抑制细胞内氯通道对胶质瘤肿瘤生物学特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.特异性抑制C1C-3表达对人胶质瘤U251细胞生物学特性的影响;
     2.抑制U251细胞C1C-3表达观察其对顺铂敏感性变化及探讨机制。
     方法:
     1.MTT法检测细胞生存率;2.构建pSH1Si-C1C-3重组质粒;3.细胞转染;4.细胞凋亡检测;5.AO染色检测细胞内酸性小泡;6.溶酶体示踪红染色;7.电镜检测细胞超微结构变化;8.MDC检测自噬泡形成;9.RT-PCR检测mRNA表达变化;10Western-blot检测蛋白表达变化;11.DCFH-DA检测细胞内ROS产生;12.数据进行统计学分析。
     结果:
     1.用特异性反义寡核苷酸有效抑制U251细胞C1C-3基因和蛋白表达(抑制率>50%),对U251细胞生物学特性影响:①抑制U251细胞增殖,诱导U251细胞发生凋亡;②降低U251细胞体外侵袭力和迁移力,抑制MMPs基因表达;③抑制内吞体-溶酶体酸化;④增加胞浆中氯离子浓度。
     2.抑制氯通道C1C-3表达增加人胶质瘤U251细胞对顺铂的敏感性:①顺铂对U251细胞生长抑制作用具有时间依赖性和剂量依赖性,U251细胞对顺铂具有相对较高耐药性;②抑制ClC-3表达能明显增加U251细胞对顺铂的敏感性;③顺铂作用于U251细胞诱导细胞发生自噬,抑制C1C-3表达能抑制顺铂诱导的U251细胞自噬;④顺铂诱导细胞凋亡具有时间依赖性,抑制C1C-3表达能明显增加顺铂诱导U251细胞凋亡,可使细胞凋亡窗口前移;⑤顺铂可诱导U251细胞Akt活化增加,抑制C1C-3表达可明显抑制顺铂诱导Akt活化。
     3.抑制氯通道C1C-3表达增加人胶质瘤U251细胞对顺铂敏感性机制探讨:①抑制ClC-3表达通过NADPH氧化酶依赖途径降低顺铂诱导ROS生成增多。②抑制C1C-3表达能明显抑制顺铂诱导的Nox2、Nox4 mRNA表达增加,并能降低hVps34 mRNA表达;③抑制C1C-3表达能明显抑制顺铂诱导的Akt/mTOR途径活化;NADPH氧化酶抑制剂DPI可抑制顺铂诱导的Akt/mTOR途径活化;用3-MA抑制hVps34,对顺铂诱导的Akt/mTOR途径活化无明显影响;④顺铂可同时诱导U251细胞发生凋亡和自噬,应用自噬抑制剂3-MA能明显增加顺铂诱导细胞凋亡;DPI抑制NADPH氧化酶活性,可增强顺铂诱导细胞自噬,但由于其抑制Akt/mTOR途径活化,故也增加顺铂诱导细胞凋亡;抑制ClC-3表达可抑制顺铂诱导自噬发生,增加凋亡。
     结论:
     1.特异性反义寡核苷酸可有效抑制U251细胞C1C-3 mRNA和蛋白表达,抑制C1C-3表达可影响内吞体和溶酶体酸化,改变细胞内氯离子浓度;抑制U251细胞生长,诱导U251细胞发生凋亡,但程度不高,即难以依靠单独抑制C1C-3基因表达的作用达到肿瘤治疗的目的;降低MMPs基因表达,抑制U251细胞体外侵袭力和迁移力。
     2.构建pSH1Si-C1C-3表达质粒能显著抑制U251细胞C1C-3 mRNA和蛋白表达(抑制率>80%);抑制ClC-3表达能明显增加U251细胞对顺铂的敏感性,原因包括:顺铂可诱导U251细胞发生自噬和凋亡,抑制ClC-3表达通过抑制自噬增加顺铂诱导的细胞凋亡;Akt激活需要ClC-3,抑制ClC-3表达可明显抑制顺铂诱导Akt活化。
     3.抑制ClC-3表达影响由NADPH氧化酶介导的顺铂诱导U251细胞ROS产生,从而抑制顺铂诱导Akt/mTOR途径活化;抑制ClC-3表达影响细胞自噬主要通过影响内吞体-溶酶体酸化和Beclinl/Vps34途径。
Neurospongioma is one of the most frequent cerebral tumor, it was account 40%-50% in intracranial tumor, invasive growth, because its limit is not so clear between tumor tissue and nomal tissue, so it is so difficult to eliminate by operation, and it is very ease to recur; Otherwise neurospongioma can resist the routine antitumor drug, and its prognosis is not good, the survival rate of the neurospongioma is not enough 12 month. Recently, following the deeply research on tumor molecular biology, tumor gene therapy has been the most interest therapy.
     CLC-3 is one of the most important channel protein of CLC family, now as research on CIC-3, found CIC-3 was expressed in many kinds of tumor cells, include neurogliocytoma. CIC-3 participate intracellular internalization-cytolysosome acidation、chloridion disposition regulation some anti-tumor drug resistance form. CIC-3 as a intracellular chloridion pathway, normally condition mainly location in internalization-cytolysosome system and nerves cell synaptic vesicle, few expressed on cytolemma. It is considered that CIC-3 protein transportation through the cytomembrane, at least partly CIC-3 protein transportation pass cytomembrane after it was synthesis, then expressed in internalization-cytolysosome system, participate alveolar acidation and NADPH oxidase generate ROS.
     Autophagy is conservative intracellular long life protein,and large protein aggregate and cell organ, it can maintenance cell stable in normal and stress condition, that is very important in normal development process and changed environment stress. There are some dispute about autophagy role in tumor development and cure therapeutic reaction, it need further approach. In physiology、pathology and pharmacology condition stimulate, autophagy can extend cells life. It is very complicate between autophagy and apoptosis, still exit argument. A hyothesis is autophagy is to inhibit apoptosis for cells.
     The CLC-3 specificity antisense oligonucleotides and CLC-3 siRNA recombinant plasmid were used in this study, they can utility inhibited express of CLC-3 protein, observe the influence on the biological features of U251 after CIC-3 was been efficiently inhibited. Further approach the mechanism and the possibility of CIC-3 as a new gene cure target.
     Objective:
     1. The Influence on the biological features of glioma cells induced by supression of Intracellular chloride channel CLC-3 in human neurogliocytoma cell U251.
     2.Establish stable transfection CLC-3 siRNA recombinant plasmid U251 cells, to observed the sensibility for cis-diamminedichloroplatinum and approach the mechanism.
