):1662-1664.
    [12]鲁强.系统生物学综述.[J].Weblink:http://ibp.hust.edu.cn/lu/BioLAB/docs/intro_sb.htm
    [13]Kunal Aggarwal.Functional genomics and proteomics as a foundation for systems biology[J].Briefings in Functional Genomics and Proteomics,2003,2(3):175-184.
    [14]罗若愚.系统生物学中建模方法的研究现状及展望[J].生命科学,2007,19(3):301-305.
    [15]F.Hayes-Roth,D.A.Waterman and D.B.Lenat.Building Expert system [M].London:Addison-Wesley,1983:444.
    [16]Meyers S.Knowledge-based simulation of genetic regulation in bacteriophage lambda[J].Nucleic acids Research,1984,12(1),1-9.
    [17]D.R.Bickel.Probabilities of spurious connections in gene networks:application to expression time series[J].Bioinformatics,2005,21(7):1121-1128.
    [18]刘万霖.基于微阵列数据构建基因调控网络,遗传,2007,29(12):1434-1442.
    [19]D. Pe'er. Inferring sub networks from perturbed expression profiles [J].Bioinformatics, 2001, 17(Suppl. 1):s215-s224.
    [20]S. Kim, S. Imoto, S. Miyano. Inferring gene networks from time series microarray data using dynamic Bayesian networks [J]. Brief Bioinformatics, 2003,4(3): 228-235.
    [21]D. Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks [J].Bioinformatics, 2003,19(17): 2271-2282.
    [22]Ong IM. Modeling regulatory pathways in E. coli from time series expression profiles [J]. Bioinformatics, 2002,18(Suppl. 1): s241-8.
    [23]P. Smolen. Mathematical modeling of gene networks [J]. Neuron, 2000,26(3):567-580.
    [24]P. Baldi, S. Brunak.生物信息学机器学习方法 [M].北京:中信出版社, 2003:405.
    [25]R. Somogyi. C. Snieqoski. Modeling the complexity of Genetic Networks:Understanding Multigenic and Pleiotropic Regulation [J].Complexity, 1996, 1:45-63.
    [26]S. Liang, S. Fuhrman. Reveal, a General Reverse Engineering Algorithm for Inference of Genetic Network Architectures. Pacific Symposium on Biocomputing, 1998, 3:18-29.
    [27]Hidde De Jong. Modeling and Simulation of Genetic Regulatory Systems: A Literature Review [J]. Journal of computational biology, 2002, 9(l):67-103.
    [28]D.Thieffy. Qualitative Analysis of Gene Networks [J]. Pacific Symposium on Biocomputing, 1998, 77-88.
    [29]H. V. Westerhoff. The evolution of molecular biology into systems biology [J].Nature Biotechnology, 2004, 22:1249-1252.
    [30]D. Seqre. Analysis of optimality in natural and perturbed metabolic networks [J].Proc Natl Acad Sci USA, 2002, 99(23):15112-15117.
    [31]R. Y. Luo. Dynamic analysis of optimality in myocardial metabolic networks under normal and ischemic conditions [J].Mol. Syst .Biol. 2006, 2: 1-6.
    [32]T. Chen. Modeling gene expression with differential equations [J]. Proc. Symp.On Biocomputing, 1999, 29-40.
    [33]M. Yeung. Reverse engineering gene networks using singular value decomposition and robust regression [J]. PNAS, 2002,99(9):6163-6168.
    [34]J.L.Michiel. Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equation [J]. Pacific symposium on biocomputing, 2003, 8:17-28:
    [35]J.Gouze. a class of piecewise linear differential equations arising in biological models [J]. Dynamical systems: an international journal, 1468-9375, 2002,17(4):299-316.
    [36]H. De. Jong. Qualitative simulation of genetic regulatory networks using piecewise-linear models [J]. Bulletin of mathematical biology, 2004, 66(2):301-340.
    [37]M. Wahde. Coarse-grained reverses engineering of genetic regulatory networks [J]. Biosystems, 2000, 55(1-3): 129-36.
    [38]S. Kicuchi. Dynamic modeling of genetic networks using genetic algorithm and S-system [J]. bioinformatics, 2003,19(5):643-650.
