Versican基因对毛乳头细胞凝集性生长的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:毛乳头所固有的诱导毛囊形成的特性得到了广泛认同。即使将体外培养的毛乳头细胞移植入正常皮肤,仍然具有诱导毛发生长作用。每个毛囊都有自己固有的生长节律,其生长周期并非同步进行,所以单个毛囊的周期性生长受到多种毛囊自身细胞的信号调控。目前对于毛囊生长周期中各种基因的表达变化所知甚少。毛囊的分子生物学研究还需要深入探讨。至今无毛囊体外重建成功的报道,其原因在于,这些研究仅仅模拟了毛囊上皮和间质的接触作用环境,而无法真正提供含有细胞因子、细胞外基质等重要成分的体内环境,无法从根本上提供毛囊形成的基本条件。显然细胞因子、细胞外基质在毛囊发育中的发挥着重要作用。而Versican基因的表达与毛乳头细胞的凝集性生长显正相关,同时Wnt/β-catenin信号通路控制着Versican的表达。因此,我们推测Versican基因有可能是控制毛乳头细胞凝集性生长的关键基因。本研究在我科建立的高效简便分离毛乳头细胞的方法基础上,应用二步酶消化法分离毛乳头细胞、并进行体外培养,观察其体外培养的生物学特性;应用western blot检测β-catenin和Versican的蛋白表达水平、激光共聚焦显微镜检测其标记强度、RT-PCR法检测β-catenin和Versican的基因表达,并用siRNA干扰Versican的表达等方法研究Versican基因在毛乳头凝集性生长方式中的重要作用,为进一步研究毛囊的生物学特征及毛囊形成过程中的影响因素奠定基础,为以Versican为靶点研究毛囊生物学特征提供良好的实验证据和理论支持。
     方法:利用二步酶消化法分别培养毛乳头细胞、真皮鞘细胞、成纤维细胞和角质形成细胞,观察不同代次毛乳头细胞凝集性生长的特征变化,应用Western Blot法检测细胞不同代次毛乳头细胞中β-catenin和Versican的表达变化;采用基因转染技术构建重组腺病毒颗粒pAdEasy-1/Wnt-3a并扩增。并观察低代(1-6)、高代(7-10代)毛乳头细胞,Wnt-3a转染、K-SFM、K-SFM+Wnt-3a诱导的高代凝集性生长毛乳头细胞;以及角质形成细胞、成纤维细胞和毛囊真皮鞘细胞中β-catenin和Versican的表达变化差异;通过重组腺病毒颗粒pAdEasy-1/Wnt-3a转染毛乳头细胞,观察外源性过表达Wnt-3a对毛乳头细胞生长方式的影响;RT-PCR法检测各组细胞中Wnt-3a,β-catenin和Versican不同亚型的mRNA表达情况;激光共聚焦显微镜检测应用β-catenin、Versican抗体标记的各组细胞表达变化;并且以Wnt-3a腺病毒感染高代毛乳头细胞,对比观察感染腺病毒后高代毛乳头细胞β-catenin及Versican基因表达变化。观察高代毛乳头细胞感染Wnt-3a表达腺病毒后的生长特性变化。用siRNA合成片段转染低代毛乳头细胞,观察siRNA干扰Versican基因的表达对低代毛乳头细胞凝集性生长的影响。
     结果:体外培养的毛乳头细胞有凝集性生长的特性,其凝集性生长特性随培养代次的增加逐渐减弱。western blot方法检测不同代次毛乳头细胞β-catenin及Versican蛋白水平变化,发现随着毛乳头细胞传代次数的增加,β-catenin及Versican蛋白表达水平逐渐降低,且Versican蛋白降低幅度更大;低代毛乳头细胞两种基因表达与对照组成纤维细胞、毛囊真皮鞘细胞和角质形成细胞相比均有明显差异,与高代毛乳头细胞比较则有显著差异;观察不同代次毛乳头细胞凝集性生长状态的变化,发现随着代次逐渐增高,毛乳头细胞凝集性生长趋势逐渐减弱,其减弱趋势与Versican基因变化时间及幅度大致相同。采用成功构建Wnt-3a表达腺病毒颗粒感染高代毛乳头细胞后β-catenin及Versican基因mRNA和蛋白水平均明显上调,Versican基因上调更显著达到了与低代毛乳头细胞基本相同的水平;Wnt-3a腺病毒感染高代毛乳头细胞后其出现凝集性生长方式,与低代毛乳头细胞的凝集性生长相似。siRNA能有效干扰Versican基因在低代毛乳头细胞中的表达,其抑制效应呈时间和强度依赖性,且在mRNA和蛋白水平均有显著抑制,对β-catenin基因表达没有显著影响;Versican siRNA能显著改变低代毛乳头细胞的生长方式,使其原本的凝集性生长方式消失,与高代毛乳头细胞的生长方式相似。
     结论:
     一、Versican蛋白水平表达与毛乳头细胞凝集性生长密切相关;通过不同代次毛乳头细胞中Versican和β-catenin表达研究,首次证明了Versican和毛乳头细胞凝集性生长的关系。随着毛乳头细胞代次增加,其凝集性生长的趋势减弱,毛乳头细胞β-catenin和Versican的表达逐渐降低,其中β-catenin的降低不如Versican明显,而Versican的降低趋势和凝集性生长特性改变相关性紧密。
     二、Wnt信号通道调节参与毛乳头细胞凝集性生长特性的调控。Wnt-3a的过度表达有明确的诱导毛乳头细胞凝集性生长的作用,作用机制可能是通过相关基因β-catenin、Versican的表达改变来实现,并且其调节水平需达到一定的阈值方可发挥作用。而K-SFM也有部分诱导毛乳头细胞凝集性生长的作用,作用机制与其中含有部分细胞因子有关。
     三、Wnt-3a对毛乳头细胞表达β-catenin和Versican有明确调节作用。过度表达Wnt-3a具有诱导人毛乳头细胞β-catenin和Versican水平上调的能力;且诱导人毛乳头细胞β-catenin水平上调的能力大于诱导Versican水平上调的能力,同时β-catenin和Versican的基因水平和蛋白水平的改变不对称,因此可以初步明确Wnt-3a对Versican蛋白水平的调控过程可能以转录过程的调节为主,但受到多种因素的影响。
     四、应用RNA干扰技术特异性的干扰毛乳头细胞Versican基因表达时,低代毛乳头细胞Versican蛋白的表达降低,并且具有时间和浓度依赖性。Versican的V0/V1亚型对毛乳头细胞的凝集性生长特性影响较明显,而V2和V3亚型可能不参与该特性的调控。干扰低代毛乳头细胞Versican的表达时其凝集性生长特性逐渐消失,进一步说明Versican基因在毛乳头细胞的凝集性生长中具有重要作用。
