罗格列酮对野百合碱诱导肺动脉高压大鼠的作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景]
     肺动脉高压(pulmonary hypertension, PH)是一组以肺血管阻力持续增加为特征的具有潜在破坏力的严重疾病,动脉型肺动脉高压(pulmonary arterial hypertension,PAH)是PH的最常见类型之一。血管重构是PH发生发展的中心环节,目前PH的治疗药物虽可改善患者的临床症状,但不能抑制和逆转肺血管重构发生。近年研究发现,PH的发病与过氧化物酶体增殖物激活受体γ(peroxisome proliferator activated receptorγ, PPARγ)表达降低相关,PPARγ的配体能够阻止或逆转PH的发生发展。罗格列酮是PPARγ的人工合成配体,具有抗炎、抑制细胞增殖、诱导细胞凋亡分化等作用。本研究拟通过野百合碱(monocrotaline, MCT)诱导PAH的大鼠模型,观察罗格列酮对野百合碱诱导PAH大鼠的治疗作用。
     [目的]
     通过观察罗格列酮对MCT诱导PAH大鼠一般状况、肺血流动力学及肺组织病理变化的影响,评估罗格列酮对MCT诱导的已形成PAH大鼠的治疗作用。
     [方法]
     1.实验动物分组:雄性Sprague-Dawley大鼠40只,随机分为4组,每组10只:
     ①对照组(C组):颈背部皮下注射生理盐水1次;②PAH模型组(P组):颈背部皮下注射野百合碱(60mg/kg) 1次,并于注射后第21天至第34天连续给予等体积生理盐水灌胃(约1.5ml/d);③罗格列酮高剂量治疗PAH组(PRH组):野百合碱(60mg/kg)颈背部皮下注射1次,并于注射后第21天至第34天连续给予罗格列酮(每日5mg/kg)灌胃;④罗格列酮低剂量治疗PAH组(PRL组):野百合碱(60mg/kg)颈背部皮下注射1次,并于注射后第21天至第34天连续给予罗格列酮(每日2.5mg/kg)灌胃。
     2.于第35天行右心导管检查测定肺动脉平均压(mPAP)、右心室收缩压(RVSP);分离心脏,沿室间隔分离右心室,分别称量右心室、左心室+室间隔,计算右心室肥厚指数(RVHI)。
     3.肺组织切片HE染色及Elastin Van Gieson(ET+VG)染色,应用Image Pro Plus 6.0病理图像分析系统测定并计算各组大鼠肺小动脉管壁中膜厚度占管壁外径的百分比(WT%)。
     4.采用t检验及单因素方差分析比较组间差异,P<0.05为差异具有统计学意义,P<0.01为差异具有非常显著统计学意义。
     [结果]
     1.罗格列酮治疗对MCT诱导PAH大鼠一般情况的影响
     从注射MCT 2周后开始,P组、PRH组及PRL组的部分大鼠开始出现皮毛凌乱无光泽、呼吸急促、活动迟缓的表现,上述情况随时间延长而加重;从注射MCT3周后陆续出现大鼠死亡现象,C组、P组、PRH组及PRL组大鼠的病死率依次为0、50%、50%及30%;注射MCT 3周及5周后,C组大鼠体重分别为(386±14)g及(475±18)g;P组大鼠体重[(335±28)g,(316±28)g]、PRH组大鼠体重[(331±22)g,(320±43)g]及PRL组大鼠体重[(327±30)g,(296±41)g]均较C组大鼠降低,差异具有非常显著统计学意义(P<0.01),而P组、PRH组及PRL组之间大鼠体重差异无统计学意义(P>0.05)。
     2.罗格列酮治疗对MCT诱导PAH大鼠mPAP、RVSP及RVHI的影响
     C组大鼠mPAP、RVSP及RVHI依次为(21.66±2.43) mmHg, (43.76±3.64) mmHg及0.28±0.02;P组大鼠mPAP、RVSP及RVHI[(61.57±7.28) mmHg, (108.65±9.97) mmHg,0.70±0.03]:均较C组大鼠显著升高,差异具有非常显著统计学意义(P<0.01);与P组大鼠比较,PRH组大鼠mPAP、RVSP、RVHI[(58.83±9.47) mmHg, (106.61±11.67) mmHg,0.63±0.07]和PRL组大鼠mPAP、RVSP、RVHI [(56.31±8.44) mmHg, (102.90±11.69) mmHg,0.63±0.07]虽略降低,但差异无统计学意义(P>0.05),且仍均显著高于C组大鼠(P<0.01);PRH组和PRL组大鼠之间,mPAP、RVSP及RVHI差异均无统计学意义(P>0.05)。
     3.罗格列酮治疗对MCT诱导PAH大鼠肺小动脉重构的作用
     C组大鼠肺组织切片HE染色可见各级肺动脉管壁结构清楚,血管周围无炎症细胞浸润,ET+VG染色可见内外弹力板平滑无挤压;P组、PRH组及PRL组大鼠肺组织切片镜下表现相似,HE染色可见3组大鼠肌型肺小动脉管壁增厚,平滑肌增生肥厚,管腔狭窄,血管外膜肿胀,血管周围炎性细胞浸润,腺泡内肺微动脉“肌型化”,ET+VG染色可见内弹力板挤压呈“波浪状”改变。C组大鼠肺小动脉管壁中膜厚度占管壁外径的百分比(WT%)为(8.82±3.23)%,P组、PRH组及PRL组大鼠肺小动脉WT%[(55.22±5.72)%,(50.92±5.18)%,(52.45±6.45)%]均较C组大鼠显著增高,差异具有非常显著统计学意义(P<0.01);而与P组大鼠相比,PRH组大鼠及PRL组大鼠WT%略降低,但差异无统计学意义(P>0.05);不同剂量罗格列酮治疗组(PRH组及PRL组)大鼠WT%差异无统计学意义(P>0.05)。
     [结论]
     1.罗格列酮治疗不能降低野百合碱诱导大鼠已形成的明显增高的肺动脉平均压和右心室收缩压。
     2.罗格列酮治疗不能逆转野百合碱诱导大鼠已发生的肺血管重构及右心室肥厚。
     [背景]肺动脉高压(PH)的发病机制极其复杂,至今仍未完全阐明。近年研究认为炎症和免疫机制在PH发生发展中起重要作用。罗格列酮属于噻唑烷二酮类药物(TZDs),是过氧化物酶体增殖物激活受体γ(PPARy)的人工合成配体,其抗炎及免疫调节作用已在多种炎症疾病动物模型中得到证实。本研究拟通过野百合碱(MCT)诱导动脉型肺动脉高压(PAH)的大鼠模型,观察罗格列酮抗炎作用对早期肺血管病变的保护作用。
     [目的]
     1.通过观察大鼠一般状况、肺血流动力学及肺组织病理变化,评估早期应用罗格列酮对MCT诱导PAH大鼠的保护作用。
     2.通过测定MCT诱导PAH大鼠肺组织白细胞介素6 (interleukin 6, IL-6)、肿瘤坏死因子α(tumor necrosis factor a, TNF-α)及单核细胞趋化蛋白(monocyte chemotactic protein 1, MCP-1)的变化,探讨早期应用罗格列酮对MCT诱导PAH大鼠炎症发病机制的影响。
     [方法]
     1.实验动物分组:雄性Sprague-Dawley大鼠32只,随机分为4组,每组8只:①对照组(N组):颈背部皮下注射生理盐水1次;②PAH模型组(M组):颈背部皮下注射野百合碱(60mg/kg) 1次,并于注射当天(第0天)开始给予等体积生理盐水(约1.5ml/d)连续灌胃21天;③罗格列酮高剂量干预PAH组(MRH组):野百合碱(60mg/kg)颈背部皮下注射1次,并于注射当天(第0天)开始给予罗格列酮(每日5mg/kg)连续灌胃21天;④罗格列酮低剂量干预PAH组(MRL组):野百合碱(60mg/kg)颈背部皮下注射1次,并于注射当天(第0天)开始给予罗格列酮(每日2.5mg/kg)连续灌胃21天。
     2.于第21天行右心导管检查测定肺动脉平均压(mPAP)、右心室收缩压(RVSP),颈内动脉插管测定体循环平均动脉压(MAP);分离心脏,沿室间隔分离右心室,分别称量右心室、左心室+室间隔,计算右心室肥厚指数(RVHI)。
     3.肺组织切片行HE染色,做血管周围炎症评分;行Elastin Van Gieson (ET+VG)染色,测定并计算大鼠肺小动脉管壁中膜厚度占管壁外径百分比(WT%);行a-SMA免疫组化染色,测定并计算腺泡内肺微动脉肌化百分比及a-SMA平均光密度值,评估非肌性血管肌化程度。
     4. ELISA方法测定肺组织匀桨IL-6、TNF-α和MCP-1水平。
     5.采用t检验及单因素方差分析比较组间差异,P<0.05为差异具有统计学意义,P<0.01为差异具有非常显著统计学意义。
     [结果]
     1.罗格列酮早期干预对MCT诱导PAH大鼠一般情况的影响
     注射MCT 2周后开始,M组的部分大鼠开始出现皮毛凌乱无光泽、轻微喘息、活动迟缓表现。分别于第1周、第2周、第3周时测定大鼠体重,N组大鼠体重依次为(287±12)g,(331±15)g及(375±19)g;M组大鼠体重[(261±17)g,(276±24)g,(319±29)]、MRH组大鼠体重[(268±8)g,(275±15)g,(328±14)g]及MRL组大鼠体重[(261±8)g,(284±11)g,(329±12)g]均较N组大鼠明显降低,差异具有统计学意义(P<0.01或P<0.05),而M组、MRH组和MRL组之间,大鼠体重差异均无统计学意义(P>0.05)。
     2.罗格列酮早期干预对MCT诱导PAH大鼠mPAP、RVSP、MAP及RVHI的作用
     MCT皮下注射3周后,N组大鼠mPAP、RVSP及RVHI依次为(17.13±3.30)mmHg, (40.33±5.77) mmHg及0.25±0.02;与N组大鼠比较,M组大鼠mPAP、RVSP及RVHI[(37.00±4.98) mmHg, (67.04±4.87) mmHg,0.40±0.02]均显著增高,差异具有非常显著统计学意义(P<0.01);MRH组大鼠及MRL组大鼠mPAP、RVSP、RVHI分别为[(26.88±3.55)mmHg, (50.09±5.61)mmHg,0.33±0.03]和[(28.29±3.60)mmHg, (55.71±4.85) mmHg,0.33±0.02],均低于M组大鼠,差异具有非常显著统计学意义(P<0.01),但仍高于N组大鼠(P<0.01或P<0.05);MRH组与MRL组大鼠之间mPAP、RVSP及RVHI无统计学差异(P>0.05)。N组、M组、MRH组及MRL组大鼠之间MAP[(87.81±7.78)mmHg,(88.23±9.29)mmHg,(90.17±6.82) mmHg, (89.88±9.08) mmHg]差异无统计学意义(P>0.05)。
     3.罗格列酮早期干预对MCT诱导PAH大鼠肺血管重构的作用
     光镜下观察肺组织HE染色切片可见M组大鼠肌型肺小动脉管壁明显增厚,平滑肌增生肥厚,管腔狭窄,腺泡内肺微动脉“肌型化”,并伴有肺泡间隔增宽,肺泡内巨噬细胞浸润。肺组织ET+VG染色可见M组大鼠肌型肺小动脉内弹力板挤压呈“波浪状”改变。N组大鼠WT%为(8.91±2.30)%,M组大鼠WT%[(45.52±5.48)%]较N组大鼠显著增高,差异具有非常显著统计学意义(P<0.01);而MRH组及MRL组大鼠WT%[(13.11±3.91)%,(16.70±1.68)%]较M组大鼠显著降低(P<0.01),其中MRL组大鼠WT%仍高于N组大鼠(P<0.05);MRH组大鼠WT%较MRL组进一步降低,但差异无统计学意义(P>0.05)。
     肺组织切片a-SMA免疫组化染色显示:N组大鼠肺腺泡内微动脉肌化百分比及a-SMA平均光密度值分别为(19.91±2.27)%及0.22±0.04;与N组大鼠比较,M组大鼠肺腺泡内微动脉肌化百分比及a-SMA平均光密度值[(67.55±2.95)%,0.49±0.03]均显著升高,差异具有非常显著统计学意义(P<0.01);MRH组大鼠、MRL组大鼠肺腺泡内微动脉肌化百分比及α-SMA平均光密度值分别为[(51.74±2.67)%,0.31±0.02]、[(54.73±2.39)%,0.38±0.03],均低于M组大鼠,差异具有非常显著统计学意义(P<0.01),但仍高于N组大鼠(P<0.01);MRH组大鼠肺微动脉肌化百分比较MRL组大鼠进一步降低,但差异无统计学意义(P>0.05),而MRH组大鼠α-SMA平均光密度值低于MRL组大鼠,差异具有统计学意义(P<0.05)。