    [39]Sakamoto. Identifying gene regulatory network as differential equations by genetic programming [J]. Genome Informatics, 2000,11:281-283.
    [40]T.T.Vu. Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae [J]. Nucleic Acids Research,2007,35(1):279-287.
    [41]G. M. Suel. An excitable gene regulatory circuit induces transient cellular differentiation [J]. Nature, 2006,440,545-550.
    [42]T. Akutsu. Inferring qualitative relations in genetic networks and metabolic pathways [J]. Bioinformatics, 2000,16(8):727-734.
    [43]J. Gebert. Modeling gene regulatory networks with piecewise linear differential equations [J]. European Journal of Operational Research, 2007, 181(3): 1148-1165.
    [44]J. Paulsson. Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks [J].Phys. Rev. Lett. 2000,84(23):5447-5450.
    [45]J. Paulsson. Stochastic focusing: Fluctuation enhanced sensitivity of intracellular regulation [J]. PNAS,2000, 97(13):7148-7153.
    [46]M. Thattai. Intrinsic noise in gene regulatory networks [J].PNAS,2001,98(15):8614-8619.
    [47]M.B. Elowitz. A synthetic oscillatory network of transcriptional regulators [J].Nature, 2000, 403:335-338.
    [48]A.Becskei.Engineering stability in gene networks by auto regulation[J].Nature,2000,405:590-593.
    [49]D.T Gillespie.A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[J].J.Comp.Phys,1976,22(4):403-434.
    [50]C.V.Rao.Control,exploitation and tolerance of intracellular noise[J].Nature,2002,420:231-237.
    [51]吴梧桐,系统生物学与药物发现研究[J].药物生物技术,2006,5:315-321.
    [52]L.HOOD.System biology and new technologies enable predictive and preventative medicine[J].Science,2004,306(5696):640-643.
    [53]杨胜利,系统生物学研究进展,中国科学院院刊[J].2004:
    [54]Zadeh.From Circuit Theory to System Theory[J].Proc IRE,1962,50(5):856-865.
    [55]伍清河.系统辨识[R].北京理工大学自动控制系,2004-2005学年第二学期硕士研究生课程讲义.
    [56]P.Eykhoff.System Identification:Parameter and State Estimation[M].London:John Wiley,1974:555.
    [57]H.de Jong.Modeling and simulation of genetic regulatory systems:a literature review[J].J Comput.Biol,2002,9:67-103.
    [58]系统辨识与建模教案.website:http://www.cctr.net.cn/search_courseware_detail.asp?id=2341
    [59]H.E.Assmus,R.Herwig,K.H.Cho,O.Wolkenhauer.Dynamics of biological systems:role of systems biology in medical research[J].Expert Review of Molecular Diagnostics,2006,6:891-902.
    [60]C.G.Moles,Pedro Mendes,J.R.Banga.Parameter estimation in biochemical pathways:a comparison of global optimization methods[J].Genome Research,2003,13:2467-2474.
    [61]F.J.Romero-campero,Hongqing Cao,M.Camara,N.Krasnogor.Structure and parameter estimation for cell systems biology models
    [C].USA:atlanta,Proceedings of the 10th annual conference on genetic and evolutionary computation,2008:331-338.
    [62]J.R.Banga.Optimization in computational systems biology[J].BMC systems biology,2008,2:47.
    [63]H.Xiong,Y.Choe.Structural systems identification of genetic regulatory networks[J].Bioinformatics,2008,24(4):553-60.
    [64]A.Golightly,D.J.Wilkinson.Bayesian inference for nonlinear multivariate diffusion models observed with error [J]. Computational Statistics and Data AnaIysis,2008,52(3): 1674-1693.
    [65]O. Wolkenhauer, M .Ullah, P. Wellstead, K.H. Cho. The dynamic systems approach to control and regulation of intracellular networks [J]: FEBS Lett,2005,579: 1846-1853.
    [66]H. De Jong. Modeling and simulation of genetic regulatory systems: a literature review [J]. J Comput. Biol, 2002, 9:67-103.
    [67]P. Eykhoff. System Identification: Parameter and State Estimation [M]. London:John Wiley, 1974:555.
    [68]L. Ljung. System Identification - Theory for the User [M]. Englewood Cliffs, N J:Prentice-Hall, 1987:519.