Background and objective:Dermal papilla can induce formation of the hair follicle even when the in vitro cultured dermal papilla cells are transplanted into normal skin. Every hair follicle has its own inherent growth rhythm but asynchronous growth cycle, so periodical growth of single hair follicle is regulated by signal of self cells of many hair follicles. Currently, little has known about expression of all kinds of genes in growth cycle of hair follicle and deeper study is needed in molecular biological study of the hair follicles. However, there is no report on successful in vitro construction of the hair follicle, for many researches only simulated taction environment for follicular epithelium and mesenchyma but could not provide in vivo environment containing cytokine and extracellular matrix, which lacked basic condition for formation of the hair follicle. It is clear that cytokine and extracellular matrix play important role in development of the hair follicle. Expression of Versican gene is positively correlated with agglutinative growth of dermal papilla cells, while Wnt/β-catenin signal pathway controlled expression of Versican gene. We presumed that Versican gene is key gene controlling agglutinative growth of dermal papilla cells. In the study, by means of enzyme digestion, we effectively and conveniently isolated dermal papilla cells and cultured them in vitro to observe their biological characters. Meanwhile, Western blot, Wnt-3a adenovirus infection and siRNA method were used to explore possible role of Versican gene in agglutinative growth pattern of the dermal papilla cells so as to provide basis for further studying biological characters of the hair follicle and probing influencing factors of hair follicle formation, and give experimental evidence and theoretical support for strategy in regulating agglutinative growth of dermal papilla cells with Versican as target.
     Methods:By using enzyme digestion, fibroblasts including dermal papilla cells and dermal sheath cells as well as epidermal keratinocytes were in vitro cultured and passaged to investigate changes of agglutinative growth of different generation dermal papilla cells. Adenovirus plasmid pAdEasy-1/Wnt-3a was recombined and amplified. Western blot was employed to detect expression changes ofβ-catenin and Versican of different generation dermal papilla cells. At the same time, expression changes ofβ-catenin and Versican were observed in low generation and high generation dermal papilla cells, high generation dermal papilla cells induced by Wnt-3a in conditioned media with Wnt-3a and malpighian cells as well as in control group of malpighian cells, fibroblasts and dermal sheath cells. Recombinant adenovirus plasmid pAdEasy-1/Wnt-3a was used to transfect dermal papilla cells to observe the effect of exogenously overexpressing Wnt-3a on growth pattern of dermal papilla cells. mRNA expressions of Wnt-3a,β-catenin and different subtypes of Versican were detected by RT-PCR and the expression ofβ-catenin and Versican in different groups by laser confocal microscopy. Moreover, adenovirus Wnt-3a was used to infect high generation dermal papilla cells to comparatively investigate expression changes ofβ-catenin and Versican in high generation dermal papilla cells and observe growth changes of high generation dermal papilla cells after infection with Wnt-3a adenovirus. siRNA synthesis fragments were used to transfect low generation dermal papilla cells to investigate the effect of siRNA decreasing expression of Versican gene on agglutinative growth of low generation dermal papilla cells.
