替米沙坦对野百合碱诱导大鼠肺动脉高压的保护作用及机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     肺动脉高压(PH)是一组异源性疾病和不同发病机制引起的以肺血管阻力持续增加为特征的临床-病理生理综合征。动脉型肺动脉高压(PAH)是PH的常见的类型之一,以肺小动脉的增生、重构为特点。野百合碱(MCT)诱导PAH (MCT-PAH)大鼠是研究最常用模型之一。已证实肾素血管紧张素系统(RAS)在PAH发病中发挥一定作用。替米沙坦是新一代长效血管紧张素Ⅱ的1型受体(AT1R)拮抗剂,已经证实它有抗炎、抑制心脏和血管肥大、重构和细胞增殖等作用。本研究通过建立MCT-PAH大鼠模型,观察替米沙坦预防干预对PAH肺血管重构的保护效应,并进一步探讨可能的作用机制。
     方法
     1.实验动物分组:Sprague-Dawley大鼠32只,每组8只,随机分为:对照组(C组),皮下注射NS1次。PAH模型组(P组),皮下注射MCT (60mg/Kg体重)1次,NS灌胃3周。PAH+Tel高剂量组(PTh组),皮下注射MCT (60mg/Kg体重)1次,当日即开始Tel (10mg/kg/day)灌胃3周。PAH+Tel低剂量组(PTl组),皮下注射MCT (60mg/Kg体重)1次,当日同时开始Tel (5mg/kg/day)灌胃3周。
     2.干预3周后大鼠行右心导管检查测定右心室收缩压(RVSP)和肺动脉平均压(mPAP);分离心脏测定右心室肥大指数(RVHI)、肺小动脉中膜厚度百分比(WT%)、腺泡内肺小动脉肌化程度以及对肺小动脉周围炎性程度进行评分。
     3.应用ELISA试剂盒测定肺组织中IL-6、MCP-1和TNF-α蛋白水平的表达。
     4.应用免疫组化技术检测MMP-2和MMP-9在肺血管的表达;应用实时荧光定量PCR (RT-PCR)技术检测肺组织中MMP-2、MMP-9和TIMP-1 mRNA的表达;明胶酶谱法检测肺组织MMP-2和MMP-9的活性。
     5.应用免疫组化技术检测ACE2蛋白在肺血管的表达情况;应用RT-PCR技术检测肺组织中ACE2 mRNA的表达。
     结果
     1.替米沙坦对MCT-PAH大鼠mPAP、RVSP、RVHI、肺小动脉重构和肺小动脉周围炎症评分的影响:
     C组mPAP、RVSP和RVHI分别为17.13±3.30mmHg,40.33±5.77mmHg和0.25±0.02;P组此三项指标(37.00±4.98mmHg,67.04±4.87mmHg,0.40±0.02)均较C组明显增高,存在显著性差异(P<0.01);替米沙坦可抑制MCT诱导mPAP、RVSP、RVHI的升高,PTh和PTl组此三项指标分别为24.75±4.69mmHg,52.30±8.37mmHg,0.29±0.01和26.27±5.46mmHg,53.25±8.65mmHg,0.34±0.02,两组与P组比较均存在显著性差异(P<0.01),两组与C组比较仍存在显著性差异(P<0.01); PTh与PTl组间mPAP、RVSP无显著性差异(P>0.05), RVHI在PTh组较PTl组更低,存在显著性差异(0.29±0.01 vs0.34±0.02,P<0.01)。
     P组肺病理HE染色显示肌型肺动脉管壁明显增厚,平滑肌层增生肥厚明显,管腔狭窄,腺泡内肺微小动脉肌型化。P组肺小动脉中膜厚度百分比(WT%)较C组明显增加,存在显著性差异(45.52±5.48% vs 8.91±2.30%, P<0.01); PTh和PTl组的WT%分别为13.83±1.83%和20.844±15.21%,均较P组明显降低,存在显著性差异(P<0.01);两组均较C组仍增厚,存在显著性差异(P<0.01);PTh和PTl组间比较,WT%无显著性差异(P>0.05)。P组腺泡内肺小动脉肌化程度较C组明显增加,存在显著性差异(67.55±2.95% vs 19.92±2.27%, P<0.01); PTh和PTl组此指标分别为50.83±3.12%和53.22±1.97%,均较P组明显降低,存在显著性差异(P<0.01);两组与C组相比较,此项指标仍增加,存在显著性差异(P<0.01);PTh和PTl组间相比较,此项指标无显著性差异(P>0.05)。P组肺小动脉a-SMA免疫组化染色平均光密度(IOD/Area)值较C组有明显增加,存在显著性差异(0.49±0.03vs 0.22±0.04, P<0.01); PTh和PTl组IOD/Area值分别为0.34±0.02和0.36±0.02,均较P组有明显降低,存在显著性差异(P<0.01);两组与C组相比较,IOD/Area值仍增加,存在显著性差异(P<0.01); PTh组IOD/Area值和PTl组低,存在显著性差异(P<0.05)。
     P组肺小动脉周围有明显的单核细胞浸润,血管周围炎症评分较C组明显增加,存在显著性差异(3.24±0.41 vs 0.40±0.16, P<0.01); PTh和PTl组评分分别为1.00±0.19和1.46±0.31,均较P组明显降低,存在显著性差异(P<0.01);两组的炎症评分仍高于C组,存在显著性差异(P<0.01)。两组间相比较,PTh低于PTl组炎症评分,存在显著性差异(1.00±0.19 vs 1.46±0.31,P<0.05)。