    [1]Xiong MM and Jin L. State-space approach to modeling dynamics of gene regulation in networks[C]. Busan, Korea: Proceedings of the 2005 International Joint Conference of InCob, AASBi and KSBI, 2005:191-196.
    [2]A.H.Jazwinski. Stochastic processes and filtering theory [M].New York: Academic Press, 1970:376.
    [3]J.A.Bilmes. A gentle tutorial on the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden markov models[R].Berkeley,CA:Technical report ICSI-TR-97-02, International computer science institute, 1997:
    [4]R. H. Shumway and D. S. Staffer. An approach to time series smoothing and forecasting using the EM algorithm [J]. Journal of Time Series Analysis, 1982,3(4): 253-264.
    [5]Momiao Xiong.Introduction to computational systems biology [R].Shanghai:Fudan University, 2006:
    [6]L. Ljung. Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems [J]. IEEE Transactions on automatic control, 1979,AC-24(1):36-50.
    [7]Max Welling.The kalman filter[R]. Max welling's Classnotes in machine learning.Website:http://www.cs.toronto.edu/-welling/classnotes/classnotes.html
    [8]Sam Roweis, Zoubin Ghahramani. Learning nonlinear dynamical systems using the EM Algorithm [J]. kalman filtering and neural networks,2001,175-220.
    [9]Mark Briers, Arnaud Doucet and Simon Maskell. Smoothing algorithm for state-space models[R].Cambridge University Engineering Department Technical Report,CUED/F-INFENG/TR.498, August 2004:
    [10]R.H. Battin, An introduction to the mathematics and methods of Astrodynamics[M].New York: American Institute of Aeronautics and Astronautics, Inc., 1987:799.
    [11]M.S. Grewal and A.P. Andrews. Kalman filtering: Theory and Practice using matlab, Second Edition [M]. New York: John wiley & sons, Inc., 2001:592.
    [12]Rvd Merwe and EA Wan. The square-root unscented kalman filter for state and parameter estimation [C].USA: salt Lake City, Proc. Of the international conference on acoustics, speech and signal processing, 2001:
    [13]Hao Xiong. Structural system identification of genetic regulatory networks [J].Bioinformatics, 2008, 24(4):553-560.
    [14]R.B.Schnabel, Elizabeth Eskow.A revised modified cholesky factorization algorithm [J]. SIAM Journal on optimization. 1999, 9(4): 1135-1148.
    [15]E. Eskow and B.S Robert. Algorithm 695: software for a new modified cholesky factorization [J]. ACM Transactions on Mathematical software. 1991, 17(3):306-31.
    [16]P Li, R.Goodall and V Kadirkamanathan. Estimation of parameters in a linear state space model using a Rao-Blackwelllised particle filters [J]. IEE Proceedings on control Theory and Applications,2004, 151(6):727-738.
    [17]F.M.Camas, J. Blazquez and J.F. Poyatos. Autogenous and nonautogenous control of response in a genetic network [J]. PNAS, 2006, 103(34): 12718-12723.
    [18]N. Friedman, S. Vardi, M. Ronen, U. Alon, J. Stavans. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria [J]. PLoS biology, 2005, 3(7): e238.
    [19]M. Ronen, R. Rosenberg, B.I. Shraiman, U. Alon. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics [J]. PANS, 2002, 99(16), 10555-10560.
    [20]Steve Weller.The extended kalman filter, Website:http://sigpromu.org/steve/research/Extended_Kalman_Filter.pdf
    [21]R.S. Thomas, B.C. Allen , A. Nong , L. Yang , E. Bermudez , H.J. Clewell, M.E.Andersen. A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure [J]. Toxicology Science. 2007,98(1):240-8.
    [22]B. D.O. Anderson, J. B. Moore. Optimal filtering [M]. Prentice-Hall, 1979:596.
    [23]G. Welch, G. Bishop. An introduction to the kalman filer[R]. University of North Carolina at Chapel Hill: Technical Report, TR 95-041, 2004:
    [24]万莉,刘焰春,皮亦鸣. ekf、ukf、pf 目标跟踪性能的比较[J].雷达科学与技术, 2007,5(1):13-16.