     Method:
     (1)Use MTT to detect the cells survival rate:(2)Build the pSH1Si-CIC-3 recombinant plasmid; (3)Cells transfection; (4)Detect the cells apoptosis; (5)Detect the intracellular acidity bullule; (6) cytolysosome tagging red staining; (7)Use electron microscope to detect the changing of the ultramicrostructure; (8)Detect MDC autophagic vacuole formation with MDC method; (9)Use RT-PCR to detect the changing of mRNA; (10)Use Western-blot to detect the changing of protein expression; (11)Use DCFH-DA staining to detect the generation of ROS intracellar; (12)Statistics analysis;
     Results:
     1.Use special antisense oligonucleotides can inhibited CLC-3 gene and protein expression in U251 cell(inhibition rate>50%), the Influence on the biological features of U251 cells; (1)The MTT results show that inhibit CLC-3 expression can inhibit the cell proliferation in U251cells;(2)TUNEL and PI/Annexin V double staining results show that inhibit CLC-3 expression can be induced U251 cells to apoptosis;(3)Tanswell results show that inhibit CLC-3 expression can be down regulated the invasiveness and immigration of U251 cells, and inhibited the expression of MMPs gene;(4)AO staining and cytolysosome tagging red staining results show that the inhibition of CLC-3 expression can be inhibited internalization internalization-cytolysosome acidation; (5)MQAE fluorescent probe signal show that chloridion concentration can be up regulation in endochylema through inhibit CLC-3 expression; All of these results hint that CLC-3 played important biological role in U251 cells, the expression inhibition of CLC-3 can be effected the concentration of C1 in U251 cells, influence the function of internalization and cytolysosome, and so CLC-3 can be effected the biological feature of U251 tumor cells. Even though CLC-3 inhibition can induced U251 cell to apoptosis, inhibit cell proliferation, but it was not enough, it was so hard to cure tumor through out inhibited CLC-3 expression.
     2.Up regulated the sensitive of human neurogliocytoma U251 cell for DDP through out inhibit CLC-3 protein expression:(1)Successful build recombination plasmid pSH1Si-CIC-3, transfection U251 cells, build stable transfection cell line;(2)RT-PCR and Western-blot results show that CIC-3 mRNA and protein expression down regulate>80% in stable transfection pSH1 Si-scramble plasmid U251 cells;(3)Survive rate of every group were detected by MTT method, calculate cell inhibition ratio, results show that the role of DDP in inhibition for U251 cells were time dependence and dose dependent;(4)according to the calculating IC50 results of MTT for DDP in U251 cells that this kind of inhibition was relative dependence;(5)MTT results show that the inhibition of CIC-3 expression can significant up regulate the sensitive for DDP in U251 cells;(6)The labeling protein LC3-II was detected by Western-blot method, use electron microscope to observe the ultramicrostructure of U251 cells, associate with MDC staining, AO staining to detect cell autophagia, the results show that U251 cells were induced to take place cell autophagia by DDP, this kind of role can be inhibited through out inhibited CIC-3 expression.(7)Use P1/Annexin V double staining to detect cells apoptosis, Flow cytometry results show that the apoptosis induced by DDP was time dependent, the inhibition of CIC-3 expression can significantly up regulate inducing apoptosis for U251 cells, and it can also be moved front in the apoptosis plot.(8)Detect the activity of Akt by Western-blot, the results show that DDP can be induced U251 cells to active Akt, inhibit CIC-3 express can significant suppress this kind of activity for Akt, so CIC-3 was needed for active Akt.
     3. Study on up regulated the sensitive of human neurogliocytoma U251 cell for DDP through out inhibit CLC-3 protein expression:(1)Use DCFH-DA to detect ROS generation, observe that inhibit CIC-3 and pre-treat with NADPH oxidase inhibitor DPI for U251 cell can significant down regulate ROS generation that induced by DDP, inhibite NADPH oxidase can decrease ROS generation through inhibit CIC-3 expression.(2)Detect Nox2、Nox4、hVps34 mRNA expressed in U251 cell by RT-PCR, Nox2 and Nox4 mRNA can be induced to up regulate by DDP, but DDP can not effect expression of hVps34 mRNA; The up regulate of Nox2 and Nox4 mRNA induced by DDP can be significantly inhibited through inhibit CIC-3 expression, the same time it can also down regulate the expression of hVps34 mRNA;(3)Use Western-blot to detect the activity condition of Akt/mTOR, results show that Akt,mTOR and mTOR substrate(p70SK) phosphorylation were induced up regulation by DDP in U251 cells, demonstrate that DDP can be used to inducing the activation of Akt/mTOR pathway; Inhibit CIC-3 can also significant inhibit this kind of activation;(4)Detect the autophagia labeling protein LC3-Ⅱaggregation, Beclin1/Atg8 protein expression, Atg5-Atg12 complex form, and associated with MDC staining、AO staining to observe intracellular acid bullule generate increased, sure it was happened autophagy; At the same time detect activity of Capase3, detect apoptosis induced by Hoechst33342;All of results account that at the same time DDP can induce U251 to apoptosis and autophagy, use autophagy inhibitor 3-MA can significantly up regulate cells apoptosis induced by DDP; DPI can inhibit activity of NADPH oxidase, it can reinforce DDP to induce apoptosis; inhibit CIC-3 can suppress DDP to induce autophagy, up regulate apoptosis.
     Conclusion:
     1. Specialized antisense oligonucleotides can efficent inhibit CIC-3 mRNA and protein expression in U251 cells; Intracellular acidation can be effected by inhibition of CIC-3; The concentration of intracellular C1 is concern with the inhibition of CIC-3; Inhibit CIC-3 would effect U251 cells biological feature; Inhibit CIC-3 expression would also inhibit U251 cell proliferation; U251 cell can be induced to apoptosis by inhibit CIC-3 expression, but the extent was not enough, so it is hard to cure tumor by inhibit CIC-3 expression singly; Inhibit CIC-3 expression can down-regulate MMPs gene expression in U251 cells, so that inhibit U251 cell invasion and immigration ability.
     2. Build pSH1Si-CIC-3 expression plasmid can significantly inhibit CIC-3 mRNA and protein expression in U251 cell(inhibition ration>80%); The inhibition of DDP for U251 cell was time and dose dependent; U251 has relative higher drug resistance for DDP, so U251 sensitive for DDP was changed when inhibit CIC-3 expression; DDP can be induced U251 cell to apoptosis and autophagy, and inhibit CIC-3 can significantly inhibit the apoptosis inducing role by DDP; Autophagy can postpone the apoptosis that induced by DDP, at the same time significant up regulate DDP to induce U251 to apoptosis, so it is account that autophagy can postpone the apoptosis, and this is one of the most important reason that inhibit CIC-3 can up regulate U251 sensitive for DDP; DDP can induce Akt active in U251 cell, and inhibit CIC-3 can significantly inhibit DDP active Akt, so it is account that Akt active need CIC-3. This is an other important reason for inhibit CIC-3 up regulation sensitive for DDP.