     4.罗格列酮早期干预对MCT诱导PAH大鼠肺血管周围炎症的影响
     MCT注射3周后,M组大鼠肺组织切片HE染色显示肺小动脉周围有明显的炎症细胞浸润,N组大鼠肺小动脉周围炎症评分为0.40±0.16;与N组大鼠比较,M组大鼠肺小动脉周围炎症评分(3.24±0.41)显著升高,差异具有非常显著统计学意义(P<0.01);与M组大鼠比较,MRH组大鼠及MRL组大鼠肺小动脉周围炎症评分(1.26±0.22,1.22±0.36)显著降低(P<0.01),但仍高于N组大鼠(P<0.01);不同剂量罗格列酮干预组(MRH组和MRL组)大鼠之间肺小动脉周围炎症评分差异无统计学意义(P>0.05)。
     5.罗格列酮早期干预对MCT诱导PAH大鼠肺组织匀浆中IL-6、TNF-α和MCP-1水平的影响
     N组大鼠肺组织匀浆IL-6、TNF-α及MCP-1水平依次为(64.97±17.65) pg/ml, (56.51±14.92) pg/ml及(65.18±23.37) pg/ml; M组大鼠上述指标[(459.40±94.77)pg/ml, (436.46±62.20) pg/ml, (6265.53±2014.83) pg/ml]较N组大鼠均升高,差异具有非常显著统计学意义(P<0.01);MRH组大鼠和MRL组大鼠肺组织匀浆IL-6、TNF-a及MCP-1水平分别为[(102.94±45.28) pg/ml, (244.50±41.01) pg/ml, (979.28±428.71) pg/ml]和[(156.97±61.01) pg/ml, (249.92±61.23) pg/ml, (1107.56±408.32) pg/ml],均低于M组大鼠,差异具有非常显著统计学意义(P<0.01),其中TNF-a及MCP-1水平仍高于N组大鼠(P<0.01或P<0.05),而IL-6水平与N组大鼠差异无统计学意义(P>0.05);MRH组大鼠肺组织匀浆IL-6、TNF-α及MCP-1水平较MRL组大鼠进一步降低,但差异无统计学意义(P>0.05)。
     [结论]
     1.罗格列酮早期应用可以延缓野百合碱诱导肺动脉高压大鼠的肺动脉平均压和右心室收缩压的升高,其改善肺血流动力学的作用与剂量有关。
     2.罗格列酮早期应用能够延缓野百合碱诱导肺动脉高压大鼠的肺血管重构,减轻右心室肥厚,此效应与剂量有关。
     3.罗格列酮早期应用能够减轻野百合碱诱导肺动脉高压大鼠肺小动脉周围炎症,降低大鼠肺组织IL-6、TNF-a和MCP-1水平,可能与其对肺血管的保护作用有关。
     [背景]
     细胞外基质(extracellular matrix, ECM)重构是肺动脉高压(PH)主要的病理学特征之一。研究显示,ECM稳态的破坏与血管重构密切相关,而基质金属蛋白酶(matrix metalloproteinases, MMPs)及其抑制物组织金属蛋白酶抑制剂(tissue inhibitor of metalloproteinases, TIMPs)是ECM稳态的主要生理调节因子,已被证实在PH患者及动物模型的肺血管重构中发挥重要作用。近期大量体内外实验研究结果提示,过氧化物酶体增殖物激活受体γ(PPARγ)参与了MMPs和TIMPs的调控过程。本研究拟通过野百合碱(MCT)诱导动脉型肺动脉高压(PAH)大鼠模型,观察罗格列酮早期干预对PPARγ的激动作用及对MMP-2、MMP-9和TIMP-1的影响,初步探讨其改善早期肺血管病变的机制。
     [目的]
     1.观察罗格列酮早期干预对MCT诱导PAH大鼠肺组织PPARγ表达的影响。
     2.观察罗格列酮早期干预对MCT诱导PAH大鼠肺组织MMP-2、MMP-9和TIMP-1的表达及MMP-2、MMP-9活性的影响,初步探讨罗格列酮对PH的作用机制。
     [方法]
     1.实验动物分组:同第二部分。
     2.于第21天处死动物,留取肺组织。肺组织切片行PPARγ、MMP-2和MMP-9免疫组化染色,观察PPARγ、MMP-2和MMP-9在大鼠肺组织的定位表达情况。
     3.采用荧光定量PCR的方法,检测大鼠肺组织PPARγ、MMP-2、MMP-9及TIMP-1的mRNA表达情况。
     4.采用明胶酶谱法,检测大鼠肺组织MMP-2及MMP-9的活性。
     5.采用t检验及单因素方差分析比较组间差异,P<0.05为差异具有统计学意义,P<0.01为差异具有非常显著统计学意义。
     [结果]
     1.罗格列酮早期干预对MCT诱导PAH大鼠肺组织PPARγ表达的影响
     免疫组化染色下,PPARγ阳性细胞主要分布于肺血管内膜,表现为细胞浆及细胞核染成棕黄色。N组大鼠肺小动脉内膜PPARγ部分表达,M组大鼠肺小动脉内膜PPARγ表达量降低,MRH组及MRL组大鼠肺小动脉内膜PPARγ表达量增高。荧光定量PCR法检测肺组织PPARγmRNA表达,N组大鼠肺组织PPARγmRNA表达为1.06±0.22,M组大鼠肺组织PPARγmRNA表达(0.57±0.07)较N组大鼠降低(P<0.05);与M组大鼠比较,MRH组及MRL组大鼠肺组织PPARγmRNA表达[(1.98±0.39),(1.73±0.31)]显著升高(P<0.01),且均高于N组大鼠(P<0.01);MRH组大鼠肺组织PPARy mRNA表达高于MRL组大鼠,但二者差别无统计学意义(P>0.05)。
     2.罗格列酮早期干预对MCT诱导PAH大鼠肺组织MMP-2、MMP-9及TIMP-1表达的影响
     免疫组化染色下,MMP-2、MMP-9阳性细胞主要分布于肺血管壁的内膜、外膜(中膜少量),表现为细胞浆呈棕黄色。M组大鼠肺小动脉MMP-2、MMP-9表达量较N组大鼠升高,MRH组及MRL组大鼠肺小动脉MMP-2、MMP-9表达量较M组降低。荧光定量PCR法检测各组大鼠肺组织MMP-2、MMP-9及TIMP-1 mRNA表达,N组大鼠上述指标依次为0.96±0.08,0.96±0.06,1.02±0.14;与N组大鼠比较,M组大鼠肺组织MMP-2、MMP-9及TIMP-1 mRNA表达(3.30±0.39,7.07±0.54,3.52±0.44)均显著升高(P<0.01);MRH组大鼠及MRL组大鼠肺组织MMP-2、MMP-9、TIMP-1 mRNA表达分别为(2.00±0.20,3.89±0.65,2.20±0.34)及(2.37±0.17,5.00±0.71,2.58±0.36),均低于M组大鼠(P<0.01),但仍高于N组大鼠(P<0.01);MRH组大鼠肺组织MMP-2、MMP-9及TIMP-1 mRNA表达均低于MRL组大鼠,其中两组大鼠MMP-9表达的差异具有统计学意义(P<0.05),而MMP-2和TIMP-1表达的差异无统计学意义(P>0.05)。
     3.罗格列酮早期干预对MCT诱导PAH大鼠肺组织MMP-2、MMP-9活性的影响
     N组大鼠肺组织MMP-2、MMP-9活性为40669.68±±4978.39,9511.13±3429.93。M组、MRH组和MRL组大鼠肺组织中MMP-2及MMP-9的活性分别为(54893.89±8480.12,23864.69±5121.83)、(52806.28±4759.47,14774.15±2392.96)和(53884.35±4688.02,16199.92±2933.85),均高于N组大鼠(P<0.01或P<0.05);与M组比较,MRH组及MRL组大鼠肺组织MMP-9活性降低(P<0.01或P<0.05),而MMP-2活性虽较M组略降低,但差异无统计学意义(P>0.05);MRH组大鼠肺组织MMP-2、MMP-9活性均低于MRL组大鼠,但差异无统计学意义(P>0.05)。
     [结论]
     1.野百合碱诱导肺动脉高压大鼠肺组织PPARy mRNA表达下降,罗格列酮可激活PPARy而发挥肺血管保护作用,此效应与剂量有关。
     2.罗格列酮早期干预可降低野百合碱诱导肺动脉高压大鼠肺组织MMP-2、MMP-9及TIMP-1的mRNA表达水平,此效应与剂量有关。
     3.罗格列酮早期干预可降低野百合碱诱导肺动脉高压大鼠肺组织MMP-9的活性(而非MMP-2),此效应与剂量有关。这提示罗格列酮可能主要通过调节MMP-9的活性,改善细胞外基质重构而发挥肺血管保护作用。
[Backgroud]
     Pulmonary hypertension (PH) is a group of severe diseases characterized by a progressive increase in pulmonary vascular resistance, and pulmonary arterial hypertension is one of the most common type of PH. The remodeling of pulmonary vessels is a key point of PH. Now the therapeutic drugs can only improve the clinical symptoms of PH patients without inhibition or reversibility of pulmonary vascular remodeling. It has been proved recently that the decreased expression of peroxisome proliferator activated receptor y(PPARy) could play an important role in the pathogenesis of PH, and the ligands of PPARy can inhibit or reverse the development of PH. Rosiglitazone is a synthetic ligand of PPARy, which can produce effects on anti-inflammation, cell proliferation, apoptosis and differentiation. To determine the possible therapeutic effects of rosiglitazone on pulmonary hypertension, we investigated the effects of rosiglitazone on monocrotaline (MCT) induced pulmonary arterial hypertension (PAH) in rats.
     [Objective]
     To study the therapeutic effects of rosiglitazone on established severe PAH through observation on changes of general condition, pulmonary hemodynamics and vascular morphology in rats.
     [Methods]
     1.40 male Sprague-Dawley rats were randomly divided into four groups:①Group C (n=10):the rats were injected subcutaneously with sodium chloride.②Group P (n=10):the rats were injected subcutaneously with MCT (60mg/kg) and received sodium chloride(1.5ml/d) by daily gavage from day 21st to day 34th after injection of MCT.③Group PRH (n=10):the rats were injected subcutaneously with MCT (60mg/kg) and received rosiglitazone (5mg/kg-d) by daily gavage from day 21st to day 34th after injection of MCT.④Group PRL (n=10):the rats were injected subcutaneously with MCT (60mg/kg) and received rosiglitazone (2.5mg/kg-d) by daily gavage from day 21st to day 34th after injection of MCT.