    [25]S. J. Julier, J. K. Uhlmann. Unscented filtering and nonlinear estimation [J].Proceedings of the IEEE, 2004, 92(3):401-h422.
    [26]A.Wan Eric,R. Merwe. The unscented kalman filter for nonlinear estimation[C].Alberta, Canada: Proceedings of International Symposium on Adaptive Systems for Signal Processing,Communications and Control,2000:153-158.
    [27]N.J.Gordon,D.J.Salmond.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings on Radar and Signal Processing,1993.140(2):107-113.
    [28]M.S.Arulampalam,S.Maskell,N.Gordon,T.Clapp.A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
    [29]A.Doucet.On sequential simulation-based methods for bayesian filtering[R].University of Cambridge:Technical Report,CUED/F-INFENG /TR.310,1998:
    [30]R.Merwe,A.Doucet,Freitas Nando de,Eric Wan.The unscented particle filters[R].Cambridge University,engineering department:Technical report,CUED/F-INFENG/TR 380,2000:
    [31]Thomas Schon.Fredrik Gustafsson,Per-Johan Nordlund.Marginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Trans on Signal Processing,2005,53(7):2279-2289.
    [32]姜雪原.基于Marginalized粒子滤波的卫星姿态估计算法[J].控制与决策,2007,22(1),39-44.
    [33]F.Mustiere,M.Bolic,M.Bouchard.A Modified Rao-Blackwellised Particle Filter[C].Toulouse,France:IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2006:
    [34]F.Mustiere,M.Bolic and M.Bouchard,Rao-Blackwellised Particle Filters:examples of applications[C].Ottawa,Canada:IEEE Canadian Conference on Electrical and Computer Engineering(CCECE) 2006:
    [35]M.S.Arulampalam,S.Maskell,N.Gordon,and T.Clapp.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans.Signal Process,2002,50(2),174-188.
    [36]G.Kitagawa.Monte Carlo filter and smoother for non-Gaussian nonlinear state space models[J].Journal of computational and graphical statistics,1996,5(1),1-25.
    [1]Hao Xiong, Yoonsuck Choe. Structural systems identification of genetic regulatory networks [J]. Bioinformatics, 2008,24(4): 553-560.
    [2]Xiong MM and L.Jin. State-space approach to modeling dynamics of gene regulation in networks [C]. Busan, Korea: Proceedings of the 2005 International Joint Conference of InCob, AASBi and KSBI,2005:191-196.
    [3]Sun Xiaodian, Qian J, Jin Lin and Xiong MM. State Space equations for modeling gene networks [C]. Shanghai, China: Proceedings of the First International Conference on Computational Systems Biology, 2006: 205-212.
    [4]K. Ogata. System dynamics [M]. Prentice Hall. Upper Saddle Rive,New Jersey, 1998:758.
    [5]Xiaodian Sun, Qinghua Zhou. Rao-Blackwellised Particle filter for gene regulation networks [C]. Shanghai, China: ICBBE, 2008:
    [1]S.Bader,S.K(u|¨)hner,A.C.Gavin.Interaction networks for systems biology[J].FEBS Letter,2008,582(8):1220-1224.
    [2]I.Swameye,T.G.Muller,J.Timmer,O.Sandra,U.Klingmuller.Identificat-ion of nucleocytoplasmic cycling as a remote sensor in cellular signaling by data based modeling[J].PNAS,2003,100(3):1028-1033.
    [3]S.Grimbs,J.Selbig,S.Bulik,H.G.Holzh(u|¨)tter,R.Steuer.The stability and robustness of metabolic states:identifying stabilizing sites in metabolic networks [J].Molecular systems biology,2007,3:146.
    [4] E.Klipp, W. Liebermeister. Mathematical modeling of intracellular signaling pathways [J]. BMC Neuroscience, 2006, 7(Suppl 1):S10.
    [5] A.W.Natal, V. Riel. Dynamic modeling and analysis of biochemical networks:mechanism-based models and model-based experiments [J].Briefings in Bioinformatics, 2006, 7(4):364-374.
    [6] B.N. Kholodenko, A. Kiyatkin, F.J. Bruggeman, E.Sontag, H.V. Westerhoff, J.B.Hoek. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks [J].PNAS, 2002, 99(20): 12841-12846.