     Results:Culture results showed that dermal papilla cells were characterized by agglutinative growth, which was in accordance with previous reports. Agglutination may weaken with increased generation of cells. Western blot was employed to observe protein level changes ofβ-catenin and Versican of different generation of dermal papilla cells and showed that protein expression ofβ-catenin and Versican decreased gradually especially Versican protein with maturation of dermal papilla cells from low generation to high generation. Expressions of two genes of low generation dermal papilla cells showed obvious difference compared with fibroblasts, dermal sheath cells and malpighian cells in control group, while high generation dermal papilla cells showed very significant difference. Results of agglutinative growth mode of different generation of dermal papilla cells showed that agglutinative growth gradually weakened with increase of generation, which was roughly identical to time and amplitude of Versican gene. We successfully constructed Wnt-3a expression adenovirus. mRNA and protein expression ofβ-catenin and Versican genes after Wnt-3a infected high generation dermal papilla cells: posterior to infection with adenovirus Wnt-3a, expressions ofβ-catenin and Versican gene were up-regulated and up-regulation of Versican gene reached basically same level of low generation dermal papilla cells; posterior to infection with Wnt-3a, high generation dermal papilla cells grew at agglutinative pattern, which was similar to agglutinative growth of low generation dermal papilla cells. siRNA could depress expression of Versican gene in low generation of dermal papilla cells at a time- and dose-related fashion either at mRNA level or protein level. However, siRNA exerted no effect on expression ofβ-catenin. Versican siRNA could change growth mode of low generation of dermal papilla cells and make previous agglutinative growth mode disappear, which was similar to growth mode of high generation of dermal papilla cells.
     Conclusions:
     (1)Versican protein level is closely correlated with agglutinative growth of DPC. We proved, for the first time, the relation between Versican and agglutinative growth of DPC by studying expressions of Versican andβ-catenin in different generation of DPC. With increase of generation, the agglutinative growth of DPC tended to be slowed and expressions of DPCβ-catenin and Versican gradually decreased, especially Versican. While expression of Versican is positively related with characteristic change of agglutinative growth of DPC.
     (2) Signal regulation of Wnt participates in regulation of characteristic agglutinative growth of DPC. Over expression of Wnt-3a can markedly induce agglutinative growth of DPC, which is possibly related to regulating expressions of downstream-related genesβ-catenin and Versican at certain threshold value. Conditioned medium of KC can partially induce agglutinative growth of DPC, which is due to the reason that KC contains some cytokines.
     (3) Wnt-3a has definite regulative effect on DPC expressingβ-catenin and Versican. Over expression of Wnt-3a can induce up-regulation of expressions ofβ-catenin and Versican, especially that of Versican, in human DPC. In the meantime, gene and protein levels ofβ-catenin and Versican change dissymmetrically, which can preliminarily make clear that the course of Wnt-3a regulating Versican protein level is mainly regulating transcription and affected by multiple factors.
     (4) Specific knock-down of gene expression of DPC Versican by means of RNA interference technique,results in decrease of expression of low generation of DPC Versican protein, at a time- and dose-dependent fashion. Subtype V0/V1 of Versican exerts remarkable effect on agglutinative growth of DPC, while subtypes V2 and V3 may be excluded from such regulation course. When expression of low generation DPC Versican is knocked down, the agglutinative growth of DPC gradually disappears, which further proves critical role of Versican gene in agglutinative growth of DPC.
引文
1. Millar SE. Molecular mechanisms regulating hair follicle development [J]. Invest Dermatol , 2002 , 118(2) :216-225..
    2. Stenn KS. Molecular insights into the hair follicle and its pathology : areview of recent developments. Int J Dermatol , 2003 , 42(1) :40.
    3. Jahoda CA, Induction of follicle formation and hair growth by vibrissa dermal papillae implanted into rat ear wounds: vibrissa-type fibres are specified. Development. 1992,115(4): 1103-1109.
    4.朱堂友,郝飞,伍津津等。在双层皮肤替代物中诱导毛囊形成的初步研究.重庆医学.2007, 36 (10) : 931-933.
    5.罗洋,郝飞,钟白玉等。条件培养基对高传代人毛乳头细胞生长的影响.中华皮肤科杂志, 2004, 37 (11) : 648 - 650.
    6. Muramatsu T,Muramatsu H, Kojima T, et al. Identification of proteoglycan - binding p roteins [J]. Meth In Enzy,2006, 416: 263-277.
    7. Zheng PS, Vais D, Lap ierre D, et al. PG - M /Versican binds to Pselectin glyco - protein ligand-1 and mediates leukocyte aggregation [J]. J Cell Sci, 2004, 117(24) : 5887-5895.
    8. Sakko AJ, Ricciardelli C,Mayne K, et al. Modulation of prosetate cancer cell attachment to matrix by Versican. Cancer Res, 2003, 63 (16): 4786-4791.
    9. Wu Y,Sheng W,Chen L, et al.Versican V1 isoform induces neuronal differentiation and promotes neurite out growth. MolBiol Cell, 2004, 15(5):2093-2104.
    10. Wight TN,Arterial remodeling in vascular disease: a key role for hyaluronan and Versican. Front Biosci. 2008,1(13):4933-4937.