     2. Right ventricular systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP) were detected by right heart catheter on the day 35th. The right ventricle (RV) was separated from the left ventricle (LV) and septum (S), and weighed. Right ventriclular hypertrophy index (RVHI) was caculated.
     3. Histopathological changes and the tunica media thickness of small pulmonary arteries were evaluated by hematoxylin and eosin staining and Elastin Van Gieson staining (ET+VG)
     4. Data were analyzed with the analysis of variance and the t test. Statistical significance was assigned for P<0.05, and extremely significant difference was assigned for P<0.01.
     [Results]
     1. Effects of rosiglitazone on general condition of rats injected with MCT. From the 14th day after MCT injection, some rats in Group P, Group PRH and Group PRL became weak, short of breath and presented a dull coat, and the condition got worse day by day. Until the day of sacrifice, the case fatality rate of Group C, Group P, Group PRH and Group PRL was 0,50%,50% and 30%, separately. Three weeks and five weeks after MCT injection, the mean body weight of rats in Group C were (386±14) g and (475±18) g, separately. Compared with Group C, the mean body weight of rats in Group P[(335v28)g, (316±28) g], Group PRH [(331±22)g, (320±43)g] and Group PRL [(327±30) g, (296±41) g] decreased extremely significantly (P<0.01). However, the mean body weight of rats among Group P, Group PRH and Group PRL showed no significant difference (P>0.05)
     2. Effects of rosiglitazone on hemodynamics and right ventricular hypertrophy of rats injected with MCT.
     The mPAP, RVSP and RVHI of rats in Group C were (21.66±2.43) mmHg, (43.76±3.64) mmHg and 0.28±0.02. Compared with Group C, the mPAP, RVSP and RVHI of rats in Group P[(61.57±7.28) mmHg, (108.65±9.97) mmHg,0.70±0.03] increased extremely significantly (P<0.01). Compared with Group P, the mPAP, RVSP and RVHI of rats in Group PRH[(58.83±9.47)mmHg,(106.61±11.67)mmHg,0.63±0.07] and Group PRL[(56.31±8.44) mmHg, (102.90±11.69) mmHg,0.63±0.07] decreased slightly without significant difference (P>0.05), and the mPAP, RVSP and RVHI of rats in Group PRH and Group PRL were still extremely significantly higher than those of Group C (P<0.01). There was no significant difference between Group PRH and Group PRL on mPAP, RVSP and RVHI (P>0.05)
     3. Effects of rosiglitazone on pulmonary arterial remodeling of rats injected with MCT.
     HE staining showed prominent tunica media hypertrophy, smooth muscle proliferation, stenosis in muscular pulmonary arteries and evident muscularization of pulmonary arterioles of rats in Group P, Group PRH and Group PRL. ET+VG staining showed a "wave-like" change on internal elastic lamina of rats in Group P, Group PRH and Group PRL. The tunica media thickness percentage of small pulmonary arteries (WT%)of rats in Group C was (8.82±3.23)%. Compared with Group C, WT% of rats in Group P [(55.22±5.72)%], Group PRH [(50.92±5.18)%] and Group PRL [(52.45±6.45)%] increased extremely significantly (P<0.01). Compared with Group P, WT% of rats in Group PRH and Group PRL decreased slightly without significant difference (P>0.05). No significant difference between Group PRH and Group PRL on WT% was found (P>0.05)
     [Conclusions]
     1. Rosiglitazone treatment can not lower established severely elevated mPAP and RVSP in pulmonary arterial hypertension rats induced by MCT.
     2. Rosiglitazone treatment can not reverse established pulmonary vascular remodeling and right ventricular hypertrophy in pulmonary hypertension rats induced by MCT.
     [Backgroud]
     The pathogenesis of pulmonary hypertension (PH) is extremely complicated and it has not been explored clearly till now. It has been proved recently that inflammatory mechanisms might play an important role in the pathogenesis and progression of PH. Rosiglitazone, a kind of thiazolidinedione (TZDs), is the syhthetic ligand of peroxisome proliferator activated receptor y (PPARy). It has been shown that rosiglitazone could exert immunomodulatory and anti-inflammatory effects on various animal diseases models. To determine the possible preventive effects of rosiglitazone on pulmonary hypertension, we investigated the protective effects of rosiglitazone intervention on monocrotaline (MCT) induced pulmonary arterial hypertension (PAH) with focus on anti-inflammation and vascular remodeling.
     [Objective]
     1. To study the protective effects of rosiglitazone intervention on pulmonary arterial hypertension through observation on changes of general condition, pulmonary hemodynamics and vascular morphology in rats injected with MCT.
     2. To study the changes of pulmonary interleukin 6 (IL-6), tumor necrosis a (TNF-a) and monocyte chemotactic protein 1 (MCP-1) in rats injected with MCT, and explore possible mechanisms of the protective effects of rosiglitazone intervention.