    [7] S. Borger, W. Liebermeister, J. Uhlendorf, E. Klipp. Automatically generated model of a metabolic network [J]. Genome Informatics Series, 18,215-224.
    [8] R. Steuer, T.Gross, J. Selbig, B. Blasius.Structural kinetic modeling of metabolic networks [J].PNAS, 2006, 103(32):11868-11873.
    [9] J.L. Snoep. The silicon cell initiative: working towards a detailed kinetic description at the cellular level [J]. Current opinion in biotechnology, 2005,16:336-343.
    [10]G.V. HarshaRani, S.J. Vayttaden and U.S. Bhalla. Electronic Data Sources for Kinetic Models of Cell Signaling [J]. Journal of Biochemistry, 2005, 137:653-657.
    [11]T. Maiwald, C. Kreutz, A.C. Pfeifer, S. Bohl, U. Klingmuller, J. Timmer.Dynamic pathway modeling: feasibility analysis and optimal experimental design [J]. Annals of the New York Academy of Science, 2007, 1115:212-220.
    [12]I. Arisi, A. Cattaneo, V. Rosato. Parameter estimate of signal transduction pathways [J].BMC Neuroscience, 2006, 7(Suppl 1):S6.
    [13]C.G. Moles, P. Mendes and J.R. Banga. Parameter Estimation in Biochemical Pathways: a Comparison of Global Optimization Methods [J].Genome Res, 2003,13:2467-2474.
    [14]M. Rodriguez-Fernandez , J.A. Egea , J.R. Banga .Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems [J]. BMC Bioinformatics,2006,7:483.
    [15]T. Tian , S. Xu , J. Gao , K. Burrage .Simulated maximum likelihood method for estimating kinetic rates in gene expression [J].Bioinformatics, 2006, 23(1):84-91.
    [16]M. Sugimoto, S. Kikuchi, M. Tomita-Reverse engineering of biochemical equations from time-course data by means of genetic programming [J].Biosystems, 2005, 80(2):155-164.
    [17]T.Kitayama, A.Kinoshita, M.Sugimoto, Y.Nakayama,M.A.Tomita . Simplified method for power-law modeling of metabolic pathways from time-course data and steady-state flux profiles [J]. Theoretical biology and medical modeling, 2006, 3:24.
    [18]I.C. Chou , H. Martens , E.O. Voit .Parameter estimation in biochemical systems models with alternating regression [J]. Theoretical biology and medical modeling,2006, 3:25.
    [19]M. Quach , N. Brunei , F. d'Alche-Buc.Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference [J].Bioinformatics, 2007, 23(23):3209-3216.
    [20]P.J. Costa. Adaptive model architecture and extended Kalman-Bucy filters [J].IEEE Trans. Aerosp. Electron. Syst, 1994, 30: 525-533.
    [21]Z. Ghahramani and S. Roweis. Learning nonlinear dynamical systems using an EM algorithm [M]. Cambridge: The MIT Press, 1999, Advances in Neural Information Processing Systems 11,431-437.
    [22]W. Kolch. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interaction [J].Biochem. J,2000, 351:289-305.
    [23]D. Simon.Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches [M]. New Jersey:John Wiley & Sons, Inc.,2006:552.
    [24]S.J. Julier and J.K. Uhlmann. Unscented filtering and nonlinear estimation [J].Proceedings of the IEEE, 2004,92: 401-422.
    [25]A. Doucet, S. Godsill, C. Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering [J].Statistics and Computing,2000,10: 197-208.
    [26]L. Lang, W. Chen, B.R. Bakshi , P.K. Goel, and S. Ungarala. Bayesian estimation via sequential Monte Carlo Sampling—Constrained dynamic systems[J]. Automatica, 2007, 3: 1615-1622.
    [27]H.R. K(?)nsch. Recursive Monte Carlo filters: algorithms and theoretical analysis [J]. Annals of Statistics, 2005, 33:1983-2021.
    [28]S.A. Sisson , Y. Fan , M.M. Tanaka .Sequential Monte Carlo without Likelihoods [J].Proc. Natl. Acad. Sci, 2007, 104: 1760-1765.
    [29]X.L. Hu, T.B. Schon and L. Ljung. A basic convergence Result for Particle Filtering [J].IEEE Transactions on Signal Processing, 56(4): 1337-1348.