     2.替米沙坦对MCT-PAH大鼠肺组织IL-6、TNF-α和MCP-1表达的影响:
     P组IL-6、TNF-α和MCP-1与C组比较明显增高,存在显著性差异(459.40±94.77pg/ml vs 64.97±17.65pg/ml,436.46±62.20pg/ml vs 56.51±14.92pg/ml, 6265.53±2014.83pg/ml vs 65.18±23.37pg/ml, P<0.01);替米沙坦干预可抑制MCT大鼠肺组织IL-6、TNF-a和MCP-1的升高,PTh和PTl组分别为118.87±25.80pg/ml, 242.61±37.52pg/ml,1094.39±577.75pg/ml和155.87±50.64pg/ml,278.69±42.35pg/ml, 1288.57±593.14pg/ml,与P组比较均明显降低,存在显著性差异(P<0.01),但三项均仍较C组增高,存在显著性差异(P<0.01); PTh和PTl组间比较IL-6、TNF-α和MCP-1均无显著性差异(P>0.05)。
     3.替米沙坦对肺组织MMP-2.MMP-9和TIMP-1 mRNA的表达及MMP-2.MMP-9蛋白表达和活性的影响:
     P组MMP-2和MMP-9主要在肺血管内膜和外膜及周围的结缔组织表达,明显强于C组,PTh和PTl组均比P组明显降低但仍高于C组。P组肺组织MMP-2、MMP-9和TIMP-1 mRNA表达明显高于C组,均存在显著性差异(3.30±0.39vs0.96±0.08,7.07±0.54 vs 0.96±0.06,3.52±0.44 vs 1.02±0.14, P<0.01); PTh和PTl组这三项分别为1.97±0.24,3.65±0.70,2.22±0.35和2.43±0.21,4.91±0.68,2.54±0.43,与P组比较均明显降低,存在显著性差异(P<0.01),但仍均较C组增高,存在显著性差异(P<0.01); MMP-2和MMP-9 mRNA在PTh组均较PTl组低,存在显著性差异(P<0.05); TIMP-1 mRNA在这两组间无显著性差异(P>0.05)。
     P组肺组织MMP-2、MMP-9的活性明显高于C组,存在显著性差异(54893.89±8480.12 vs 40669.68±4978.39, P<0.05; 23864.69±5121.83 vs 9511.13±3429.93, P<0.01). PTh和PTl组MMP-2活性分别为52401.41±6234.28和51651.18±5289.70,均较P组降低不明显,无显著性差异(P>0.05),均较C组升高,存在显著性差异(P<0.05)。PTh和PTl组MMP-9活性分别为14244.99±2601.82和14896.96±3625/29,仍均高于C组,存在显著性差异(P<0.05);PTh和PTl组MMP-9活性较P组降低,存在显著性差异(分别P<0.01和P<0.05);PTh和PTl组间MMP-2和MMP-9活性均无显著性差异(P>0.05)。
     4.替米沙坦对肺组织ACE2 mRNA和蛋白表达的影响:
     ACE2主要在肺小动脉内膜阳性表达,P组表达量较C组明显下降,PTh和PTl组表达量较P组明显升高,甚至还高于C组。P组肺组织ACE2 mRNA表达明显低于C组,存在显著性差异(0.56±0.09 vs 1.04±0.14, P<0.01); ACE2 mRNA在PTh和PTl组分别为2.08±0.40和1.65±0.44,与P组比较均明显增高,存在显著性差异(P<0.01),较C组亦均增高,存在显著性差异(P<0.01)。PTh组mRNA表达较PTl组高,存在显著性差异(P<0.05)。
     结论
     1.替米沙坦预防干预可延缓MCT-PAH大鼠mPAP和RVSP的升高,减轻右心室肥厚和肺血管重构。
     2.替米沙坦可抑制MCT-PAH大鼠肺组织IL-6、TNF-α和MCP-1升高及肺小动脉周围炎症,可能与其对肺血管的保护作用有关。
     3.替米沙坦可通过降低MMP-2、MMP-9 mRNA和蛋白表达和MMP-9活性而延缓肺血管重构。
     4.替米沙坦抑制PAH肺血管重构的机制还可能部分与上调ACE2表达有关。
Background
     Pulmonary hypertension (PH) is a common pathophysiologic syndrome caused by a variety of diseases and characterized by a progressive increase of pulmonary vascular resistance and pulmonary artery pressure that finally causes right ventricular failure and premature death. Pulmonary arterial hypertension (PAH) is a disease of the small pulmonary arteries that is characterized by vascular remodeling. Characteristic