     [Methods]
     1.32 male Sprague-Dawley rats were randomly divided into four groups:①Group N (n=8):the rats were injected subcutaneously with sodium chloride.②Group M (n=8):the rats were injected subcutaneously with MCT (60mg/kg) and received sodium chloride(1.5ml/d) by daily gavage from day 0 to day 20th after injection of MCT.③Group MRH (n=8):the rats were injected subcutaneously with MCT (60mg/kg) and received rosiglitazone (5mg/kg-d) by daily gavage from day 0 to day 20th after injection of MCT.④Group MRL (n=8):the rats were injected subcutaneously with MCT (60mg/kg) and received rosiglitazone (2.5mg/kg·d) by daily gavage from day 0 to day 20th after injection of MCT.
     2. On the day 21st, right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP) and mean arterial pressure (MAP) were detected by right heart catheter and internal carotid artery catheter, separately. The right ventricle (RV) was separated from the left ventricle (LV) and septum (S), and weighed. Right ventriclular hypertrophy index (RVHI) was caculated.
     3. Histopathological changes were evaluated by hematoxylin and eosin staining, and the tunica media thickness of small pulmonary arteries were evaluated by Elastin Van Gieson staining (ET+VG). The muscularization degree of non-muscularized pulmonary arterioles were evaluated by muscularization percentage and mean optical density through a-SMA immunohistochemical staining.
     4. Interleukin 6, tumor necrosis factor a and monocyte chemotactic protein 1 of lung tissue were detected by ELISA.
     5. Data were analyzed with the analysis of variance and the t test. Statistical significance was assigned for P<0.05, and extremely significant difference was assigned for P<0.01.
     [Results]
     1. Effects of rosiglitazone intervention on general condition of rats injected with MCT.
     From the 14th day after MCT injection, some rats in Group M became weak, short of breath and presented a dull coat. The mean body weight of Group N on day 7th,14th,21st were (287±12) g, (331±15) g and (375±19) g. Compared with Group N, the mean body weight of Group M[(261±17) g, (276±24) g, (319±29) g], Group MRH [(268±8) g, (275±15)g, (328±14)g] and Group MRL[(261±8) g, (284±11)g, (329±12)g]on day 7th,14th,21st decreased significantly (P<0.01 or P<0.05). However, the mean body weight of rats in Group M, Group MRH and Group MRL showed no significant difference (P>0.05)
     2. Effects of rosiglitazone intervention on hemodynamic parameters and right ventricular hypertrophy of rats injected with MCT.
     Three weeks after injection of MCT, the mPAP, RVSP and RVHI of rats in Group N were (17.13±3.30) mmHg, (40.33±5.77) mmHg and 0.25±0.02, separately. Compared with Group N, the mPAP, RVSP and RVHI of rats in Group M [(37.00±4.98) mmHg, (67.04±4.87)mmHg,0.40±0.02]increased extremely significantly (P<0.01).Compared with Group M, the mPAP, RVSP and RVHI of rats in Group MRH [(26.88±3.55) mmHg, (50.09±5.61)mmHg,0.33±0.03] and Group MRL[(28.29±3.60)mmHg, (55.71±4.85) mmHg,0.33±0.02]decreased extremely significantly (P<0.01),but were still higher than those of Group N (P<0.01 or P<0.05). There was no significant difference between Group MRH and Group MRL on mPAP, RVSP and RVHI. No significant difference of MAP among Group N [(87.81±7.78) mmHg], Group M [(88.23±9.29) mmHg], Group MRH [(90.17±6.82) mmHg] and Group MRL [(89.88±9.08) mmHg] was found (P >0.05)
     3. Effects of rosiglitazone intervention on pulmonary arterial remodeling of rats injected with MCT.
     HE staining showed obvious tunica media hypertrophy, smooth muscle proliferation, stenosis in muscular pulmonary arteries and evident muscularization of pulmonary arterioles of rats in Group M, ET+VG staining showed a "wave-like" change on internal elastic lamina of rats in Group M. The the tunica media thickness percentage of small pulmonary arteries (WT%) of rats in Group N was (8.91±2.30)%. Compared with Group N, the WT% of rats in Group M [(45.52±5.48)%]increased extremely significantly (P<0.01). Compared with Group M, the WT% of Group MRH [(13.11±3.91)%] and Group MRL [(16.70±1.68)%] decreased extremely significantly (P<0.01), but the WT% of Group MRL was still higher than that of Group N (P< 0.05). Compared with Group MRL, the WT% of Group MRH decreased slightly without significant difference (P>0.05)
     a-SMA immunohistochemical staining showed that, the muscularization percentage of pulmonary arterioles and a-SMA mean optical density of rats in Group N were [(19.91±2.27)%,0.22±0.04]. Compared with Group N, the muscularization percentage of pulmonary arterioles and a-SMA mean optical density of rats in Group M [(67.55±2.95)%,0.49±0.03] increased extremely significantly (P<0.01).Compared with Group M, the muscularization percentage of pulmonary arterioles and a-SMA mean optical density of rats in Group MRH [(51.74±2.67)%,0.31±0.02] and Group MRL [(54.73±2.39)%,0.38±0.03] decreased significantly (P<0.01), but were still higher than those of Group N (P<0.01). Compared with Group MRL, the muscularization percentage of pulmonary arterioles of rats in Group MRH decreased slightly without significant difference (P> 0.05), and a-SMA mean optical density of rats in Group MRH decreased significantly (P<0.05)
     4. Effects of rosiglitazone intervention on perivascular inflammation of rats injected with MCT.
     Three weeks after injection of MCT, HE staining showed obvious inflammatory cells infiltration around the small pulmonary arteries. The perivascular inflammation scale of Group N was 0.40±0.16. Compared with Group N, the perivascular inflammation scale of Group M(3.24±0.41) increased extremely significantly(P<0.01). Compared with Group M, the perivascular inflammation scale of Group MRH (1.26±0.22)and Group MRL(1.22±0.36) decreased extremely significantly(P<0.01). There was no significant difference of perivascular inflammation scale between Group MRH and Group MRL (P>0.05)
     5. Effects of rosiglitazone intervention on pulmoanry IL-6, TNF-a and MCP-1 level of rats injected with MCT.
     The pulmonary IL-6, TNF-a and MCP-1 level of rats in Group N were (64.97±17.65) pg/ml, (56.51±14.92) pg/ml and (65.18±23.37) pg/ml, separately. Compared with Group N, the pulmonary IL-6, TNF-a and MCP-1 level of rats in Group M [(459.40±94.77)pg/ml, (436.46±62.20)pg/ml, (6265.53±2014.83)pg/ml] increased extremely significantly(P<0.01). Compared with Group M, the pulmonary IL-6, TNF-a and MCP-1 level of rats in Group MRH [(102.94±45.28) pg/ml, (244.50±41.01) pg/ml, (979.28±428.71) pg/ml] and Group MRL [(156.97±61.01) pg/ml, (249.92±61.23) pg/ml, (1107.56±408.32) pg/ml] decreased significantly (P<0.01), but the TNF-a and MCP-1 level were still higher than those of Group N (P<0.05 or P<0.01).Compared with Group MRL, the pulmonary IL-6, TNF-a and MCP-1 level of rats in Group MRL decreased slightly without significant difference (P>0.05)
     [Conclusions]
     1. Rosiglitazone intervention may delay the increase of mean pulmonary artery pressure and right ventricular systolic pressure in pulmonary arterial hypertension rats induced by MCT, and the improvement of hemodynamic parameters by rosiglitazone is related to drug dosage.
     2. Rosiglitazone intervention may delay the remodeling of pulmonary vessels and inhibit right ventricular hypertrophy in pulmonary arterial hypertension rats induced by MCT, and this effect is related to drug dosage.
     3. Rosiglitazone intervention may exert protective effect on MCT-induced pulmonary arterial hypertension partly by inhibiting the pervascular inflammation and the increase of IL-6, TNF-a and MCP-1 in lung tissue.
     [Backgroud]
     Remodeling of extracellular matrix (ECM) is a main pathologic feature of PH. Researches showed that the homeostasis and destruction of ECM were closely related to vascular remodeling. Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) are chief regulatory factors of ECM homeostasis. It has been proved that MMPs and TIMPs played an important role in pulmonary vascular remodeling in patients or animal models of PH. It is recognized recently that peroxisome proliferator activated receptor y (PPARy) is involved in the regulation of MMPs and TIMPs. To explore the underlying mechanisms of rosiglitazone intervention on PH, we investigated the changes of PPARy, MMP-2, MMP-9 and TIMP-1 expression in rats with monocrotaline (MCT) induced pulmonary arterial hypertension (PAH) after rosiglitazone intervention.
     [Objective]
     1. To observe the influence of rosiglitazone intervention on PPARy expression of lung tissue in rats with MCT induced PAH.
     2. To explore the underlying mechanisms of rosiglitazone intervention on PH through observing the influence of rosiglitazone intervention on pulmonary MMP-2、MMP-9 and TIMP-1 expression and MMP-2、MMP-9 activity in rats with MCT induced PAH.
     [Methods]
     1. Grouping of experimental animals:see part 2 of this article.
     2. All of the animals were sacrificed on day 21st, PPARγ, MMP-2 and MMP-9 expression location on pulmonary histological sections of rats were observed through immunohistochemical staining.
     3. Expression of PPARy, MMP-2, MMP-9 and TIMP-1 mRNA in lung tissue of rats were detected through fluorescent quantitative PCR.
     4. The activity of MMP-2 and MMP-9 in lung tissue of rats were detected through gelatin zymography.
     5. Data were analyzed with the analysis of variance and the t test. Statistical significance was assigned for P<0.05, and extremely significant difference was assigned for P<0.01.