    11. Iozzo RV, Naso MF, Cannizzaro LA, et al. Mapp ing of the Versican proteoglycan gene (CSPG2) to the long arm of human chromosome 5 (5q12-5q14). Genomics, 1992,14: 845-851.
    12. Wu YJ,Lap ierre D,YangBB,et al.The interaction of Versican with its binding partner.Cell Res, 2005, 15(7):483-496.
    13. Ouji Y, Yoshikawa M, Shiroi A, et al. Wnt-10b promotes differentiation of skinepithelial cells in vitro. Biochem Biophys Res Comm 2006, 342:28-35.
    14. Kishimoto J, Ehama R, Wu L, et al. Selective activation of the Versican promoter by epithelial-mesenchymal interactions during hair follicle development. Proc Natl Acad Sci USA 1999, 96:7336-7341.
    15. Shimizu H and Morgan BA. Wnt signaling through theβ-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells. J Invest Dermatol 2004,122: 239-245.
    16. Soma T, Tajima M, Kishimoto J. Hair cycle-specific expression of Versican in human hair follicle. J Dermatol Sci 2005,39: 147-154.
    17. Reynolds AJ, Jahoda CA, Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Dev 1996, 122:3085-3094.
    18. Inamatsu M, et al. Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skin.J Invest Dermatol 1998,111:767-775.
    19. Reynolds AJ and Jahoda CAB. Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Dev 1996,122:3085-3094.
    20.麦跃、刘荣卿、伍津津等。毛乳头细胞凝集性生长对诱导毛囊样结构形成能力的影响。第三军医大学学报,2004,26:1197-1200.
    21. Messenger A G,The control of hail growth An overview JID 1993:101(No.1)4s-9s.
    22. Yuspa S T, et al,Regulation of hail follicle development:an in vitro model for hail follicle invasion of dermis and associated aonnective tissue reemodaling JID.101:27s-29s,1993.
    23. Kishimoto J, Soma T,BurgesonR, et al.Versican expression by dermal papilla-regenerated hair follicles - a promising tool for hair-regrowth products. International Journal of Cosmetic Science, Volume 26, Number 3, June 2004 , pp. 165-166.
    24. Pisansarakit P,Moore GP. Induction of hair follicles in mouse skin by rat vibrissa dermal papillae.J Embryol Exp Morphol.1986,94: 113-116.
    25. Messenger AG.the culture of dermal papilla cells from human hair follicles.Br J Dermal,1984,10:685-689.
    26.伍津津,刘荣卿,叶庆佾等.毛乳头细胞的高效快捷培养方法.第三军医大学学报,1998,20(3):208-210.
    27. Wu JJ,Liu RQ,Lu YG, et al.Enzyme digestion to isolate and culture human scalp dermal papilla cells:a more efficient method.Arch Dermatol Res,2005,297(2):60-67.
    28. Jahoda C,Oliver RF.The growth of vibrissa dermal papilla cells in vitro. Br J Dermatol,1981,105(6):623-627.
    29. Warren R,Wong TK.Stimulation of human scalp papilla cells by epithelial cells.Arch Dermatol Res,1994,286(1):1-5.
    30. Messenger AG, Senior HJ, Bleehen SS. The in vitro properties of dermal papilla cell lines established from human hair follicles. Br J Dermatol, 1986,114(4):425-430.
    31. Withers AP, Jahoda CA, Rvder ML, et al. Culture of wool follicle dermal papilla cells from two breeds of sheep. Arch-Drematol-Res,1986, 279(2): 140-142.
    32. Almond-Roesler B, Schon M, Blume-Peytavi U. Cultured dermal papilla cells of the rat vibrissa follicle. Proliferative activity, adhesion properties and reorganization of the extracellular matrix in vitro. Arch Drematol Res, 1997,289(12):698-704.
    33. Jahoda CA, Oliver ML. Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro.J Embryol Exp Morphol. 1984, 79: 211-224.
    34. Chodankar R, Chang CH, Yue Z, et al. Shift of localized growth zones contributes to skin appendage Morphogenesis:role of the Wnt/β-catenin pathway.J Invest Dermatol,2003,120:202-226.
    35. Ozawa M,Baribault H,Kemler R.The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species.EMBO.1989, 8(6):17l1-1717.
    36. Wodarz A, Nrsse R, Mechanisms of Wnt signaling in development.Annu Rev Cell Dev Biol,1998,14:59-88.
    37. Huelsken J,Vogel R,Erdmann B, et al.β-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin.Cell,2001;105:533-545.
    38. DasGupta R,Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development, 1999,126: 4557-4568.
    39. Lo Celso C, Prowse DM, Watt FM, Transient activation ofβ-catenin signaling in adultmouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumors. Development, 2004,131:1787-1799.
    40. Gat U, DasGupta R, Degenstein L, et al. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncatedβ-catenin in skin. Cell, 1998,95:605-614.
    41. Niemann C, Unden AB, Lyle S, et al. Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis.Proc Natl Acad Sci USA,2003;100(S1):11873-11880.
    42. Botchkarev V A, Kishimoto J. Moleclular control of epithelial-mesenchymal interactions during hair follicle cycling[J]. Investing. Dermatol.Symp. Proc. 2003,8:46-55.