features of this vascular remodeling include vessel wall thickening as a result of resident vessel wall cell proliferation, migration, and excessive deposition of extracellular matrix. In spite of recent advancements in the treatment of PAH, successful control has yet to be accomplished. The rennin angiotensin system (RAS) has been implicated in the pathogenesis of pulmonary vascular remodeling and PAH in a number of studies. Telmisartan is an angiotensin II type 1 receptor (AT1R) blocker, currently was used to treat patients with hypertension. Moreover, it has been associated with beneficial effects on anti-inflammation, vascular function, cardiac remodeling and renal function. However, little is known about the effects of telmisartan on PAH. To determine the effect of telmisartan on monocrotaline-induced PAH and its possible mechanism, the following study was carried out.
     Objective
     1. To investigate the interventional effects of telmisartan on monocrotaline-induced PAH in rats.
     2. To further explore the possible mechanisms of the protective effects of telmisartan on monocrotaline-induced PAH in rats.
     Methods
     1.32 male Sprague-Dawley rats were randomly divided into four groups:Group C (n=8) rats were injected subcutaneously with normal saline; Group P (n_8) rats were injected subcutaneously with monocrotaline (60mg/kg) and received with normal saline by daily oral gavage for 3 weeks; Group PTh (n=8) rats were injected subcutaneously with monocrotaline (60mg/kg) and received telmisartan (10mg/kg) by daily oral gavage for 3 weeks; Group PTl (n=8) rats were injected subcutaneously with monocrotaline (60mg/kg) and received telmisartan (5mg/kg) by daily oral gavage for 3 weeks.
     2. Right ventricular systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP) were measured by right heart catheter after 3 weeks. All rats were killed by exanguination and their hearts and lungs were harvested. The right ventriclular hypertrophy index (RVHI), percentage of small pulmonary arteries media thickness (WT%), muscularization degree of pulmonary vessels and score of pulmonary vascular inflammation were evaluated.
     3. ELISA kits were used to evaluate the proinflammatory cytokines (IL-6, TNF-a and MCP-1) in pulmonary homogenate at protein level.