     [Results]
     1. Influence of rosiglitazone intervention on PPARy expression of lung tissue in rats injected with MCT.
     Immunohistochemical staining showed that the PPARy positive cells mostly located at the intima of the vascular wall, and presented a brown staining of nucleus and cytoplasm. PPARy partly expressed at the intima of small pulmonary arteries in rats of Group N, the PPARy expression at the intima of small pulmonary arteries in rats of Group M decreased significantly. The PPARy expression at intima of small pulmonary arteries in rats of Group MRH and Group MRL increased.
     Fluorescent quantitative PCR:PPARy mRNA expression of lung tissue in rats of Group N was 1.06±0.22. Compared with Group N, PPARy mRNA expression of lung tissue in rats of Group M (0.57±0.07) decreased significantly (P<0.05). Compared with Group M, PPARy mRNA expression of lung tissue in rats of Group MRH (1.98±0.39) and Group MRL (1.73±0.31) increased extremely significantly (P<0.01), and were higher than that of Group N (P<0.01). Compared with Group MRL, PPARy mRNA expression of lung tissue in rats of Group MRH increased slightly without significant difference (P>0.05)
     2. Influence of rosiglitazone intervention on MMP-2, MMP-9 and TIMP-1 expression of lung tissue in rats injected with MCT.
     Immunohistochemical staining showed that the MMP-2, MMP-9 positive cells mostly located in the intima and adventitia of the vascular wall, presented a brown staining of cytoplasm. MMP-2 and MMP-9 expression of small pulmonary arteries in rats of Group M increased significantly when compared with Group N. Compared with Group M, MMP-2 and MMP-9 expression of small pulmonary arteries in rats of Group MRH and Group MRL decreased.
     Fluorescent quantitative PCR:MMP-2, MMP-9 and TIMP-1 mRNA expression of lung tissue in rats of Group N were 0.96±0.08,0.96±0.06 and 1.02±0.14, separately. Compared with Group N, MMP-2, MMP-9 and TIMP-1 mRNA expression of lung tissue in rats of Group M (3.30±0.39,7.07±0.54,3.52±0.44) increased extremely significantly (P<0.01). Compared with Group M, MMP-2, MMP-9 and TIMP-1 mRNA expression of lung tissue in rats of Group MRH (2.00±0.20,3.89±0.65,2.20±0.34) and Group MRL (2.37±0.17,5.00±0.71,2.58±0.36) decreased extremely significantly (P<0.01), but were still higher than those of Group N(P<0.01). Compared with Group MRL, MMP-9 mRNA expression of lung tissue in rats of Group MRH decreased significantly (P< 0.05), but MMP-2 and TIMP-1 expression only decreased slightly (P>0.05)
     3. Influence of rosiglitazone intervention on MMP-2 and MMP-9 activity of lung tissue in rats injected with MCT.
     Gelatin zymography:the MMP-2 and MMP-9 activity of lung tissue in rats of Group N were 40669.68±4978.39 and 9511.13±3429.93. Compared with Group N, the MMP-2 and MMP-9 activity of lung tissue in rats of Group M (54893.89±8480.12, 23864.69±5121.83), Group MRH (52806.28±4759.47,14774.15±2392.96) and Group MRL (53884.35±4688.02,16199.92±2933.85) increased significantly (P<0.01 or P< 0.05). Compared with Group M, the MMP-9 activity of lung tissue in rats of Group MRH and Group MRL decreased significantly (P<0.01 or P<0.05), the MMP-2 activity of lung tissue in rats of Group MRH and Group MRL decreased slightly without significant difference (P>0.05). Compared with Group MRL, the MMP-2 and MMP-9 activity of lung tissue in rats of Group MRH decreased slightly without significant difference (P>0.05)
     [Conclusions]
     1. PPARy mRNA expression of lung tissue in rats injected with MCT decreased. Rosiglitazone can activate PPARy to exert protective effects to pulmonary vessels, and this effect is related to drug dosage.
     2. Rosiglitazone intervention can derease the MMP-2, MMP-9 and TIMP-1 expression of lung tissue in PAH rats injected with MCT, and this effect is related to drug dosage.
     3. Rosiglitazone intervention can derease the MMP-9 activity of lung tissue in PAH rats injected with MCT (but not MMP-2). It suggests that rosiglitazone may improve the remodeling of extracellular matrix to exert protective effects to pulmonary vessels through regulation of MMP-9 activity.
引文
[1]Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2004,43 (12 Suppl S): 13S-24S.
    [2]Stenmark KR, Rabinovitch M. Emerging therapies for the treatment of pulmonary hypertension [J]. Pediatr Crit Care Med,2010,11(2 Suppl):S85-S90.
    [3]Task Force for Diagnosis and Treatment of Pulmonary Hypertension of European Society of Cardiology (ESC); European Respiratory Society (ERS); International Society of Heart and Lung Transplantation (ISHLT), Galie N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension [J]. Eur Respir J,2009,34(6):1219-1263.
    [4]Campian ME, Hardziyenka M, Michel MC,et al. How valid are animal models to evaluate treatments for pulmonary hypertension [J]? Naunyn Schmiedebergs Arch Pharmacol,2006,373(6):391-400.
    [5]林培森,谢筱露,谢良地,等.大鼠肺小动脉重构发生在肺动脉压增高之前[J].中华高血压杂志,2007,15(10):839-843.
    [6]张伟华,陆慰萱,张运剑,等.辛伐他汀对野百合碱致肺动脉高压大鼠肺血管病变的影响[J].中华医学杂志,2009,89(12):855-859.
    [7]Chan SY, Loscalzo J. Pathogenic mechanisms of pulmonary arterial hypertension [J]. J Mol Cell Cardiol,2008,44(1):14-30.
    [8]Ameshima S, Golpon H, Cool CD, et al. Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth [J]. Circ Res,2003,92(10):1162-1169.
    [9]Matsuda Y, Hoshikawa Y, Ameshima S, et al. Effects of peroxisome proliferator-activated receptor gamma ligands on monocrotaline-induced pulmonary hypertension in rats [J]. Nihon Kokyuki Gakkai Zasshi,2005,43(5):283-288.
    [10]Crossno JT Jr, Garat CV, Reusch JE, et al. Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling [J]. Am J Physiol Lung Cell Mol Physiol,2007, 292(4):L885-L897.
    [11]Nisbet RE, Bland JM, Kleinhenz DJ, et al. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model [J]. Am J Respir Cell Mol Biol,2010,42(4):482-490.
    [12]Murphy GJ, Holder JC.PPAR-gamma agonists:therapeutic role in diabetes, inflammation and cancer [J]. Trends Pharmacol Sci,2000,21(12):469-474.
    [13]孙波.右心导管测定大鼠肺动脉压的实验方法[J].中国医学科学院学报,1984,6(6):465-466.
    [14]Romberg E. Uber sklerose der lungen arterie [J]. Dtsch Arch Klin Med,1891,48: 197-206 [in German].
    [15]Hoeper MM, Markevych I, Spiekerkoetter E, et al. Goal-oriented treatment and combination therapy for pulmonary arterial hypertension [J]. Eur Respir J,2005, 26(5):858-863.
    [16]Sitbon O, Humbert M, Nunes H, et al. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension:prognostic factors and survival [J]. J Am Coll Cardiol,2002,40(4):780-788.
    [17]Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity [J]. Nature Reviews Immunology,2002,2(10):748-759.
    [18]Keshamouni VG, Arenberg DA, Reddy RC, et al. PPAR-γ activation inhibits angiogenesis by blocking ELR+CXC chemokine pro-duction in non-small cell lung cancer [J]. Neoplasia,2005,7(3):294-301.
    [19]Halabi CM, Sigmund CD. Peroxisome proliferator-activated receptor-y and its agonists in hypertension and atherosclerosis:mechanisms and clinical implications [J]. Am J Cardiovasc Drugs,2005,5(6):389-398.
    [20]Marx N, Froehlich J, Siam L,et al. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease [J]. Arterioscler Thromb Vasc Biol,2003,23(2):283-288.
    [21]Lalich JJ, Merkow L. Pulmonary arteries produced in rats by feeding crotolaria spectabilis [J]. Lab Invest,1961,10:744-750.
    [22]Polikandriotis JA, Mazzella LJ, Rupnow HL, et al. Peroxisome proliferator-activated receptor y ligands stimulate endothelial nitric oxide production through distinct peroxisome proliferator-activated receptor y-dependent mechanisms [J]. Arterioscler Thromb Vasc Biol,2005,25(9):1810-1816.
    [23]Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway [J]. Circ Res,1999,85(5):394-402.
    [24]Benson S, Wu J, Padmanabhan S, et al.Peroxisome proliferator-activated receptor (PPAR)-y expression in human vascular smooth muscle cells:inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-y activator troglitazone [J]. Am J Hypertens,2000,13(1 Pt 1):74-82.
    [25]Marx N, Schonbeck U, Lazar MA, et al. Peroxisome proliferator-activated receptor y activators inhibit gene expression and migration in human vascular smooth muscle cells [J]. Circ Res,1998,83(11):1097-1103.
    [26]Wang CH, Weisel RD, Liu PP,et al.Glitazones and heart failure:Critical appraisal for the clinician [J]. Circulation,2003,107(10):1350-1354.
    [27]Blasi ER, Heyen J, Hemkens M,et al. Effects of chronic PPAR-agonist treatment on cardiac structure and function, blood pressure, and kidney in healthy Sprague-Dawley rats [J]. PPAR Res,2009,2009:237865.
    [28]Sotiropoulos KB, Clermont A, Yasuda Y, et al. Adipose-speciic effect of rosiglitazone on vascular permeability and protein kinase C activation: novel mechanism for PPARy agonist's effects on edema and weight gain [J]. FASEB J,2006,20(8):1203-1205.