     3. NADPH oxidase participate the pathway that DDP induce U251 cell to up regulate the generation of ROS. NADPH oxidase participate the pathway which was induced Akt/mTOR activity by DDP, inhibit CIC-3 can also inhibit Akt/mTOR activity induced by DDP. Inihibt NADPH oxidase can up regulate autophagy that induced by DDP, and inhibit CIC-3 expression and inhibit autophagy mainly through out effected internalization body and Beclin1/Vps34 pathway, inhibit autophagy induced by DDP. The expression changing of CIC-3 can effect Akt/mTOR pathway and autophagy at the same time, to up regulate DDP cytotoxic effect for U251 cells. The effect of CIC-3 of cell autophagy mainly include two reasons:CIC-3 plays important role in internalization and cytolysosome acidation, so CIC-3 can effect autophagy function through out inhibit internalization and cytolysosome acidation; Otherwise CIC-3 can effect autophagy by direct of indirect inhibit hVps34 fuction.
引文
[1]LEBWOHL D,CANETTA R. Clinical development of platinum complexes in cancer therapy:an historical perspective and an update[J]. Eur J Cancer 1998,34:1522-34.
    [2]FISHER DE. Apoptosis in cancer therapy:crossing the threshold[J]. Cell 1994,78:539-42.
    [3]SORENSON CM,EASTMAN A. Influence of cis-diamminedichloroplatinum(II) on DNA synthesis and cell cycle progression in excision repair proficient and deficient Chinese hamster ovary cells[J]. Cancer Res 1988, 48:6703-7.
    [4]SORENSON CM,EASTMAN A. Mechanism of cis-diamminedichloroplatinum(II)-induced cytotoxicity: role of G2 arrest and DNA double-strand breaks[J]. Cancer Res 1988,48:4484-8.
    [5]FUERTESA MA, CASTILLAB J, ALONSOA C, et al. Cisplatin biochemical mechanism of action:from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways[J], Curr Med Chem 2003,10:257-66.
    [6]GONZALEZ VM, FUERTES MA, ALONSO C, et al. Is cisplatin-induced cell death always produced by apoptosis?[J]. Mol Pharmacol 2001,59:657-63.
    [7]PEREZ RP. Cellular and molecular determinants of cisplatin resistance[J]. Eur J Cancer 1998, 34:1535-42.
    [8]LIU H,BALIGA R. Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis[J]. J Am Soc Nephrol 2005,16:1985-92.
    [9]MANDIC A, HANSSON J, UNDER S, et al. Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling[J]. J Biol Chem 2003,278:9100-6.
    [10]EASTMAN A. Mechanisms of resistance to cisplatin[J]. Cancer Treat Res 1991,57:233-49.
    [11]JAMIESON ER,LIPPARD SJ. Structure, Recognition, and Processing of Cisplatin-DNA Adducts[J]. Chem Rev 1999,99:2467-98.
    [12]ANDREWS PA,HOWELL SB. Cellular pharmacology of cisplatin:perspectives on mechanisms of acquired resistance[J]. Cancer Cells 1990,2:35-43.
    [13]YU F, MEGYESI J,PRICE PM. Cytoplasmic initiation of cisplatin cytotoxicity[J]. Am J Physiol Renal Physiol 2008,295:F44-52.
    [14]JEHN CF, BOULIKAS T, KOURVETARIS A, et al. Pharmacokinetics of liposomal cisplatin (lipoplatin) in combination with 5-FU in patients with advanced head and neck cancer:first results of a phase III study[J]. Anticancer Res 2007,27:471-5.
    [15]ANDREWS PA, JONES JA, VARKI NM, et al. Rapid emergence of acquired cis-diamminedichloroplatinum(II) resistance in an in vivo model of human ovarian carcinoma[J]. Cancer Commun 1990,2:93-100.
    [16]FINK D, NEBEL S, NORRIS PS, et al. The effect of different chemotherapeutic agents on the enrichment of DNA mismatch repair-deficient tumour cells[J]. Br J Cancer 1998,77:703-8.
    [17]EL-AKAWI Z, ABU-HADID M, PEREZ R, et al. Altered glutathione metabolism in oxaliplatin resistant ovarian carcinoma cells[J]. Cancer Lett 1996,105:5-14.
    [18]GATELY DP,HOWELL SB. Cellular accumulation of the anticancer agent cisplatin:a review[J]. Br J Cancer 1993,67:1171-6.
    [19]HANAHAN D,WEINBERG RA. The hallmarks of cancer[J]. Cell 2000,100:57-70.
    [20]JAATTELA M. Multiple cell death pathways as regulators of tumour initiation and progression[J]. Oncogene 2004,23:2746-56.
    [21]BRUNK UT, NEUZIL J,EATON JW. Lysosomal involvement in apoptosis[J]. Redox Rep 2001,6:91-7.
    [22]LEIST M,JAATTELA M. Four deaths and a funeral:from caspases to alternative mechanisms[J]. Nat Rev Mol Cell Biol 2001,2:589-98.
    [23]KROEMER G,JAATTELAM. Lysosomes and autophagy in cell death control[J]. Nat Rev Cancer 2005, 5:886-97.
    [24]LIANG XJ, MUKHERJEE S, SHEN DW, et al. Endocytic recycling compartments altered in cisplatin-resistant cancer cells[J]. Cancer Res 2006,66:2346-53.
    [25]SAFAEI R, KATANO K, LARSON BJ, et al. Intracellular localization and trafficking of fluorescein-labeled cisplatin in human ovarian carcinoma cells[J]. Clin Cancer Res 2005,11:756-67.
    [26]SAFAEI R,HOWELL SB. Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs[J]. Crit Rev Oncol Hematol 2005,53:13-23.
    [27]LIAO C, HU B, ARNO MJ, et al. Genomic screening in vivo reveals the role played by vacuolar H+ ATP.ase and cytosolic acidification in sensitivity to DNA-damaging agents such as cisplatin[J]. Mol Pharmacol 2007,71:416-25.
    [28]SAITO T,ARAN JM. X-ray microanalysis and ion microscopy of guinea pig cochlea and kidney after cisplatin treatment[J]. ORL J Otorhinolaryngol Relat Spec 1994,56:310-4.