     4. The protein expression of MMP-2 and MMP-9 at pulmonary vascular was examined by immunohistochemistry. The mRNA of MMP-2, MMP-9 and TIMP-1 in the lung were measured by real-time PCR. The enzymic activity of MMP-2 and MMP-9 were detected in gelatin zymography.
     5. The protein expression of ACE2 on pulmonary vascular was examined by immunohistochemistry. The mRNA of ACE2 of the lung was measured by real-time PCR.
     Results
     1. Effects of telmisartan on hemodynamic parameter, right ventricular hypertrophy, pulmonary vascular remodeling and perivascular inflammation:
     The mPAP, RVSP and RVHI of group C were 17.13±3.30mmHg, 40.33±5.77mmHg and 0.25±0.02. These indexes of group P were increased significantly compared with group C (37.00±4.98mmHg,67.04±4.87mmHg and 0.40±0.02, P<0.01), and attenuated significantly with telmisartan administration (24.75±4.69mmHg, 52.30±8.37mmHg and 0.29±0.01 of group PTh; 26.27±5.46mmHg,53.25±8.65mmHg and 0.34±0.02 of group PTl; P<0.01). No significant differences in mPAP and RVSP were observed in two telmisartan dosage groups (P>0.05), but RVHI of group PTh was lower than group PT1 with statistical significance (0.29±0.01 vs 0.34±0.02, P<0.01).
     Prominent medial wall hypertrophy, smooth muscle proliferation in muscular pulmonary arteries and muscularized arterioles were evident from rats treated with MCT (group P). Compared with group C, percentage of small pulmonary arteries media thickness, muscularization of acinus pulmonary arterioles and a-smooth muscle actin expression (IOD/Area) of pulmonary arterioles of group P increased significantly (45.52±5.48% vs 8.91±2.30%,67.55±2.95% vs 19.92±2.27%,0.49±0.03 vs 0.22±0.04; P<0.01). These increases were also prevented notably with telmisartan intervention (13.83±1.83%,50.83±3.12% and 0.34±0.02 of group PTh; 20.84±15.21%,53.22±1.97% and 0.36±0.02 of group PTl; P<0.01).No significant differences in WT% and muscularization were observed in two telmisartan dosage groups (P>0.05), but IOD/Area of group PTh was lower than group PTl with statistical significance (P<0.05).
     Macrophages significantly increased in alveoli and primarily mononuclear cells infiltrated around the arterioles in group P. The perivascular inflammation score of group P was remarkably higher than that of group C with statistical significance (3.24±0.41 vs 0.40±0.16, P<0.01), and was reduced significantly with telmisartan administration (1.00±0.19 of group PTh; 1.46±0.31 of group PTl; P<0.01). The score of group PTh was lower than group PTl with statistical significance (P<0.05).
     2. Effects of telmisartan on pulmonary homogenate IL-6, TNF-a and MCP-1 of rats injected with MCT:
     The IL-6, TNF-a and MCP-1 level of group P were significantly higher than that of group C with statistical significance (459.40±94.77pg/ml vs 64.97±17.65pg/ml, 436.46±62.20pg/ml vs 56.51±14.92pg/ml,6265.53±2014.83pg/ml vs 65.18±23.37pg/ml; P<0.01). Also, MCT-induced increases in proinflammatory cytokines were significantly attenuated by telmisartan intervention (118.87±25.80pg/ml,242.61±37.52pg/ml and 1094.39±577.75pg/ml of group PTh; 155.87±50.64pg/ml,278.69±42.35pg/ml and 1288.57±593.14pg/ml of group PTl; P<0.01). No significant differences in these proinflammatory cytokines were observed in two telmisartan dosage groups (P>0.05).