    [30]K. Ogata. System Dynamics. Forth edition [M]. New Jersey: Prentice Hall, Upper Saddle River, 1998:784.
    [31]I. Nachman, A. Regev, N. Friedman. Inferring quantitative models of regulatory networks from expression data [J].Bioinformatics,2004, 20(Suppl 1):248-256.
    [32]T.B. Schon. Estimation of Nonlinear Dynamic Systems - Theory and Applications [D]. Sweden: Linkoping University,2006:
    [33]J. Timmer, T.G.M. Muller, I. Swameye, O.Sandra, U. Klingmuller. Modeling the nonlinear dynamics of cellular signal transduction [J]. International Journal of Bifurcation and Chaos, 2004,14: 2069-2079.
    [34]T. Kisseleva, S. Bhattacharya, J. Braunstein, C.W. Schindler. Signaling through the JAK/STAT pathway, recent advances and future Challenges [J].Gene.,2002,285:1-24.
    [35]N. Jamshidi, B.0. Palsson. Formulating genome-scale kinetic models in the post-genome era [J].Molecular Systems Biology,2008,4:171.
    [36]P. Li, R. Goodall, V. Kadirkamanathan. Estimation of parameters in a linear state space model using a Rao-Blackwellised particle Filter [J]. IEE Proc. Control Theory Appl.,2004,151:727-738.
    [37]A. Germani, C. Manes, P. Palumbo. Polynomial extended kalman filtering for discrete-time nonlinear stochastic systems[C]. USA: Hawii, Proceedings of the 42~(nd) IEEE Conference on Decision and Control Maui,2003.
    [38]K.H. Cho, S.Y. Shin, H.W. Kim, O. Wolkenhauer, B. McFerran, W. Kolch. Mathematical Modeling of the influence of RKIP on the ERK Signaling Pathway [J].Lecture Notes in computer Science,2002,2602: 127-141.
    [39]A. Sitz, U. Schwarz, J. Kurths, H.U. Voss. Estimation of parameters and unobserved components for nonlinear systems from noisy time series [J].Physical review E,2002,66: 016210.
    [40]G. Riddihough, B.A. Purnell, J. Travis. Freedom of expression. Introduction to special issue [J]. Science,2008, 319(5871): 1781.
    [41]Thomas Schon, Fredrik Gustafsson. Marginalized Particle Filters for Mixed Linear/Nonlinear State-Space Model [J].IEEE Transaction on signal processing,2005,53(7):2279-2289.
    [42]Thomas Schon. Marginalized Particle Filters for Nonlinear State-Space Models[R]. Technical reports Website: http://www.control.isy.liu.se/publications
    [43]M.Elowitz, S.A Leibler. Synthetic oscillatory network of transcriptional regulators [J]. Nature, 403, 335-338.
    [44]T. Schon. on computational methods for nonlinear estimation [D]. Sweden: Linkoping University,2003:
    [45]B.Thomas. Schon, Rickard karlsson and Fredrik gustafsson.The marginalized particle filter-analysis, applications and generalizations [J]. ESAIM:PROCEEDINGS, 2007, 1-10.
    [46]Thomas B. Schon. Estimation of nonlinear dynamic systems theory and applications [R]. Technical report. Linkoping University, 2006:
    [47]P.J. Nordlund. Sequential Monte Carlo filters and integrated navigation [D].Sweden: Linkoping University,2002:
    [48]T. Schon, R. Karlsson, F. Gustafsson. The marginalized particle filter in practice [D]. Sweden: Linkoping University,2005.
    [49]N.J. Gordon, D.J. Salmond, A.F.M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEE Proceedings, 1993,140(2): 107-113.
    [50]Thomas Schon, Fredrik Gustafsson, Per-Johan Nordlund, Marginalized particle filters for nonlinear state-space models [J]. Weblink: http://www.control.isy.liu.se
    [51]Yin jianjun, zhang jianqiu, mike klaas. The marginal rao-blackwellized particle filter for mixed linear/nonlinear state space models, Chinese journal of aeronautics,2007, 20,348-354.
    [52]M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp, A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking [J].IEEE Transactions on signal processing,2002,50(2):14-188.