    [29]LARSEN AK, ESCARGUEIL AE,SKLADANOWSKI A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents[J]. Pharmacol Ther 2000,85:217-29.
    [30]WARREN L, JARDILLIER JC,ORDENTLICH P. Secretion of lysosomal enzymes by drug-sensitive and multiple drug-resistant cells[J]. Cancer Res 1991,51:1996-2001.
    [31]DENZER K, KLEIJMEER MJ, HEIJNEN HF, et al. Exosome:from internal vesicle of the multivesicular body to intercellular signaling device[J]. J Cell Sci 2000,113 Pt 19:3365-74.
    [32]KATZMANN DJ, BABST M,EMR SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I[J]. Cell 2001, 106:145-55.
    [33]CHAUHAN SS, LIANG XJ, SU AW, et al. Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines[J]. Br J Cancer 2003,88:1327-34.
    [34]LIANG XJ, SHEN DW,GOTTESMAN MM. A pleiotropic defect reducing drug accumulation in cisplatin-resistant cells[J]. J Inorg Biochem 2004,98:1599-606.
    [35]MAXFIELD FR,MCGRAW TE. Endocytic recycling[J]. Nat Rev Mol Cell Biol 2004,5:121-32.
    [36]JENTSCH TJ, NEAGOE I,SCHEEL O. CLC chloride channels and transporters[J]. Curr Opin Neurobiol 2005,15:319-25.
    [37]LI X, WANG T, ZHAO Z, et al. The C1C-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells[J]. Am J Physiol Cell Physiol 2002,282:C1483-91.
    [38]HARA-CHIKUMA M, YANG B, SONAWANE ND, et al. C1C-3 chloride channels facilitate endosomal acidification arid chloride accumulation[J]. J Biol Chem 2005,280:1241-7.
    [39]WEYLANDT KH, NEBRIG M, JANSEN-ROSSECK N, et al. C1C-3 expression enhances etoposide resistance by increasing acidification of the. late endocytic compartment[J]. Mol Cancer Ther 2007,6:979-86.
    [40]ZIFARELLI G,PUSCH M. CLC chloride channels and transporters:a biophysical and physiological perspective[J]. Rev Physiol Biochem Pharmacol 2007,158:23-76.
    [41]OLSEN ML, SCHADE S, LYONS SA, et al. Expression of voltage-gated chloride channels in human glioma cells[J]. J Neurosci 2003,23:5572-82.
    [42]MCFERRIN MB,SONTHEIMER H. A role for ion channels in glioma cell invasion[J]. Neuron Glia Biol 2006,2:39-49.
    [43]JENTSCH TJ. Chloride and the endosomal-lysosomal pathway:emerging roles of CLC chloride transporters[J]. J Physiol 2007,578:633-40.
    [44]IZUMI H, TORIGOE T, ISHIGUCHI H, et al. Cellular pH regulators:potentially promising molecular targets for cancer chemotherapy[J]. Cancer Treat Rev 2003,29:541-9.
    [45]SHIMIZU T, LEE EL,ISE T, et al. Volume-sensitive Cl(-) channel as a regulator of acquired cisplatin resistance[J]. Anticancer Res 2008,28:75-83.
    [46]ISE T, SHIMIZU T, LEE EL, et al. Roles of volume-sensitive Cl-channel in cisplatin-induced apoptosis in human epidermoid cancer cells[J]. J Membr Biol 2005,205:139-45.
    [47]JENTSCH TJ, STEIN V, WEINREICH F, et al. Molecular structure and physiological function of chloride channels[J]. Physiol Rev 2002,82:503-68.
    [48]JENTSCH TJ, POET M, FUHRMANN JC, et al. Physiological functions of CLC C1-channels gleaned from human genetic disease and mouse models[J]. Annu Rev Physiol 2005,67:779-807.
    [49]FRIEDRICH T, BREIDERHOFF T,JENTSCH TJ. Mutational analysis demonstrates that C1C-4 and' C1C-5 directly mediate plasma membrane currents[J]. J Biol Chem 1999,274:896-902.
    [50]JENTSCH TJ, GUNTHER W, PUSCH M, et al. Properties of voltage-gated chloride channels of the C1C gene family[J]. J Physiol 1995,482:19S-25S.
    [51]WEYLANDT KH, VALVERDE MA, NOBLES M, et al. Human C1C-3 is not the swelling-activated chloride channel involved in cell volume regulation[J]. J Biol Chem 2001,276:17461-7.
    [52]DUAN D, WINTER C, COWLEY S, et al. Molecular identification of a volume-regulated chloride channel[J]. Nature 1997,390:417-21.
    [53]LI X, SHIMADA K, SHOWALTER LA, et al. Biophysical properties of C1C-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells[J]. J Biol Chem 2000,275:35994-8.
    [54]HUANG P, LIU J, DI A, et al. Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase[J]. J Biol Chem 2001,276:20093-100.
    [55]MATSUDA JJ, FILALI MS, VOLK KA, et al. Overexpression of CLC-3 in HEK293T cells yields novel currents that are pH dependent[J]. Am J Physiol Cell Physiol 2008,294:C251-62.
    [56]JENTSCH TJ. CLC chloride channels and transporters:from genes to protein structure, pathology and physiology[J]. Crit Rev Biochem Mol Biol 2008,43:3-36.
    [57]STOBRAWA SM, BREIDERHOFF T, TAKAMORI S, et al. Disruption of C1C-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus[J]. Neuron 2001,29:185-96.
    [58]MARITZEN T, KEATING DJ, NEAGOE I, et al. Role of the vesicular chloride transporter C1C-3 in neuroendocrine tissue[J]. J Neurosci 2008,28:10587-98.
    [59]MORELAND JG, DAVIS AP, BAILEY G, et al. Anion channels, including C1C-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration[J]. J Biol Chem 2006, 281:12277-88.
    [60]ZHAO Z, LI X, HAO J, et al. The C1C-3 chloride transport protein traffics through the plasma membrane via interaction of an N-terminal dileucine cluster with clathrin[J]. J Biol Chem 2007,282:29022-31.
    [61]WENG TX, GODLEY BF, JIN GF, et al. Oxidant and antioxidant modulation of chloride channels expressed in human retinal pigment epithelium [J]. Am J Physiol Cell Physiol 2002,283:C839-49.
    [62]PICOLLO A,PUSCH M. Chloride/proton antiporter activity of mammalian CLC proteins C1C-4 and C1C-5[J]. Nature 2005,436:420-3.
    [63]SCHEEL O, ZDEBIK AA, LOURDEL S, et al. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins[J]. Nature 2005,436:424-7.