     3. Effects of telmisartan on expression of MMP-2, MMP-9 and TIMP-1 mRNA in the lungs and MMP-2, MMP-9 protein and activity:
     Immunohistochemistry for MMP-2 and MMP-9 in pulmonary arterioles of group P revealed that positive staining was localized mainly in the tunica intima and adventitia, which showed a notable increase as compared to group C. Moreover, this expression was decreased after administration of telmisartan. The MMP-2, MMP-9 and TIMP-1 mRNA of group P were significantly higher than that of group C with statistical significance (3.30±0.39 vs 0.96±0.08,7.07±0.54 vs 0.96±0.06,3.52±0.44 vs 1.02±0.14;P<0.01). These increases were also reduced notably with telmisartan intervention (1.97±0.24, 3.65±0.70 and 2.22±0.35 of group PTh; 2.43±0.21,4.91±0.68 and 2.54±0.43 of group PTl; P<0.01). No significant difference in TIMP-1 mRNA was observed in two telmisartan dosage groups (P>0.05), but MMP-2 and MMP-9 mRNA of group PTh was lower than that of group PTl with statistical significance (P<0.05).
     MMP-2 and MMP-9 enzymatic activity in group P was significantly higher than that of group C (54893.89±8480.12 vs 40669.68±4978.39, P<0.05; 23864.69±5121.83 vs 9511.13±3429.93, P<0.01). MMP-2 activity in group PTh and PTl (52401.41±6234.28 and 51651.18±5289.70, respectively) was observed no significant differences compared with that of group P (P<0.05). In contrast, MMP-9 activity was significantly lower in two telmisartan dosage groups compared with that of group P (14244.99±2601.82 of group PTh, P<0.01; 14896.96±3625.29 of group PTl, P<0.05). No significant differences in MMP-2 and MMP-9 activity were observed in two telmisartan dosage groups (P>0.05).
     4. Effects of telmisartan on expression of ACE2 mRNA or protein in the lung:
     In pulmonary arterioles ACE2 is preferentially localized in the endothelial layer. Immunohistochemistry results showed a notable decrease of ACE2 positive staining in group P as compared to that of control rats, and its expression is increased after administration of telmisartan. The ACE2 mRNA of group P were significantly lower than that of group C with statistical significance (0.56±0.09 vs 1.04±0.14, P<0.01), and this decrease was reversed notably with telmisartan intervention (2.08±0.40 of group PTh, 1.65±0.44 of group PTl; P<0.01), furthermore group PTh was higher than group PTl with statistical significance (P<0.05).
     Conclusion
     1. Telmisartan can attenuate MCT-induced pulmonary vascular remodeling and PAH.
     2. The mechanisms of protective effects partly by inhibiting the pervascular inflammation and proinflammatory cytokines in lung.
     3. Modulating the expression and activity of MMPs leads to amelioration of extracellular matrix remodeling was probably related with the protective effects of telmisartan.
     4. Telmisartan may be therapeutically useful in MCT-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanisms.
引文
1.陆慰萱,王辰.肺循环病学.北京:人民卫生出版社.2007第一版:275-288.
    2. Rubin LJ. Primary pulmonary hypertension. N Engl J Med.1997;336(2):111-117.
    3. Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet.2003;361(9368): 1533-1544.
    4.陆慰萱,王辰.重视肺动脉高压的规范诊断和治疗.中华医学杂志.2009;89(30):2089-2090.
    5. Harm J, Bogaard, Kohtaro. The right ventricle under pressure-cellular and molecular mechanisms of right heart failure in pulmonary hypertension. Chest. 2009;135(3):794-804.
    6. Park HK, Park SJ, Kim CS, et al. Enhanced gene expression of renin-angiotensin system, TGF-betal, endothelin-1 and nitric oxide synthase in right-ventricular hypertrophy. Pharmacol Res.2001;43(3):265-273.
    7. Lourenco AP, Roncon-Albuquerque R Jr, Bras-Silva C, et al. Myocardial dysfunction and neurohumoral activation without remodeling in left ventricle of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol. 2006;291(4):H1587-H1594.
    8. Usui S, Yao A, Hatano M, et al. Upregulated neurohumoral factors are associated with left ventricular remodeling and poor prognosis in rats with monocrotaline-induced pulmonary arterial hypertension. Circ J.2006;70(9):1208-1215.
    9. Orte C, Polak JM, Haworth SG, et al. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. J Pathol.2000;192(3):379-384.