    43. Soma T, Tajima M, Kishimoro J. Hair cycle-specific expression of Versican in human hairfollicles [J]. Dermatol.Sci.2005,39:147-154.
    44. Kishimoto J, Burgeson R E, Morganl B A. Wnt signaling maintains the hair inducing activity of the dermal papilla. Genes, Dev, 2000, 14:1181-1185.
    45.杨希川,郝飞.毛囊的分子遗传学.国外医学遗传学分册,2002,22(4):245~248.
    46.杨希川,郝飞.毛囊形态发生的基因调控研究进展.国外医学生理、病理科学与临床分册, 2002,22(6):633~636.
    47. Pennisi E.How a growth control path takes a wrong turn to cancer. Science.1998, 281(5382): 1438-1439.
    48. Veeman M, Axelrod J, Moon R. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003, 5:367-377.
    49. Polakis P. Wnt signaling and cancer. Genes Dev. 2000,14:1837-1851.
    50. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell. 2002, 103:311-320.
    51. Aravind L,Koolin EV.A colipase fold in the carboxy-terminal domain of the Wnt antagonists-the Dickkopfs[J].Curr Biol. 1998, 8:477-482.
    52. Chalfie M, Tu Y, Euskirchen G. Green fluorescent protein as a marker for gene express. Science, 1994, 263: 802-805.
    53. Barth AI, Nathke IS, Nelson WJ. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol. 1997, 9 (5):683-690.
    54. Muller T, Choidas A, Reichmann E, Ullrich A. Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem. 1999, 274 (15):10173-10183.
    55. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996, 382 (6592):638-642.
    56. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science. 1997, 275 (5307):1790-1794.
    57. Bett AJ, Haddara W, Prevec L, et al. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA. 1994, 91: 8802-8806.
    58. Behrens J,yon Kries JP,Kuhl M,et a1.Functional interaction of beta-catenin with the transcription factor LEF-1.Nature.1996, 382 (6592):638-642.
    59. Marini FC, 3rd, Yu Q, Wickham T, et al. Adenovirus as a gene therapy vector for hematopoietic cells [J].Cancer Gene Ther.2000, 7:816-825.
    60. Romero EL, Morilla MJ and Bakas LS. Lipid vectors. New strategies for gene therapy [J]. Medicina, 2001, 61: 205-214.
    61. Turturro F. Recombinant adenovirus-mediated cytotoxic gene therapy of lymphoproliferative disorders: is CAR important for the vector to ride? [J].Gene Ther, 2003, 10: 100-104.
    62. Simonato M, Manservigi R, Marconi P, et al.Gene transfer into neurones for the molecular analysis of behaviour: focus on herpes simplex vectors [J].Trends Neurosci, 2000, 23(5): 183-190.
    63. Zhang HG, Xie J, Yang P, et al.Adeno-associated virus production of soluble tumor necrosis factor receptor neutralizes tumor necrosis factor alpha and reduces arthritis[J].Hum Gene Ther.2000,11(17):2431-2442.
    64. Wight TN. Arterial wall. In: Comper WD, ed. Extracellular Matrix. Amsterdam: Hardwood Academic; 1996: 175–202.
    65. Ring A, Langer S, Homann HH, et al. Analysis of neovascularization of PEGT/PBT-copolymer dermis substitutes in balb /c-mice . Burns, 2006, 32(1): 35- 41.
    66. Ng KW, ThamW, Lim TC, et al. Assimilating cell sheets and hybrid scaffolds for dermal tissue engineering[J] . J Biomed Mater Res A, 2005, 75(2): 425- 438.
    67. Scott Sell, Catherine Barnes, Matthew Smith,et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polymer International. Polym Int 2007,56:1349-1360.
    68. Hu B, Kong L L, Matthews R T,et al.The Proteoglycan Brevican Binds to Fibronectin after Proteolytic Cleavage and Promotes Glioma Cell Motility,J. Biol. Chem., September 5, 2008, 283(36): 24848-24859.
    69. La Pierre DP, Lee DY, Li S Z, et al. The Ability of Versican to Simultaneously Cause Apoptotic Resistance and Sensitivity,Cancer Res, May 15, 2007, 67(10): 4742-4750.
    70. Sheng W, Wang G, La Pierre DP,et al.Versican Mediates Mesenchymal-Epithelial Transition Mol. Biol. Cell, April 1, 2006, 17(4): 2009-2020.
    71. Zheng P S, Reis M, Sparling C, et al. Versican G3 Domain Promotes Blood Coagulation through Suppressing the Activity of Tissue Factor Pathway Inhibitor-1 J. Biol. Chem., March 24, 2006, 281(12): 8175–8182.
    72. Huang R, Merrilees MJ, et al. Inhibition of Versican Synthesis by Antisense Alters Smooth Muscle Cell Phenotype and Induces Elastic Fiber Formation In Vitro and in Neointima After Vessel Injury Circ. Res., February 17, 2006, 98(3): 370-377.