    [64]BARG S, HUANG P, ELIASSON L, et al. Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification[J]. J Cell Sci 2001,114:2145-54.
    [65]MELLMAN I, FUCHS R,HELENIUS A. Acidification of the endocytic and exocytic pathways[J]. Annu Rev Biochem 1986,55:663-700.
    [66]FAUNDEZ V,HARTZELL HC. Intracellular chloride channels:determinants of function in the endosomal pathway[J]. Sci STKE 2004,2004:re8.
    [67]NGUITRAGOOL W,MILLER C. Uncoupling of a CLC C1-/H+ exchange transporter by polyatomic anions[J]. J Mol Biol 2006,362:682-90.
    [68]ZIFARELLI QPUSCH.M. Conversion of the 2 Cl(-)/1 H+ antiporter C1C-5 in a NO3(-)/H+ antiporter by a single point mutation[J]. EMBO J 2009,28:175-82.
    [69]LAMB FS, MORELAND JG,MILLER FJ, JR. Electrophysiology of reactive oxygen production in signaling endosomes[J]. Antioxid Redox Signal 2009,11:1335-47.
    [70]LAMBERT S,OBERWINKLER J. Characterization of a proton-activated, outwardly rectifying anion channel[J]. J Physiol 2005,567:191-213.
    [71]NOBLES M, HIGGINS CF,SARDINI A. Extracellular acidification elicits a chloride current that shares characteristics with IC1(swell)[J]. Am J Physiol Cell Physiol 2004,287:C1426-35.
    [72]AUZANNEAU C, THOREAU V, KITZIS A, et al. A Novel voltage-dependent chloride current activated by extracellular acidic pH in cultured rat Sertoli cells[J]. J Biol Chem 2003,278:19230-6.
    [73]YAMAMOTO S,EHARA T. Acidic extracellular pH-activated outwardly rectifying chloride current in mammalian cardiac myocytes[J]. Am J Physiol Heart Circ Physiol 2006,290:H1905-14.
    [74]MA ZY, ZHANG W, CHEN L, et al. A proton-activated, outwardly rectifying chloride channel in human umbilical vein endothelial cells[J]. Biochem Biophys Res Commun 2008,371:437-40.
    [75]JAYARAM H, ACCARDI A, WU F, et al. Ion permeation through a CI-selective channel designed from a CLC C1-/H+ exchanger[J]. Proc Natl Acad Sci U S A 2008,105:11194-9.
    [76]ALEKOV AK,FAHLKE C. Channel-like slippage modes in the human anion/proton exchanger C1C-4[J], J Gen Physiol 2009,133:485-96.
    [77]ACCARDI A, WALDEN M, NGUITRAGOOL W, et al. Separate ion pathways in a C1-/H+ exchanger[J]. J Gen Physiol 2005,126:563-70.
    [78]ACCARDI A,MILLER C. Secondary active transport mediated by a prokaryotic homologue of C1C Cl-channels[J]. Nature 2004,427:803-7.
    [79]ZDEBIK AA, ZIFARELLI G, BERGSDORF EY, et al. Determinants of anion-proton coupling in mammalian endosomal CLC proteins[J]. J Biol Chem 2008,283:4219-27.
    [80]GROSSHANS BL, ORTIZ D,NOVICK P. Rabs and their effectors:achieving specificity in membrane traffic[J]. Proc Natl Acad Sci U S A 2006,103:11821-7.
    [81]SONAWANE ND,VERKMAN AS. Determinants of [C1-] in recycling and late endosomes and Golgi complex measured using fluorescent ligands[J]. J Cell Biol 2003,160:1129-38.
    [82]DIKIC I. ALIX-ing phospholipids with endosome biogenesis[J]. Bioessays 2004,26:604-7.
    [83]LAI HC,JAN LY. The distribution and targeting of neuronal voltage-gated ion channels[J]. Nat Rev Neurosci 2006,7:548-62.
    [84]LAKADAMYALI M, RUST MJ,ZHUANG X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes[J]. Cell 2006,124:997-1009.
    [85]GRABE M,OSTER G. Regulation of organelle acidity[J]. J Gen Physiol 2001,117:329-44.
    [86]SONAWANE ND, THIAGARAJAH JR,VERKMAN AS. Chloride concentration in endosomes measured using a ratioable fluorescent Cl-indicator:evidence for chloride accumulation during acidification[J]. J Biol Chem 2002,277:5506-13.
    [87]XIE XS, STONE DK,RACKER E. Determinants of clathrin-coated vesicle acidification[J]. J Biol Chem 1983,258:14834-8.
    [88]HARA-CHIKUMA M, WANG Y, GUGGINO SE, et al. Impaired acidification in early endosomes of C1C-5 deficient proximal tubule[J]. Biochem Biophys Res Commun 2005,329:941-6.
    [89]THEVENOD F. Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins[J]. Am J Physiol Cell Physiol 2002,283:C651-72.
    [90]LI Q, HARRAZ MM, ZHOU W, et al. Nox2 and Racl regulate H2O2-dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes[J]. Mol Cell Biol 2006,26:140-54.
    [91]MILLER FJ, JR., FILALI M, HUSS GJ, et al. Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Noxl and C1C-3[J]. Circ Res 2007,101:663-71.
    [92]MORELAND JG, DAVIS AP, MATSUDA JJ, et al. Endotoxin priming of neutrophils requires NADPH oxidase-generated oxidants and is regulated by the anion transporter C1C-3[J]. J Biol Chem 2007,282:33958-67.
    [93]DECOURSEY TE. Voltage-gated. proton channels and other proton transfer pathways[J]. Physiol Rev 2003,83:475-579.
    [94]DEMAUREX N,PETHEO GL. Electron and proton transport by NADPH oxidases[J]. Philos Trans R Soc Lond B Biol Sci 2005,360:2315-25.
    [95]SASAKI M, TAKAGI M,OKAMURA Y. A voltage sensor-domain protein is a voltage-gated proton channel[J]. Science 2006,312:589-92.
    [96]CATALDO AM, MATHEWS PM, BOITEAU AB, et al. Down syndrome fibroblast model of Alzheimer-related endosome pathology:accelerated endocytosis promotes late endocytic defects[J]. Am J Pathol 2008,173:370-84.
    [97]MURK JL, POSTHUMA G, KOSTER AJ, et al. Influence of aldehyde fixation on the morphology of endosomes and lysosomes:quantitative analysis and electron tomography [J]. J Microsc 2003,212:81-90.
    [98]HITCHCOCK DI. Some Consequences of the Theory of Membrane Equilibria[J]. J Gen Physiol 1925, 9:97-109.