    10. Kanno S, Wu Y-JL, Lee PC, et al. Angiotensin-converting enzyme inhibitor preserves p21 and endothelial nitric oxide synthase expression in monocrotaline-induced pulmonary arterial hypertension in rats. Circulation. 2001;104(8):945-950.
    11. de Gasparo M, Catt KJ, Inagami T, et al. International union of pharmacology. ⅩⅩⅢ. The angiotensin Ⅱ receptors. Pharmacol Rev.2000;52(3):415-472.
    12. Cassis LA, Rippetoe PE, Soltis EE, et al. Angiotensin Ⅱ and monocrotaline-induced pulmonary hypertension:effect of losartan (DuP 753), a nonpeptide angiotensin type 1 receptor antagonist. J Pharmacol Exp Ther.1992;262(3):1168-1172.
    13. Okada K, Bernstein ML, Zhang W, et al. Angiotensin-converting enzyme inhibition delays pulmonary vascular neointimal formation. Am J Respir Crit Care Med. 1998;158(3):939-950.
    14. Kishi K, Jin D, Takai S, et al. Role of chymase-dependent angiotensin Ⅱ formation in monocrotaline-induced pulmonary hypertensive rats. Pediatr Res.2006;60(1):77-82.
    15. Kato T, Nasu T, Sonoda H, et al. Evaluation of olmesartan medoxomil in the rat monocrotaline model of pulmonary hypertension. J Cardiovasc Pharmacol. 2008;51(1):18-23.
    16. Grassi G, Quarti-Trevano F, Mancia G. Cardioprotective effects of telmisartan in uncomplicated and complicated hypertension. J Renin Angiotensin Aldosterone Syst. 2008;9(2):66-74.
    17. Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension.2004;43(5):993-1002.
    18. Schupp M, Janke J, Clasen R, et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation. 2004;109(17):2054-2057.
    19. Kurtz TW, Pravenec M. Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin Ⅱ receptor antagonists:beyond the renin-angiotensin system. J Hypertens.2004;22(12):2253-2261.
    20. Tian Q, Miyazaki R, Ichiki T, et al. Inhibition of tumor necrosis factor-alpha-induced interleukin-6 expression by telmisartan through cross-talk of peroxisome proliferator-activated receptor-gamma with nuclear factor kappaB and CCAAT/enhancer-binding protein-beta. Hypertension.2009;53(5):798-804.
    21. Cianchetti S, Del Fiorentino A, Colognato R, et al. Anti-inflammatory and anti-oxidant properties of telmisartan in cultured human umbilical vein endothelial cells. Atherosclerosis.2008;198(1):22-28.
    22. Nakano A, Hattori Y, Aoki C, et al. Telmisartan inhibits cytokine-induced nuclear factor-kappaB activation independently of the peroxisome proliferator-activated receptor-gamma. Hypertens Res.2009;32(9):765-769.
    23. Okada M, Harada T, Kikuzuki R, et al. Effects of telmisartan on right ventricular remodeling induced by monocrotaline in rats. J Pharmacol Sci.2009;111 (2):193-200.
    24. Robert B. Stinger et al. Catheterization of the pulmonary artery in the closed-chest rat. J Appl Physiol.1981;51(4):1047-1050.
    25. Lalich JJ, Merkow L. Pulmonary arteritis produced in rats by feeding Crotolaria spectabilis. Lab Invest.1961;10:744-750.
    26. Campian ME, Hardziyenka M, Michel MC, et al. How valid are animal models to evaluate treatments for pulmonary hypertension? Naunyn Schmiedebergs Arch Pharmacol.2006;373(6):391-400.
    27. Yi ES, Kim H, Ahn H, et al. Distribution of obstructive intima lesion and their cellular phenotypes in chronic pulmonary hypertension. A morphometric and immunohistochemical study. Am J Respir Crit Care Med.2000;162(4Pt 1):1577-1586.
    28. Nakamoto T, Harasawa H, Akimoto K, et al. Effects of olmesartan medoxomil as an angiotensin Ⅱ-receptor blocker in chronic hypoxic rats. Eur J Pharmacol. 2005;528(1-3):43-51.