    [29]Zhang H, Zhang A, Kohan DE, et al. Collecting duct-specific deletion of peroxisome proliferator-activated receptor y blocks thiazolidinedione-induced fluid retention [J]. Proc Natl Acad Sci USA,2005,102(26):9406-9411.
    [30]Guan Y, Hao C, Cha DR, et al. Thiazolidinediones expand body fluid volume through PPARy stimulation of ENaC-mediated renal salt absorption [J]. Nat Med, 2005,11(8):861-866.
    [1]陆慰萱,王辰.肺循环病学(第1版)[M].北京:人民卫生出版社,2007:275-288.
    [2]Morrell NW, Adnot S, Archer SL, et al. Cellular and molecular basis of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2009,54(1 Suppl):S20-31.
    [3]Nicolls MR, Taraseviciene-Stewart L, Rai PR, et al. Autoimmunity and pulmonary hypertension:a perspective[J]. Eur Respir J,2005,26(6):1110-1118.
    [4]Humbert M, Monti G, Brenot F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension[J]. Am J Respir Crit Care Med,1995,151(5):1628-1631.
    [5]Balabanian K, Foussat A, Dorfmuller P, et al. CX (3) C chemokine fractalkine in pulmonary arterial hypertension [J]. Am J Respir Crit Care Med,2002,165(10): 1419-1425.
    [6]Dorfmuller P, Perros F, Balabanian K, et al. Inflammation in pulmonary arterial hypertension [J]. Eur Respir J,2003,22(2):358-363.
    [7]Task Force for Diagnosis and Treatment of Pulmonary Hypertension of European Society of Cardiology (ESC); European Respiratory Society (ERS); International Society of Heart and Lung Transplantation (ISHLT), Galie N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension [J]. Eur Respir J,2009,34(6):1219-1263.
    [8]Szanto A, Nagy L. The many faces of PPARgamma:anti-inflammatory by any means [J]? Immunobiology,2008,213(9-10):789-803.
    [9]Steiner MK, Sytkina OL, Kolliputi N, et al. Interleukin-6 overexpression induces pulmonary hypertension [J]. Circ Res,2009,104(2):236-244.
    [10]Schober A, Zernecke A. Chemokines in vascular remodeling [J]. Thromb Haemost, 2007,97(5):730-737.
    [11]Dorfmuller P, Zarka V, Durand-Gasselin I, et al. Chemokine RANTES in severe pulmonary arterial hypertension [J]. Am J Respir Crit Care Med,2002,165(4): 534-539.
    [12]Perros F, Dorfmuller P, Souza R, et al. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension [J]. Eur Respir J,2007,29(5):937-943.
    [13]Sanchez O, Marcos E, Perros F, et al. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension [J]. Am J Respir Crit Care Med,2007,176(10):1041-1047.
    [14]Bauer NR, Moore TM, McMurtry IF. Rodent models of PAH:are we there yet [J]? Am J Physiol Lung Cell Mol Physiol,2007,293(3):L580-L582.
    [15]Campian ME, Hardziyenka M, Michel MC, et al. How valid are animal models to evaluate treatments for pulmonary hypertension [J]? Naunyn Schmiedebergs Arch Pharmacol,2006,373(6):391-400.
    [16]刘斌,王献民,魏丽,等.4种肺动脉高压动物模型肺血管重构模式的差异研究[J].中国病理生理杂志,2008,24(2):289-293.
    [17]Matsuda Y, Hoshikawa Y, Ameshima S, et al. Effects of peroxisome proliferator-activated receptor gamma ligands on monocrotaline-induced pulmonary hypertension in rats [J]. Nihon Kokyuki Gakkai Zasshi,2005,43(5):283-288.
    [18]Crossno JT Jr, Garat CV, Reusch JE, et al. Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling [J]. Am J Physiol Lung Cell Mol Physiol,2007, 292(4):L885-L897.
    [19]Ryan MJ, Didion SP, Mathur S, et al. PPAR(gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice [J]. Hypertension,2004,43(3):661-666.
    [20]Iglarz M, Touyz RM, Amiri F,et al. Effect of peroxisome proliferator-activated receptor-alpha and-gamma activators on vascular remodeling in endothelin-dependent hypertension [J]. Arterioscler Thromb Vasc Biol,2003, 23(1):45-51.
    [21]Barlic J, Zhang Y, Foley JF, et al. Oxidized lipid-driven chemokine receptor switch, CCR2 to CX3CR1, mediates adhesion of human macrophages to coronary artery smooth muscle cells through a peroxisome proliferator-activated receptor gamma-dependent pathway [J]. Circulation,2006,114(8),807-819.
    [22]Chen Y, Green SR, Ho J, et al. The mouse CCR2 gene is regulated by two promoters that are responsive to plasma cholesterol and peroxisome proliferator-activated receptor gamma ligands [J]. Biochem Biophys Res Commun,2005,332(1):188-193.
    [23]Shah YM, Morimura K, Gonzalez FJ. Expression of peroxisome proliferator-activated receptor-gamma in macrophage suppresses experimentally induced colitis [J]. Am J Physiol Gastrointest Liver Physiol,2007,292(2): G657-G666.
    [24]Alleva DG, Johnson EB, Lio FM,et al. Regulation of murine macrophage proinflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated receptor-gamma:counter-regulatory activity by IFN-gamma [J]. J Leukoc Biol,2002,71(4):677-685.
    [25]Chung SW, Kang BY, Kim SH,et al. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappaB [J]. J Biol Chem,2000,275(42):32681-32687.
    [26]Birrell MA, Patel HJ, McCluskie K,et al. PPAR-gamma agonists as therapy for diseases involving airway neutrophilia [J]. Eur Respir J,2004,24(1):18-23.
    [27]Ward JE, Fernandes DJ, Taylor CC, et al. The PPARgamma ligand, rosiglitazone, reduces airways hyperresponsiveness in a murine model of allergen-induced inflammation [J]. Pulm Pharmacol Ther,2006,19(1):39-46.
    [28]Lee SY, Kang EJ, Hur GY, et al. Peroxisome proliferator-activated receptor-gamma inhibits cigarette smoke solution-induced mucin production in human airway epithelial (NCI-H292) cells [J]. Am J Physiol Lung Cell Mol Physiol,2006, 291(1):L84-L90.
    [29]Cuzzocrea S, Pisano B, Dugo L,et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation [J]. Eur J Pharmacol,2004,483(1):79-93.
    [30]Cuzzocrea S, Pisano B, Dugo L,et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute pancreatitis induced by cerulein [J]. Intensive Care Med,2004,30(5):951-956.
    [1]Morrell NW, Adnot S, Archer SL, et al. Cellular and molecular basis of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2009,54(1 Suppl):S20-S31.
    [2]Matrisian LM, Hogan BL. Growth factor-regulated proteases and extracellular matrix remodeling during mammalian development [J]. Curr Top Dev Biol,1990,24:219-259.
    [3]Strauss BH, Rabinovitch M. Adventitial fibroblasts:defining a role in vessel wall remodeling [J]. Am J Respir Cell Mol Biol,2000,22(l):1-3.
    [4]Novotna J, Herget J. Possible role of matrix metalloproteinases in reconstruction of peripheral pulmonary arteries induced by hypoxia [J]. Physiol Res,2002, 51(4):323-334.
    [5]Cowan KN, Jones PL, Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression of vascular disease. J Clin Invest,2000,105(1):21-34.
    [6]Frisdal E, Gest V, Vieillard-Baron A,et al. Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension [J]. Eur Respir J,2001, 18(5):838-845.
    [7]Lepetit H, Eddahibi S, Fadel E, et al. Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension [J]. Eur Respir J,2005,25(5): 834-842.
    [8]Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity [J]. Nat Rev Immunol,2002,2(10):748-759.
    [9]Keshamouni VG, Arenberg DA, Reddy RC, et al. PPAR-y activation inhibits angiogenesis by blocking ELR+CXC chemokine production in non-small cell lung cancer [J]. Neoplasia,2005,7(3):294-301.
    [10]Ameshima S, Golpon H, Cool CD, et al. Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth [J]. Circ Res,2003,92(10):1162-1169.
    [11]Matsuda Y, Hoshikawa Y, Ameshima S, et al. Effects of peroxisome proliferator-activated receptor gamma ligands on monocrotaline-induced pulmonary hypertension in rats [J]. Nihon Kokyuki Gakkai Zasshi,2005,43(5):283-288.
    [12]Crossno JT Jr, Garat CV, Reusch JE, et al. Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling [J]. Am J Physiol Lung Cell Mol Physiol, 2007,292(4):L885-L897.
    [13]Nisbet RE, Bland JM, Kleinhenz DJ, et al. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model [J]. Am J Respir Cell Mol Biol,2010,42(4):482-490.
    [14]Shinzato T, Ohya Y, Nakamoto M, et al. Beneficial effects of pioglitazone on left ventricular hypertrophy in genetically hypertensive rats [J]. Hypertens Res,2007, 30(9):863-873.
    [15]Lee CS, Kwon YW, Yang HM, et al. New mechanism of rosiglitazone to reduce neointimal hyperplasia:activation of glycogen synthase kinase-3beta followed by inhibition of MMP-9 [J]. Arterioscler Thromb Vasc Biol,2009,29(4):472-479.
    [16]Lee SR, Kim HY, Hong JS,et al. PPARgamma agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia [J]. Biochem Biophys Res Commun,2009,380(1):17-21.