    [99]ROTHMAN JE,LENARD J. Membrane asymmetry[J]. Science 1977,195:743-53.
    [100]CAHALAN MD,HALL J. Alamethicin channels incorporated into frog node of ranvier: calcium-induced inactivation and membrane surface charges[J]. J Gen Physiol 1982,79:411-36.
    [101]MCLAUGHLIN S. The electrostatic properties of membranes[J]. Annu Rev Biophys Biophys Chem 1989,18:113-36.
    [102]REIMER RJ, FREMEAU RT, JR., BELLOCCHIO EE, et al. The essence of excitation[J]. Curr Opin Cell Biol 2001,13:417-21.
    [103]DICKERSON LW, BONTHIUS DJ, SCHUTTE BC, et al. Altered GABAergic function accompanies hippocampal degeneration in mice lacking C1C-3 voltage-gated chloride channels[J]. Brain Res 2002,958:227-50.
    [104]FUCHS R, SCHMID S,MELLMAN I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification[J]. Proc Natl Acad Sci U S A 1989,86:539-43.
    [105]LU C, PRIBANIC S, DEBONNEVILLE A, et al. The PY motif of ENaC, mutated in Liddle syndrome, regulates channel internalization, sorting and mobilization from subapical pool[J]. Traffic 2007,8:1246-64.
    [106]MA D, ZERANGUE N, RAAB-GRAHAM K, et al. Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart[J]. Neuron 2002, 33:715-29.
    [107]CHOI WS, KHURANA A, MATHUR R, et al. Kv1.5 surface expression is modulated by retrograde trafficking of newly endocytosed channels by the dynein motor[J]. Circ Res 2005,97:363-71.
    [108]ZADEH AD, XU H, LOEWEN ME, et al. Internalized Kvl.5 traffics via Rab-dependent pathways[J]. J Physiol 2008,586:4793-813.
    [109]CARRITHERS MD, DIB-HAJJ S, CARRITHERS LM, et al. Expression of the voltage-gated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification[J]. J Immunol 2007, 178:7822-32.
    [110]TING-BEALL HP, NEEDHAM D,HOCHMUTH RM. Volume and osmotic properties of human neutrophils[J]. Blood 1993,81:2774-80.
    [111]MURPHY R,DECOURSEY TE. Charge compensation during the phagocyte respiratory burst[J]. Biochim Biophys Acta 2006,1757:996-1011.
    [112]USHIO-FUKAI M. Localizing NADPH oxidase-derived ROS[J]. Sci STKE 2006,2006:re8.
    [113]AL-AWQATI Q. Proton-translocating ATPases[J]. Annu Rev Cell Biol 1986,2:179-99.
    [114]FORGAC M. Vacuolar ATPases:rotary proton pumps in physiology and pathophysiology[J]. Nat Rev Mol Cell Biol 2007,8:917-29.
    [115]BRETON S,BROWN D. New insights into the regulation of V-ATPase-dependent proton secretion[J]. Am J Physiol Renal Physiol 2007,292:F1-10.
    [116]GRABE M, WANG H,OSTER G. The mechanochemistry of V-ATPase proton pumps[J]. Biophys J 2000,78:2798-813.
    [117]CHOW CW, KHURANA S, WOODSIDE M, et al. The epithelial Na(+)/H(+) exchanger, NHE3, is internalized through a clathrin-mediated pathway[J]. J Biol Chem 1999,274:37551-8.
    [118]ORLOWSKI J,GRINSTEIN S. Na+/H+ exchangers of mammalian cells[J]. J Biol Chem 1997, 272:22373-6.
    [119]VAN DYKE RW. Na+/H+ exchange modulates acidification of early rat liver endocytic vesicles[J]. Am J Physiol 1995,269:C943-54.
    [120]BRETT CL, TUKAYE DN, MUKHERJEE S, et al. The yeast endosomal Na+K+/H+ exchanger Nhxl regulates cellular pH to control vesicle trafficking[J]. Mol Biol Cell 2005,16:1396-405.
    [121]RAMSEY IS, MORAN MM, CHONG JA, et al. A voltage-gated proton-selective channel lacking the pore domain[J]. Nature 2006,440:1213-6.
    [122]GRINSTEIN S,FURUYA W. Cytoplasmic pH regulation in phorbol ester-activated human neutrophils[J]. Am J Physiol 1986,251:C55-65.
    [123]MATURANA A, KRAUSE KH,DEMAUREX N. NOX family NADPH oxidases:do they have built-in proton channels?[J]. J Gen Physiol 2002,120:781-6.
    [124]BIELSKI BH. Fast reaction kinetics of ferredoxin[J]. Basic Life Sci 1977,9:435.
    [125]TAHERI SA,PLONKA AJ. Aortocaval fistula:diagnosis and treatment:case studies[J]. Angiology 1986,37:314-8.
    [126]MANTEGAZZA AR, SAVINA A, VERMEULEN M, et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells[J]. Blood 2008,112:4712-22.
    [127]GUTTERIDGE JM,HALLIWELL B. Free radicals and antioxidants in the year 2000. A historical look to the future[J]. Ann N Y Acad Sci 2000,899:136-47.
    [128]MAIER CM,CHAN PH. Role of superoxide dismutases in oxidative damage and neurodegenerative disorders[J]. Neuroscientist 2002,8:323-34.
    [129]CHU Y, PIPER R, RICHARDSON S, et al. Endocytosis of extracellular superoxide dismutase into endothelial cells:role of the heparin-binding domain[J]. Arterioscler Thromb Vasc Biol 2006,26:1985-90.
    [130]HARRAZ MM, MARDEN JJ, ZHOU W, et al. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model[J]. J Clin Invest 2008,118:659-70.
    [131]MUMBENGEGWI DR, LI Q, LI C, et al. Evidence for a superoxide permeability pathway in endosomal membranes[J]. Mol Cell Biol 2008,28:3700-12.
    [132]GUNTHER W, LUCHOW A, CLUZEAUD F, et al. C1C-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells[J]. Proc Natl Acad Sci U S A 1998,95:8075-80.
    [133]PIWON N, GUNTHER W, SCHWAKE M, et al. C1C-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent's disease[J]. Nature 2000,408:369-73.
    [134]MOHAMMAD-PANAH R, ACKERLEY C, ROMMENS J, et al. The chloride channel C1C-4 co-localizes with cystic fibrosis transmembrane conductance regulator and may mediate chloride flux across the apical membrane of intestinal epithelia[J]. J Biol Chem 2002,277:566-74.