    73. Kitagawa H, Tsutsumi K, Tone Y, et al. Developmental regulation of the sulfation p rofile of chondroitin sulfate chains in the chicken embryo brain [J]. J Biol Chem, 1997, 272(50) : 31377-31381.
    74. Tamayuki S,Masahiro Z, Kazuo I, et al. The gene structure and organization ofMouse PG -M, a large chondroitin sulfate proteoglycan[J]. J Biol Chem, 1995, 270: 10328-10333.
    75. Cattaruzza S, SchiappacassiM, Kimata K, et al. The globular domains of PG - M /Versican modulate the p roliferation- apop - tosis equilibrium and invasive capabilities of tumor cells[J]. FASEB J , 2005, 18 (6) : 779-781.
    76. Lebaron RG. Versican. Pers on Edve Neur [J] , 1996, 3: 261-271.
    77. Sheng W, Dong HH, Lee DY, et al. Versican modulates gap junction intercellular communication [J]. J Cell Phys, 2006, 9999: 1-7.
    78. Sheng Wang , Wang Guizhi, Wang Yelina ,et al. The Roles of Versican V1 and V2 Isoforms in Cell Proliferation and Apoptosis. Vol. 16, Issue 3, 1330-1340, March 2005.
    79. Taipale J, Beaehy P A . The Hedgehog and Wnt signaling pathways in cancer.Nature, 2001, 411:349-354.
    80. Rahmani M, Read J T, Carthy J M, et al. Regulation of the Versican promoter by the beta-catenin-T-cell factor complex in vascular smooth muscle cells[J].Biol.Chem.2005, 280:13019-13028
    81. Behrens J,yon Kries JP,Kuhl M,et a1.Functional interaction of beta-catenin with the transcription factor LEF-1.Nature.1996, 382 (6592):638-642.
    82. Samowitz WS.Powers MD,Spirio LN,et a1.Beta-catenin mutations aremore frequent in small colorectal adenomas than in larger adenomas and invasivecarcinomas.Cancer Res.1999,59(7):1442-l448.
    83. Bradley L,Sun B, Collins-Racie L, et al.Different activities of the frizzled-related proteins Frzb2 and sizzled2 during Xenopas laevis anteroposterior patterning.Dev Biol. 2000; 227:118-132.
    84. Niemann C,Unden AB,Lyle S,et al.Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis.Proc Natl Acad Sci USA,2003;100(S1):11873-11880.
    85. DasGupta R,Fuchs E.Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development,1999;126: 4557-4568.
    86. Millar SE,Willert K,Patricia C,et al.WNT signaling in the control of Hair growth and structure.Dev Bio,1999;207(1):133-149.
    87. Nanba D,Nakanishi Y,Hieda Y.Establishment of cadherin-based intercellular junctions in the dermal papilla of the developing hair follicle.Anat Rec,2003; 270A(2):97-102.
    1. Ulrich A Stock, Joseph P Vacanti. Tissue engineering : current state and prospects, Annu Rev Med, 2001,52:443-451.
    2. Gary L. Bowlin; Gary Wnek. Extracellular Matrix Scaffolds. Encyclopedia of Biomaterials and Biomedical Engineering, 2004,10:1081-1093.
    3. Li S, Guan JL, Chien S. Biochemistry and biomechanics of cell motility. Annu Rev Biomed Eng. 2005;7:105-150
    4. Boraldi F, Tonelli M, Gheduzzi D, et al. Identification of mineralized elastic fibers on wet samples by SEM. Microsc Res Tech,2005;67(6):296-299.
    5. Schindler M, Ahmed I, Kamal J, et al. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture.Biomaterials, 2005;26:5624-5631
    6. Thery M, Racine V, Pepin A, et al. The extracellular matrix guides the orientation of the cell division axis.Nat Cell Biol, 2005;7:947-953
    7. Thery M, Racine V, Pepin A, et al. The extracellular matrix guides the orientation of the cell division axis.Nat Cell Biol, 2005;7:947-953.
    8. Groeneveld TW, Oroszlan M, Owens RT, et al. Interactions of the extracellular matrixproteoglycans decorin and biglycan with c1q and collectins.J Immunol, 2005;175:4715-4723.
    9. Nakada M. The role of extracellular matrix degradation enzyme for glioma invasion.Nippon Rinsho. 2005;63:55-60.
    10. Lynn AK, Yannas IV, Bonfield W, et al. Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater, 2004, 71(2): 343-354.
    11. Rudnick. Advances in tissue engineering and use of type 1 bovine collagen particles in wound bed preparation. Journal of Wound Care, 2006,15:402-404.
    12. Bell E, Ehrlich HP, Sher S, et al. Development and use of a living skin equivalent[J]. Plast Reconstr Surg, 1981, 67 (3) : 386-392.
    13. Dietmar W.; Wolfgang. Matrices for tissue-engineered skin. 2002,38(2):113-133.
    14. Streit M, Braathen LR. Apligraf-a living human skin equivalent for the treatment of chronic wounds. Int J Artif Organs. 2000;3(12): 831-833.