    [17]Sen U, Rodriguez WE, Tyagi N,et al. Ciglitazone, a PPARgamma agonist, ameliorates diabetic nephropathy in part through homocysteine clearance [J]. Am J Physiol Endocrinol Metab,2008,295(5):E1205-E1212.
    [18]Marx N, Schonbeck U, Lazar MA, et al. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells [J]. Circ Res,1998,83(11):1097-1103.
    [19]Rodriguez WE, Joshua IG, Falcone JC, et al. Pioglitazone prevents cardiac remodeling in high-fat, high-calorie-induced Type 2 diabetes mellitus [J]. Am J Physiol Heart Circ Physiol,2006,291(1):H81-H87.
    [20]Burrage PS, Schmucker AC, Ren Y,et al. Retinoid X receptor and peroxisome proliferator-activated receptor-gamma agonists cooperate to inhibit matrix metalloproteinase gene expression [J]. Arthritis Res Ther,2008,10(6):R139.
    [21]Magenta G, Borenstein X, Rolando R, et al. Rosiglitazone inhibits metastasis development of a murine mammary tumor cell line LMM3 [J]. BMC Cancer,2008, 8:47.
    [22]Ringseis R, Schulz N, Saal D,et al. Troglitazone but not conjugated linoleic acid reduces gene expression and activity of matrix-metalloproteinases-2 and-9 in PMA-differentiated THP-1 macrophages [J]. J Nutr Biochem,2008,19(9):594-603.
    [23]Roycik MD, Fang X, Sang QX. A fresh prospect of extracellular matrix hydrolytic enzymes and their substrates [J]. Curr Pharm Des,2009,15(12):1295-1308.
    [24]Davis GE, Senger DR. Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression [J]. Curr Opin Hematol,2008, 15(3):197-203.
    [25]Johnson JL. Matrix metalloproteinases:influence on smooth muscle cells and atherosclerotic plaque stability [J]. Expert Rev Cardiovasc Ther,2007,5(2):265-282.
    [26]Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease [J]. Biochem Pharmacol,2008,75(2):346-359.
    [27]P Liu, M Sun, S Sader. Matrix metalloproteinases in cardiovascular disease [J]. Can J Cardiol,2006,22(Suppl B):25B-30B.
    [28]Schermuly RT, Kreisselmeier KP, Ghofrani HA,et al.Antiremodeling effects of iloprost and the dual-selective phosphodiesterase 3/4 inhibitor tolafentrine in chronic experimental pulmonary hypertension [J]. Circ Res,2004,94(8):1101-1108.
    [29]Umar S, Hessel M, Steendijk P,et al. Activation of signaling molecules and matrix metalloproteinases in right ventricular myocardium of rats with pulmonary hypertension [J]. Pathol Res Pract,2007,203(12):863-872.
    [30]Hiremath J, Thanikachalam S, Parikh K, et al. Exercise improvement and plasma biomarker changes with intravenous treprostinil therapy for pulmonary arterial hypertension:a placebo-controlled trial [J]. J Heart Lung Transplant,2010,29(2): 137-149.
    [31]Li M, Li Z, Sun X. Statins suppress MMP2 secretion via inactivation of RhoA/ROCK pathway in pulmonary vascular smooth muscles cells [J]. Eur J Pharmacol,2008,591(1-3):219-223.
    [32]Sun XZ, Li ZF, Liu Y,et al. Inhibition of cGMP phosphodiesterase 5 suppresses matrix metalloproteinase-2 production in pulmonary artery smooth muscles cells [J]. Clin Exp Pharmacol Physiol,2010,37(3):362-367.
    [33]Vieillard-Baron A, Frisdal E, Raffestin B, et al. Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer limits monocrotaline-induced pulmonary vascular remodeling in rats [J]. Hum Gene Ther,2003,14(9):861-869.
    [34]Okada M, Harada T, Kikuzuki R,et al. Effects of telmisartan on right ventricular remodeling induced by monocrotaline in rats [J]. J Pharmacol Sci,2009, 111(2):193-200.
    [35]王献民,周同甫,刘斌,等.卡托普利及氯沙坦干预大鼠肺动脉高压与MMP-2、MMP-9、TIMP-1表达的关系[J].四川大学学报(医学版),2009,40(2):255-259.
    [1]Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators [J]. Nature,1990,347(6294):645-650.
    [2]Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity [J]. Nat Rev Immunol,2002,2(10):748-759.
    [3]Keshamouni VG, Arenberg DA, Reddy RC,et al. PPAR-γ activation inhibits angiogenesis by blocking ELR+CXC chemokine production in non-small cell lung cancer [J]. Neoplasia,2005,7(3):294-301.
    [4]Stenmark KR, Rabinovitch M. Emerging therapies for the treatment of pulmonary hypertension [J]. Pediatr Crit Care Med,2010,11(2 Suppl):S85-S90.
    [5]Chen Y-F, Jowett S, Barton P, et al. Clinical and cost-effectiveness of epoprostenol, iloprost, bosentan, sitaxentan and sildenail for pulmonary arterial hypertension within their licensed indications:a systematic review and economic evaluation [J]. Health Technol Assess,2009,13(49):1-320.
    [6]Sundvold H, Lien S. Identification of a novel PPAR Y promoter in man and transactivation by the nuclear receptor RORalphal [J]. Biochem Biophys Res Commun,2001,28(2):383-390.
    [7]Zingarelli B, Cook JA. PPARy is a new therapeutic target in sepsis and inflammation [J]. Shock,2005,23(5):393-399.
    [8]Hyduk A, Croft JB, Ayala C, et al. Pulmonary hypertension surveillance-United States,1980-2002 [J]. MMWR Surveill Summ,2005,54(5):1-28.
    [9]Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension [J]. Circulation,2004,109(2):159-165.
    [10]Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension [J]. N Engl J Med,1995,333(4): 214-221.
    [11]Channick RN, Newhart JW, Johnson FW, et al. Pulsed delivery of inhaled nitric oxide to patients with primary pulmonary hypertension:an ambulatory delivery system and initial clinical tests [J]. Chest,1996,109(6):1545-1549.
    [12]Jernigan NL, Walker BR, Resta TC.Endothelium derived reactive oxygen species and endothelin-1 attenuate NO-dependent pulmonary vasodilation following chronic hypoxia [J]. Am J Physiol Lung Cell Mol Physiol,2004,287(4):L801-L808.
    [13]Polikandriotis JA, Mazzella LJ, Rupnow HL, et al. Peroxisome proliferator-activated receptor y ligands stimulate endothelial nitric oxide production through distinct peroxisome proliferator-activated receptor y-dependent mechanisms [J]. Arterioscler Thromb Vasc Biol,2005,25(9):1810-1816.
    [14]Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway [J]. Circ Res,1999,85(5):394-402.
    [15]Tuder RM, Cool CD, Geraci MW, et al. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension [J]. Am J Respir Crit Care Med,1999,159(6):1925-1932.
    [16]Berman Rosenzweig E, Barst RJ. Pulmonary arterial hypertension:a comprehensive review of pharmacological treatment [J]. Treat Respir Med,2006,5(2):117-127.
    [17]Subbaramaiah K, Lin DT, Hart JC, et al. Peroxisome proliferator-activated receptor y ligands suppress the transcriptional activation of cyclooxygenase-2. Evidence for involvement of activator protein-1 and CREB-binding protein/p300 [J]. J Biol Chem, 2001,276(15):12440-12448.
    [18]Nossaman BD, Kadowitz PJ. The role of the RhoA/rho-kinase pathway in pulmonary hypertension [J]. Curr Drug Discov Technol,2009,6(1):59-71.
    [19]Do e Z, Fukumoto Y, Takaki A, et al. Evidence for Rho-kinase activation in patients with pulmonary arterial hypertension [J]. Circ J,2009,73(9):1731-1739.
    [20]Barman SA, Zhu S, White RE. RhoA/Rho-kinase signaling:a therapeutic target in pulmonary hypertension [J]. Vasc Health Risk Manag,2009,5:663-671.
    [21]Wakino S, Hayashi K, Kanda T, et al. Peroxisome proliferator-activated receptor y ligands inhibit Rho/Rho-kinase pathway by inducing protein tyrosine phosphatase SHP-2 [J]. Circ Res,2004,95(5):e45-55.
    [22]Chang Y, Ceacareanu B, Dixit M,et al. Nitric oxide-induced motility in aortic smooth muscle cells:role of protein tyrosine phosphatase SHP-2 and GTP-binding protein Rho [J]. Circ Res,2002,91 (5):390-397.
    [23]Ryan MJ, Didion SP, Mathur S, et al. PPAR(gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice [J]. Hypertension,2004,43(3):661-666.
    [24]Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein EYknockout mice:pleiotropic effects on CD36 expression and HDL [J]. Arterioscler Thromb Vasc Biol,2001,21(3):372-377.
    [25]Collins AR, Meehan WP, Kintscher U, et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice [J]. Arterioscler Thromb Vasc Biol,2001,21 (3):365-371.
    [26]Halabi CM, Sigmund CD. Peroxisome proliferator-activated receptor-y and its agonists in hypertension and atherosclerosis:mechanisms and clinical implications [J]. Am J Cardiovasc Drugs,2005,5(6):389-398.
    [27]de Dios ST, Hannan KM, Dilley RJ, et al. Troglitazone, but not rosiglitazone, inhibits Na/H exchange activity and proliferation of macrovascular endothelial cells [J]. J Diabetes Complications,2001,15(3):120-127.
    [28]Marx N, Froehlich J, Siam L,et al. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease
    [J]. Arterioscler Thromb Vasc Biol,2003,23(2):283-288.