    [135]BANKAITIS VA, AITKEN JR, CLEVES AE, et al. An essential role for a phospholipid transfer protein in yeast Golgi function[J]. Nature 1990,347:561-2.
    [136]SCHU PV, TAKEGAWA K, FRY MJ, et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting[J]. Science 1993,260:88-91.
    [137]CLAGUE MJ, URBE S,DE LARTIGUE J. Phosphoinositides and the endocytic pathway[J]. Exp Cell Res 2009,315:1627-31.
    [138]MOTLEY A, BRIGHT NA, SEAMAN MN, et al. Clathrin-mediated endocytosis in AP-2-depleted cells[J]. J Cell Biol 2003,162:909-18.
    [139]PADRON D, WANG YJ, YAMAMOTO M, et al. Phosphatidylinositol phosphate 5-kinase Ibeta recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis[J]. J Cell Biol 2003, 162:693-701.
    [140]ZONCU R, PERERA RM, SEBASTIAN R, et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate[J]. Proc Natl Acad Sci U S A 2007,104:3793-8.
    [141]ABE N, INOUE T, GALVEZ T, et al. Dissecting the role of PtdIns(4,5)P2 in endocytosis and recycling of the transferrin receptor[J]. J Cell Sci 2008,121:1488-94.
    [142]MAURER ME,COOPER JA. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH[J]. J Cell Sci 2006,119:4235-46.
    [143]GAIDAROV I,KEEN JH. Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits[J]. J Cell Biol 1999,146:755-64.
    [144]ROHDE G, WENZEL D,HAUCKE V. A phosphatidylinositol (4,5)-bisphosphate binding-site within mu2-adaptin regulates clathrin-mediated endocytosis[J]. J Cell Biol 2002,158:209-14.
    [145]HONING S, RICOTTA D, KRAUSS M, et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2[J]. Mol Cell 2005,18:519-31.
    [146]JONES AT,CLAGUE MJ. Phosphatidylinositol 3-kinase activity is required for early endosome fusion[J]. Biochem J 1995,311 (Pt 1):31-4.
    [147]LI G, D'SOUZA-SCHOREY C, BARBIERI MA, et al. Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5[J]. Proc Natl Acad Sci U S A 1995,92:10207-11.
    [148]JOLY M, KAZLAUSKAS A,CORVERA S. Phosphatidylinositol 3-kinase activity is required at a postendocytic step in platelet-derived growth factor receptor trafficking[J]. J Biol Chem 1995,270:13225-30.
    [149]GAULLIER JM, SIMONSEN A, D'ARRIGO A, et al. FYVE fingers bind Ptdlns(3)P[J]. Nature 1998, 394:432-3.
    [150]PATKI V, VIRBASIUS J, LANE WS, et al. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase[J]. Proc Natl Acad Sci U S A 1997,94:7326-30.
    [151]GILLOOLY DJ, MORROW IC, LINDSAY M, et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells[J]. EMBO J 2000,19:4577-88.
    [152]MILLS IG, JONES AT,CLAGUE MJ. Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes[J]. Curr Biol 1998,8:881-4.
    [153]SIMONSEN A, LIPPE R, CHRISTOFORIDIS S, et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion[J]. Nature 1998,394:494-8.
    [154]BACKER JM. The regulation and function of Class III PI3Ks:novel roles for Vps34[J]. Biochem J 2008,410:1-17.
    [155]CHRISTOFORIDIS S, MIACZYNSKA M, ASHMAN K,-et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors[J]. Nat Cell Biol 1999,1:249-52.
    [156]SHIN HW, HAYASHI M, CHRISTOFORIDIS S, et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway[J]. J Cell Biol 2005,170:607-18.
    [157]WILLIAMS RL,URBE S. The emerging shape of the ESCRT machinery[J]. Nat Rev Mol Cell Biol 2007,8:355-68.
    [158]HURLEY JH,EMR SD. The ESCRT complexes:structure and mechanism of a membrane-trafficking network[J]. Annu Rev Biophys Biomol Struct 2006,35:277-98.
    [159]TAYLOR GS, MAEHAMA T,DIXON JE. Inaugural article:myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate[J]. Proc Natl Acad Sci U S A 2000,97:8910-5.
    [160]NICOT AS,LAPORTE J. Endosomal phosphoinositides and human diseases[J]. Traffic 2008, 9:1240-9.
    [161]IL'YASOVA D, MCCARTHY B, MARCELLO J, et al. Association between glioma and history of allergies, asthma, and eczema:a case-control study with three groups of controls[J]. Cancer Epidemiol Biomarkers Prev 2009,18:1232-8.
    [162]LIM HH,MILLER C. Intracellular proton-transfer mutants in a CLC C1-/H+ exchanger[J]. J Gen Physiol 2009,133:131-8.
    [163]LEMONNIER L, LAZARENKO R, SHUBA Y, et al. Alterations in the regulatory volume decrease (RVD) and swelling-activated C1-current associated with neuroendocrine differentiation of prostate cancer epithelial cells[J]. Endocr Relat Cancer 2005,12:335-49.
    [164]KIM DS, YOO KY, HWANG IK, et al. Elevated voltage gated Cl-channel expression enhances fast paired-pulse inhibition in the dentate gyrus of seizure sensitive gerbil[J]. Neurosci Res 2005,51:45-53.
    [165]WANG LW, CHEN LX,JACOB T. C1C-3 expression in the cell cycle of nasopharyngeal carcinoma cells[J]. Sheng Li Xue Bao 2004,56:230-6.
    [166]HABELA CW, OLSEN ML,SONTHEIMER H. C1C3 is a critical regulator of the cell cycle in normal and malignant glial cells[J]. J Neurosci 2008,28:9205-17.
    [167]TANG YB, LIU YJ, ZHOU JG, et al. Silence of C1C-3 chloride channel inhibits cell proliferation and the cell cycle via G/S phase arrest in rat basilar arterial smooth muscle cells[J]. Cell Prolif 2008,41:775-85.
    [168]SONTHEIMER H. An unexpected role for ion channels in brain tumor metastasis[J]. Exp Biol Med (Maywood) 2008,233:779-91.
    [169]PICOLLO A, MALVEZZI M, HOUTMAN JC, et al. Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters[J]. Nat Struct Mol Biol 2009,16:1294-301.
    [170]DUTZLER R. The C1C family of chloride channels and transporters[J]. Curr Opin Struct Biol 2006, 16:439-46.
    [171]BOIZIAU C, MOREAU S,TOULME JJ. A phosphorothioate oligonucleotide blocks reverse transcription via an antisense mechanism[J]. FEBS Lett 1994,340:236-40.