    15. Ma L,Gao C,Shen I. Factors controlling the microstructure of collagen-based dermis regeneration scaffold.J Biomed Eng,2004,21(2):311-315.
    16. Lie M, Changyou G. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering.Biomaterials, 2003, 24(26):4833-4841.
    17. Zacchi V, Soranzo C, Cortivo R, et al. In vitro engineering of human skin-like tissue. J Biomed mater Res, 1998, 40(2): 187- 194.
    18. Krasna M, Planinsek F, Knezevic M, et al. Int J Pharm,2005, 291(1/2):31- 37.
    19. Currie LJ, Sharpe JR, Martin R. Plast Reconstr Surg, 2001, 108(6):1713- 1726.
    20. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur cell Mater 2003;5:1-16.
    21. Omar AA, Mavor AI, Jones AM, et al. Treatment of venous leg ulcers with Dermagraft .Eur J Vasc Endovasc Surg. 2004; 27(6): 666-672.
    22. Hansbrough JF, Dore C, Hansbrough WB. Clinical trials of a tissue replacement placed beneath meshed, split-thickness skin grafts on excised burn wounds.J Burn care Rehabil 1992; 13(5):519-529.
    23. Marston WA, Hanft J, Norwood P, et al. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 2003;26(6):1701-1705.
    24. El-Ghalbzouri A, Lamme EN, van Blitterswijk C, et al. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering . Biomaterials, 2004, 25(15): 2987- 2996.
    25. Ring A, Langer S, Homann HH, et al. Analysis of neovascularization of PEGT/PBT-copolymer dermis substitutes in balb /c-mice . Burns, 2006, 32(1): 35- 41.
    26. Ng KW, ThamW, Lim TC, et al. Assimilating cell sheets and hybrid scaffolds for dermal tissue engineering[J] . J Biomed Mater Res A, 2005, 75(2): 425- 438
    27. Sun T, Mai S, Norton D, et al. Self-organization of skin cells in threedimensional electrospun polystyrene scaffolds[J] . Tissue Eng, 2005, 11(7- 8): 1023- 1033.
    28.曹谊林,蔡霞,崔磊,等.自体组织工程化全层皮肤缺损修复.实验研究中华外科杂志, 2002, 40(1): 24- 26.
    29. Bulleid Nj, John DC, Kadler KE. Recombinant expression systems for the production of collagen. Biochem Soc Trans,2000,28(4):350-353.
    30. Nokelainen M, Tu H, Vuorela A, et al. High-level production of human type I collagen in the yeast Pichia pastoris. Yeast,2001,18:797-806.
    31. Werten MW, Wisselink WH, Jansen-van den Bosch TJ, et al.Secreted production of a custom-designed, highly hydrophilic gelatin in Pichis pastoris.Protein Eng,2001,14(6):447-454.
    32. Robin AQ , Martyn CD . Surface engineering of poly (1actic acid)by entrapment of modifying species. J macromolecules, 2000;33: 258.
    33. Scott Sell, Catherine Barnes, Matthew Smith,et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polymer International. Polym Int 2007,56:1349–1360.
    1. Rahmani M, McDonald P C, Wong B W, et al. Transplant vascular disease: role of lipids and proteoglycans[J].Canada Cardiol. 2004,20:58-65.
    2. Iozzo R V, Murdoch A D. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and functions [J]. FASEB.1996, 10:598-614.
    3. Ruoslahti E. Brain extracelluar matrix. Glycobiology.1996, 6:489-492.
    4. Perris R, Perissinotto D. Role of the extracellular matrix during neural crest cell migration. Mech. Dev, 2000, 95:3-21.
    5. Kinsella M G, Bressler S L, Wight T N. The regulated synthesis of versicn,decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit,Rev, Eukaryot.Gene Expe.2004, 14:203-234.
    6. Morgenstern D A, Asher R A, Fawcett J W. Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain Res. 2002, 137:313-332.
    7. Wu Y J, Lapierre D, Wu J, et al. The interaction of Versican with its binding partners. Cell Res.2005, 15:483-494.
    8. Shinomura T, Nishiba Y, Ito K, et al. cDNA cloning of PG-M, a large chondroitin sulfate proteoglycan expressed during chondrogenesis in chick limb buds.alternative spliced multiforms of PG-M and their relationships to Versican.J.Biol.Chem.1993, 268:14461-14469.
    9. Zimmermann D R, Ruoslahti E. Multiple domains of the large fibroblast proteoglycan, Versican[J].EMBO.1989,8:2975-2981.
    10. Yang B L, Cao L, Lee V, et al. Tandem repeats are involved in G1 domain inhibition of Versican expression and secretion and the G3 domain enhances glycosaminoglycan modification and product secrection via the complement-binding protein-like motif[J].Biol.Chem.2000,275:21255-21261.
    11. Bouterfa H, Darlapp A R, Klein E, et al. Expression of dfferent extracellular matrix components in human brain tumor and melanoma cells in respect to variant culture conditions[J].Neurooncol.1999,44:23-33.
    12. Zheng P S, Wen J, Ang L C,et al. Versican/PG-M G3 domain promoters tumor growth and angiogenesis[J].FASEB,2004,18:754-756.