    [29]Itoh H, Doi K, Tanaka T, et al. Hypertension and insulin resistance:role of peroxisome proliferator-activated receptor gamma [J]. Clin Exp Pharmacol Physiol, 1999,26(7):558-560.
    [30]Ameshima S, Golpon H, Cool CD, et al. Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth [J]. Circ Res,2003,92(10):1162-1169.
    [31]Matsuda Y, Hoshikawa Y, Ameshima S, et al. Effects of peroxisome proliferator-activated receptor gamma ligands on monocrotaline-induced pulmonary hypertension in rats [J]. Nihon Kokyuki Gakkai Zasshi,2005,43(5):283-288.
    [32]Crossno JT Jr, Garat CV, Reusch JE, et al. Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling [J]. Am J Physiol Lung Cell Mol Physiol,2007, 292(4):L885-L897.
    [33]Nisbet RE, Bland JM, Kleinhenz DJ, et al. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model [J]. Am J Respir Cell Mol Biol,2010,42(4):482-490.
    [34]Hansmann G, Wagner RA, Schellong S, et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor gamma activation [J]. Circulation,2007,115(10):1275-1284.
    [35]Campian ME, Hardziyenka M, Michel MC,et al. How valid are animal models to evaluate treatments for pulmonary hypertension? [J] Naunyn Schmiedebergs Arch Pharmacol,2006,373(6):391-400.
    [36]Takano H, Komuro I Peroxisome proliferator-activated receptor gamma and cardiovascular diseases [J]. Circ J,2009,73(2):214-220..
    [1]Romberg E. Uber sklerose der lungen arterie [J]. Dtsch Arch Klin Med, 1891,48:197-206 [in German].
    [2]Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2004,43 (12 Suppl S): 13S-24S.
    [3]Task Force for Diagnosis and Treatment of Pulmonary Hypertension of European Society of Cardiology (ESC); European Respiratory Society (ERS); International Society of Heart and Lung Transplantation (ISHLT), Galie N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension [J]. Eur Respir J,2009,34(6):1219-1263.
    [4]Dorfmuller P, Perros F, Balabanian K, et al. Inflammation in pulmonary arterial hypertension [J]. Eur Respir J,2003,22(2):358-363.
    [5]Morrell NW, Adnot S, Archer SL, et al. Cellular and molecular basis of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2009,54(1 Suppl):S20-S31.
    [6]Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension [J]. Circulation,2004,109(2):159-165.
    [7]Adnot S. Lessons learned from cancer may help in the treatment of pulmonary hypertension [J].J Clin Invest,2005,115(6):1461-1463.
    [8]Eddahibi S, Guignabert C, Barlier-Mur AM,et al.Cross talk between endothelial and
    smooth muscle cells in pulmonary hypertension:critical role for serotonin-induced smooth muscle hyperplasia [J]. Circulation,2006,113(15):1857-1864.
    [9]Stenmark KR, Gerasimovskaya E, Nemenoff RA,et al. Hypoxic activation of adventitial fibroblasts:role in vascular remodeling [J].Chest,2002,122(6 Suppl): 326S-334S.
    [10]Yi ES, Kim H, Ahn H, et al. Distribution of obstructive intimal lesions and their cellular phenotypes in chronic pulmonary hypertension:a morphometric and immunohistochemical study [J]. Am J Respir Crit Care Med,2000,62(4 Pt 1): 1577-1586.
    [11]Frid MG, Brunetti JA, Burke DL, et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage [J]. Am J Pathol,2006,168(2):659-669.
    [12]Stenmark KR, Davie N, Frid M, et al. Role of the adventitia in pulmonary vascular remodeling [J]. Physiology (Bethesda),2006,21:134-145.
    [13]Roycik MD, Fang X, Sang QX. A fresh prospect of extracellular matrix hydrolytic enzymes and their substrates [J]. Curr Pharm Des,2009,15(12):1295-1308.
    [14]Coats WD Jr, Faxon DP. The role of the extracellular matrix in arterial remodelling [J]. Semin Interv Cardiol,1997,2(3):167-176.
    [15]Arciniegas E, Frid MG, Douglas IS, et al. Perspectives on endothelial-to-mesenchymal transition:potential contribution to vascular remodeling in chronic pulmonary hypertension [J]. Am J Physiol Lung Cell Mol Physiol,2007, 293(1):L1-L8.
    [16]Novotna J, Herget J. Possible role of matrix metalloproteinases in reconstruction of peripheral pulmonary arteries induced by hypoxia [J]. Physiol Res,2002,51(4): 323-334.
    [17]Cowan KN, Jones PL, Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression of vascular disease [J]. J Clin Invest,2000,105(1):21-34.
    [18]Lepetit H, Eddahibi S, Fadel E, et al. Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension [J]. Eur Respir J,2005,25(5):834-842.
    [19]Frisdal E, Gest V, Vieillard-baron A, et al. Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension [J]. Eur Respir J,2001, 18(5):838-845.
    [20]Schermuly RT, Kreisselmeier KP, Ghofrani HA,et al.Antiremodeling effects of iloprost and the dual-selective phosphodiesterase 3/4 inhibitor tolafentrine in chronic experimental pulmonary hypertension [J]. Circ Res,2004,94(8):1101-1108.
    [21]Kuzuya M, Kanda S, Sasaki T et al. Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia [J]. Circulation,2003,108(11):1375-1381.
    [22]Nicolls MR, Taraseviciene-Stewart L, Rai PR, et al. Autoimmunity and pulmonary hypertension:a perspective [J]. Eur Respir J,2005,26(6):1110-1118.
    [23]Humbert M, Monti G, Brenot F,et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension [J]. Am J Respir Crit Care Med,1995,151(5):1628-1631.
    [24]Balabanian K, Foussat A, Dorfmuller P, et al. CX (3) C chemokine fractalkine in pulmonary arterial hypertension [J]. Am J Respir Crit Care Med,2002,165(10): 1419-1425.
    [25]Sellimovic N, Bergh CH, Andersson B, et al. Growth factors and interleukin-6 across the lung circulation in pulmonary hypertension [J]. Eur Respir J,2009,34(3): 662-668.
    [26]Bhargava A, Kumar A, Yuan N, et al. Monocrotaline induces interleukin-6 mRNA expression in rat lungs [J]. Heart Dis,1999,1 (3):126-133.
    [27]Steiner MK, Sytkina OL, Kolliputi N, et al. Interleukin-6 overexpression induces pulmonary hypertension [J]. Circ Res,2009,104(2):236-244.
    [28]Schober A, Zernecke A. Chemokines in vascular remodeling [J]. Thromb Haemost, 2007,97(5):730-737.
    [29]Perros F, Dorfmuller P, Souza R, et al. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension [J]. Eur Respir J,2007,29(5):937-943.
    [30]Dorfmuller P, Zarka V, Durand-Gasselin I, et al. Chemokine RANTES in severe pulmonary arterial hypertension [J]. Am J Respir Crit Care Med,2002,165(4): 534-539.
    [31]Sanchez O, Marcos E, Perros F, et al. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension [J]. Am J Respir Crit Care Med,2007,176(10):1041-1047.
    [32]Montani D, Achouh L, Marcelin AG, et al. Reversibility of pulmonary arterial hypertension in HIV/HHV8-associated Castleman's disease [J]. Eur Respir J,2005, 26(5):969-972.
    [33]Sanchez O, Sitbon O, Jais X, et al. Immunosuppressive therapy in connective tissue disease associated pulmonary hypertension [J]. Chest,2006,130(1):182-189.
    [34]Huang J, Kaminski PM, Edwards JG, et al. Pyrrolidine dithiocarbamate restores
    endothelial cell membrane integrity and attenuates monocrotaline-induced pulmonary artery hypertension [J]. Am J Physiol,2008,294(6):L1250-L1259.
    [35]Ito T, Okada T, Miyashita H, et al. Interleukin-10 expression mediated by an adeno-associated virus vector prevents monocrotaline-induced pulmonary arterial hypertension in rats [J]. Circ Res,2007,101(7):734-741.
    [36]Henriques-Coelho T, Oliveira SM, Moura RS, et al. Thymulin inhibits monocrotaline-induced pulmonary hypertension modulating interleukin-6 expression and suppressing p38 pathway [J]. Endocrinology,2008,149(9):4367-4373.
    [37]Suzuki C, Takahashi M, Morimoto H, et al. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats [J]. Biochem Biophys Res Commun, 2006,349(2):781-788.
    [38]NishimuraT, Faul JL, Berry GJ, et al.40-O-(2-Hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats [J].Am J Respir Crit Care Med,2001,163(2):498-502
    [39]Faul JL, Nishimura T, Berry GJ, et al. Triptolide attenuates pulmonary arterial hypertension and neointimal formation in rats [J]. Am J Resp Crit Care Med,2000, 162(6):2252-2258.
    [40]McMurtry MS, Bonnet S, Michelakis ED, et al. Statin therapy, alone or with rapamycin, does not reverse monocrotaline pulmonary arterial hypertension:the rapamycin-atorvastatin-simvastatin study[J]. Am J Physiol,2007,293(4):L933-L940.
    [41]Voelkel NF, Tuder RM, Bridges J, et al. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline [J]. Am J Respir Cell Mol Biol,1994,11(6):664-675.
    [42]Minamino T, Christou H, Hsieh CM, et al. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia [J]. Proc Natl Acad Sci USA,2001,98(15):8798-8803.
    [43]Song E, Zhou H, Yao Y,et al. Early application of Met-RANTES ameliorates chronic allograft nephropathy [J]. Kidney Int,2002,61 (2):676-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700