    [172]ESTEVE PO, ROBLEDO O, POTWOROWSKI EF, et al. Induced expression of MMP-9 in C6 glioma cells is inhibited by PDGF via a PI 3-kinase-dependent pathway[J]. Biochem Biophys Res Commun 2002, 296:864-9.
    [173]GONDI CS, DINH DH, KLOPFENSTEIN JD, et al. MMP-2 downregulation mediates differential regulation of cell death via ErbB-2 in glioma xenografts[J]. Int J Oncol 2009,35:257-63.
    [174]LAKKA SS, RAJAN M, GONDI C, et al. Adenovirus-mediated expression of antisense MMP-9 in glioma cells inhibits tumor growth and invasion[J]. Oncogene 2002,21:8011-9.
    [175]GONDI CS, TALLURI L, DINH DH, et al. RNAi-mediated downregulation of MMP-2 activates the extrinsic apoptotic pathway in human glioma xenograft cells[J]. Int J Oncol 2009,35:851-9.
    [176]MIZUSHIMA N, LEVINE B, CUERVO AM, et al. Autophagy fights disease through cellular self-digestion[J]. Nature 2008,451:1069-75.
    [177]KLIONSKY DJ, Autophagy:from phenomenology to molecular understanding in less than a decade[J]. Nat Rev Mol Cell Biol 2007,8:931-7.
    [178]KLIONSKY DJ, CUERVO AM,SEGLEN PO. Methods for monitoring autophagy from yeast to human[J]. Autophagy 2007,3:181-206.
    [179]XIE Z,KLIONSKY DJ. Autophagosome formation:core machinery and adaptations[J]. Nat Cell Biol 2007,9:1102-9.
    [180]FILIMONENKO M, STUFFERS S, RAIBORG C, et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease[J]. J Cell Biol 2007, 179:485-500.
    [181]RUSTEN TE, FILIMONENKO M, RODAHL LM, et al. ESCRTing autophagic clearance of aggregating proteins[J]. Autophagy 2007,4:
    [182]DUNN WA, JR. Studies on the mechanisms of autophagy:formation of the autophagic vacuole[J]. J Cell Biol 1990,110:1923-33.
    [183]DUNN WA, JR. Studies on the mechanisms of autophagy:maturation of the autophagic vacuole[J]. J Cell Biol 1990,110:1935-45.
    [184]ESKELINEN EL. Maturation of autophagic vacuoles in Mammalian cells[J]. Autophagy 2005, 1:1-10.
    [185]SIDDIK ZH. Cisplatin:mode of cytotoxic action and molecular basis of resistance[J]. Oncogene 2003, 22:7265-79.
    [186]MANNING BD,CANTLEY LC. AKT/PKB signaling:navigating downstream[J]. Cell 2007, 129:1261-74.
    [187]HENNESSY BT, SMITH DL, RAM PT, et al. Exploiting the PI3K/AKT pathway for cancer drug discovery[J]. Nat Rev Drug Discov 2005,4:988-1004.
    [188]CARPTEN JD, FABER AL, HORN C, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer[J]. Nature 2007,448:439-44.
    [189]VIVANCO I,SAWYERS CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer[J]. Nat Rev Cancer 2002,2:489-501.
    [190]DEBNATH J, BAEHRECKE EH,KROEMER G. Does autophagy contribute to cell death?[J]. Autophagy 2005,1:66-74.
    [191]HAIT WN, JIN S,YANG JM. A matter of life or death (or both):understanding autophagy in cancer[J]. Clin Cancer Res 2006,12:1961-5.
    [192]FERRARO E,CECCONI F. Autophagic and apoptotic response to stress signals in mammalian cells[J]. Arch Biochem Biophys 2007,462:210-9.
    [193]LEVINE B. Cell biology:autophagy and cancer[J]. Nature 2007,446:745-7.
    [194]KELEKAR A. Autophagy[J]. Ann N Y Acad Sci 2005,1066:259-71.
    [195]CUERVO AM. Autophagy:in sickness and in health[J]. Trends Cell Biol 2004,14:70-7.
    [196]GOZUACIK D,KIMCHI A. Autophagy as a cell death and tumor suppressor mechanism[J]. Oncogene 2004,23:2891-906.
    [197]SHINTANI T,KLIONSKY DJ. Autophagy in health and disease:a double-edged sword[J]. Science 2004,306:990-5.
    [198]KONDO Y, KANZAWA T, SAWAYA R, et al.The role of autophagy in cancer development and response to therapy[J]. Nat Rev Cancer 2005,5:726-34.
    [199]PETIOT A, OGIER-DENIS E, BLOMMAART EF, et al. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells[J]. J Biol Chem 2000, 275:992-8.
    [200]VOGT PK. PI 3-kinase, mTOR, protein synthesis and cancer[J]. Trends Mol Med 2001,7:482-4.
    [201]OLDHAM S,HAFEN E. Insulin/IGF and target of rapamycin signaling:a TOR de force in growth control[J]. Trends Cell Biol 2003,13:79-85.
    [202]CHOE G, HORVATH S, CLOUGHESY TF, et al. Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo[J]. Cancer Res 2003,63:2742-6.
    [203]NEVE RM, HOLBRO T,HYNES NE. Distinct roles for phosphoinositide 3-kinase, mitogen-activated protein kinase and p38 MAPK in mediating cell cycle progression of breast cancer cells[J]. Oncogene 2002, 21:4567-76.
    [204]PHILP AJ, CAMPBELL IG, LEET C, et al. The'phosphatidylinositol 3'-kinase p85alpha gene is an oncogene in human ovarian and colon tumors[J]. Cancer Res 2001,61:7426-9.
    [205]ARICO S, PETIOT A, BAUVY C, et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway[J]. J Biol Chem 2001, 276:35243-6.
    [206]TASSA A, ROUX MP, ATTAIX D, et al. Class III phosphoinositide 3-kinase--Beclinl complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes[J]. Biochem J 2003,376:577-86.
    [207]TAKEUCHI H, KONDO Y, FUJIWARA K, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors[J]. Cancer Res 2005,65:3336-46.
    [208]PAGLIN S, LEE NY, NAKAR C, et al. Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells[J]. Cancer Res 2005,65:11061-70.
    [209]BOYA P, GONZALEZ-POLO RA, CASARES N, et al. Inhibition of macroautophagy triggers apoptosis[J]. Mol Cell Biol 2005,25:1025-40.
    [210]EDINGER AL,THOMPSON CB. Death by design:apoptosis, necrosis and autophagy[J]. Curr Opin Cell Biol 2004,16:663-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700