    [1]A.P.塞奇,J.L.梅尔萨.估计理论及其在通讯与控制中的应用[M].科学出版社,1978:620.
    [2]Vladimir Formin,Optimal Filtering:Volume 1:filtering of stochastic process [M].Kluwer academic publishers,2003:375.
    [3]Arthur Gelb,Applied Optimal Estimation[M].Cambridge:Massachusetts and London,England,1974:374.
    [4]Brian D.O.Anderson,John B.Moore,Optimal Filtering[M].Englewood Cliffs:Prentice-Hall,Inc,1979,357.
    [5]John L.Crassidis,John L.Junkins,Optimal estimation of dynamic systems[M].Chapman & Hall/CRC,2004:591.
    [7]Andrew H.Jazwinski,Stochastic processes and filtering theory[M].New York and London:academic press,1970:376.
    [8]Bangalor,India and Lowell,Massachusetts.Nonlinear filtering and smoothing:an introduction to martingales,stochastic integrals and estimation,a wiley-interscience publication,1984,314.
    [9]Dan Simon.Optimal state estimation:Kalman,Hinf and nonlinear approaches[M].A John wiley & SONS,INC.,2006:550.
    [1]A.P.塞奇,J.L.梅尔萨.估计理论及其在通讯与控制中的应用[M].科学出版社,1978:620.
    [2]Vladimir Formin,Optimal Filtering:Volume 1:filtering of stochastic process [M].Kluwer academic publishers,2003:375.
    [3]Arthur Gelb,Applied Optimal Estimation[M].Cambridge:Massachusetts and London,England,1974:374.
    [4]Brian D.O.Anderson,John B.Moore,Optimal Filtering[M].Englewood Cliffs:Prentice-Hall,Inc,1979,357.
    [5]John L.Crassidis,John L.Junkins,Optimal estimation of dynamic systems[M].Chapman & Hall/CRC,2004:591.
    [7]Andrew H.Jazwinski,Stochastic processes and filtering theory[M].New York and London:academic press,1970:376.
    [8]Bangalor,India and Lowell,Massachusetts.Nonlinear filtering and smoothing:an introduction to martingales,stochastic integrals and estimation,a wiley-interscience publication,1984,314.
    [9]Dan Simon.Optimal state estimation:Kalman,Hinf and nonlinear approaches[M].A John wiley & SONS,INC.,2006:550.
    [1]周明,孙树栋,遗传算法原理及应用[M]国防工业出版社 1999.6
    [2]Pedro Larranaga,Jose A.Lozano.Optimization and Machine Learning by Estimation of Distribution Algorithms,University of the Basque Country
    [3]P.Larranaga,M.Poza,Y.Yurramendi,R.H.Marga and C.M.H.Kuijpers.Structure learning of Bayesian networks by genetic algorithms:a performance analysis of control parameters[J].IEEE Transactions on pattern analysis and machine intelligence,1996,18:912-926.
    [4]Momiao Xiong,Jun Li and Xiangzhong Fang,Identification of genetic networks[J].Genetics,2004,166:1037-1052.
    [5]R.G.Brown,Introduction to Random Signal Analysis and Kalman Filtering[M]John Wiley and Son,1983:208.
    [6]J.S.IBay,Fundamentals of Linear State Space Systems[M].WCB/McGraw-Hill,1999:571.
    [7]R.Dorf and R.H.Bishop,Modern Control Systems[M]Prentice Hall,1998:881.
    [8]T.Baeck,Evolutionary algorithm in theory and practice:evolution strategies,evolutionary programming,and genetic algorithms[M]New York,Oxford University Press,1995:328.
    [9]D.E.Goldberg,Genetic Algorithms in Search,Optimization and machine Learning[M]Reading,MA,Addison-Wesley,1989:432.
    [10]J.H.Holland,Adaptation in natural and artificial systems[M]The University of Michigan Press,Ann Arbor,MI,1975:228.
    [11]Learning Bayesian networks from data:An information-theory based approach Jie Cheng,etc[J]:Artificial Intelligence 137.p.43-90,2002
    [12]周德树,孙增圻,分布估计算法综述[J]:自动化学报,33卷,第二期,2007,2
    [13]Chong Gu,Smoothing spline ANOVA models[M]Springer Series in Statistics.Springer,New York,2002:320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700