    13. Botchkarev V A, Kishimoto J. Moleclular control of epithelial-mesenchymal interactions during hair follicle cycling[J].Investing. Dermatol.Symp. Proc. 2003,8:46-55.
    14. Soma T, Tajima M, Kishimoro J. Hair cycle-specific expression of Versican in human hairfollicles [J].Dermatol.Sci.2005,39:147-154.
    15. Kishimoto J, Burgeson R E, Morganl B A. Wnt signaling maintains the hair inducing activity of the dermal papilla. Genes, Dev, 2000, 14:1181-1185.
    16. Kishimoto J, Ehama R, Wu L, et al. Selective activation of the Versican promoter by epithelial-mesenchymal interactions during hair follicle development. Proc Natl Acad Sci USA 1999, 96:7336-7341.
    17. Soma T, Tajima M, Kishimoto J. Hair cycle-specific expression of Versican in human hair follicle[J]. Dermatol Sci 2005; 39: 147-154.
    18. Asher R A,Morgenster D A,Shearer M C, et al. Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells[J]. Neurosci.2002, 22:2225-2236.
    19. Yoon J H, Halper J. Tendon proteoglycans:biochemistry and function.J. musculoskelet. Neuronal interact, 2005,5:22-34.
    20. Schonherr E, Kinsella M G., Wight T N. Genistein selectively inhibits platelet-derived growth factorstimulated Versican biosynthesis in monkey arterial smooth muscle cells.Arch.Biochem.Biophys.1997, 339:3535-3561.
    21. Rahmani M, Read J T, Carthy J M, et al. Regulation of the Versican promoter by the beta-catenin-T-cell factor complex in vascular smooth muscle cells[J].Biol.Chem.2005, 280:13019-13028.
    22. Taipale J, Beaehy P A . The Hedgehog and Wnt signaling pathways in cancer.Nature, 2001, 411:349-354.
    23. Kishimoto J, Burgeson R E, Morgan B A. Wnt signaling maintains the hair follicle development. Proc.Natl.Acad.Sci. USA. 2000,96:7336-7341.
    24. Shimizu H, Morgan BA. Wnt signaling through theβ-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells[J]. Invest Dermatol, 2004, 122: 239-245.
    1. Millar SE. Molecular mechanisms regulating hair follicle development .J Invest Dermatol , 2002 , 118(2) :216-225.
    2. Stenn KS. Molecular insights into the hair follicle and its pathology : areview of recent developments. Int J Dermatol , 2003 , 42(1) :40.
    3. Wight TN. Arterial wall. In: Comper WD, ed. Extracellular Matrix. Amsterdam: Hardwood Academic; 1996: 175–202.
    4. B. Hu, L. L. Kong, R. T. Matthews et al.The Proteoglycan Brevican Binds to Fibronectin after Proteolytic Cleavage and Promotes Glioma Cell Motility,J. Biol. Chem., September 5, 2008; 283(36): 24848 - 24859.
    5. D. P. LaPierre, D. Y. Lee, S.-Z. Li, et al.The Ability of Versican to Simultaneously Cause Apoptotic Resistance and Sensitivity,Cancer Res., May 15, 2007; 67(10): 4742 - 4750.
    6. W. Sheng, G. Wang, D. P. La Pierre,et al.Versican Mediates Mesenchymal-Epithelial Transition Mol. Biol. Cell, April 1, 2006; 17(4): 2009 - 2020.
    7. P.-S. Zheng, M. Reis, C. Sparling, et al. Versican G3 Domain Promotes Blood Coagulation through Suppressing the Activity of Tissue Factor Pathway Inhibitor-1 J. Biol. Chem., March 24, 2006; 281(12): 8175 - 8182
    8. R. Huang, M. J. Merrilees, K. et al.Inhibition of Versican Synthesis by Antisense Alters Smooth Muscle Cell Phenotype and Induces Elastic Fiber Formation In Vitro and in Neointima After Vessel Injury Circ. Res., February 17, 2006; 98(3): 370 - 377.
    9. Tamayuki S,Masahiro Z, Kazuo I, et al. The gene structure and organization ofMouse PG -M, a large chondroitin sulfate proteoglycan[J]. J Biol Chem, 1995, 270: 10328-10333.
    10. Cattaruzza S, SchiappacassiM, Kimata K, et al. The globular domains of PG - M /Versican modulate the p roliferation- apop - tosis equilibrium and invasive capabilities of tumor cells[J]. FASEB J , 2005, 18 (6) : 779-781.
    11. Lebaron RG. Versican. Pers on Edve Neur [J] , 1996, 3: 261-271.
    12. ShengW,Dong HH,Lee DY, et al. Versican modulates gap junction intercellular communication [J]. J Cell Phys, 2006, 9999: 1-7.
    13. Wang Sheng , Guizhi Wang, Yelina Wang et al. The Roles of Versican V1 and V2 Isoforms in Cell Proliferation and Apoptosis. Vol. 16, Issue 3, 1330-1340, March 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700