    29. Unger T. Significance of angiotensin type 1 blockade:why are angiotensin Ⅱ receptor blockers different? Am J Cardiol.1999;84(10A):9S-15S.
    30. Burnier M. Angiotensin Ⅱ type 1 receptor blockers. Circulation.2001;103(6):904-912.
    31. Tuder RM, Groves BM, Badesch DB, et al. Exuberant endothelial cell growth and element of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol.1994;144(2):275-285.
    32. Mukerjee D, St George D, Coleiro B, et al. Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension:application of a registry approach. Ann Rheum Dis.2003;62(11):1088-1093.
    33. Cool CD, Kennedy D, Voelkel NF, et al. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Human Pathol.1997;28(4):434-442.
    34. Dorfmuller P, Perros F, Balabanian K, et al. Inflammation in pulmonary arterial hypertension. Eur Resp J.2003;22(2):358-363.
    35. Balabanian K, Foussat A, Dorfmuller P, et al. CX3C chemokine fractalkine in pulmonary arterial hypertension.Am J Resp Crit Care Med.2002;165(10):1419-1425.
    36. Itoh T, Nagaya N, Ishibashi-Ueda H, et al. Increased plasma monocyte chemoattractant protein-1 level in idiopathic pulmonary arterial hypertension. Respirology.2006;11(2):158-163.
    37. Hansmann G, Wagner R, Schellong S, et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation.2007;115(10):1275-1284.
    38. Medoff BD, Okamoto Y, Leyton P, et al. Adiponectin-deficiency increases allergic airway inflammation and pulmonary vascular remodeling. Am J Respir Cell Mol Biol. 2009;41(4):397-406.
    39. Voelkel NF, Tuder RM, Bridges J, et al. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. Am J Respir Cell Mol Biol.1994;11(6):664-675.
    40. Shimzu K, Takahashi T, Iwasaki T, et al. Hemin treatment abrogates monocrotaline-induced pulmonary hypertension. Med Chem.2008;4(6):572-576.
    41.张伟华,陆慰萱,张运剑等.辛伐他汀对野百合碱致肺动脉高压大鼠肺血管病变的影响.中华医学杂志.2009;89(12):85-859.
    42. Humbert M, Monti G, Brenot F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med.1995;151(5):1628-1631.
    43. Deswal A, Petersen NJ, Feldman AM, et al. Cytokines and cytokine receptors in advanced heart failure:an analysis of the cytokine database from the Vesnarinone trial(VEST). Circulation.2001;103(16):2055-2059.
    44. Hartford M, Wiklund O, mattssonl L, et al. C-reactive protein, interleukin-6, secretoryphospholipase A2 group IIA and intercellular adhesion molecule-1 in the prediction of late outcome events after acute coronary syndromes. J Intern Med. 2007;262(5):526-536.
    45. Golembeski SM, West J, Tada Y, et al. Interleukin-6 causes mild pulmonary hypertension and augments hypoxia-induced pulmonary hypertension in mice. Chest 2005;128(6 suppl):572s-573s.
    46. Sellimovic N, Bergh CH, Andersson B, et al. Growth factors and interleukin-6 across the lung circulation in pulmonary hypertension. Eur Respir J.2009;34(3):662-668.
    47. Steiner MK, Syrkina OL, Kolliputi N, et al. Interleukin-6 overexpression induces pulmonary hypertension. Circ Res.2009;104(2):236-44.
    48. Sheikine Y, Hansson GK. Chemokine and atherosclerosis. Ann Med.2004;36(2):98-118.
    49. Pan Q, Yang XH, Cheng YX. Angiotensin Ⅱ stimulates MCP-1 production in rat glomerular endothelial cells via NAD(P)H oxidase-dependent nuclear factor-kappa B signaling. Braz J Med Biol Res.2009;42(6):531-536.
    50. Fujita K, Yoneda M, Wada K, et al. Telmisartan, an angiotensin Ⅱ type 1 receptor blocker, controls progress of nonalcoholic steatohepatitis in rats. Dig Dis Sci. 2007;52(12):3455-3464.
    1. Rubin LJ. Primary pulmonary hypertension. N Engl J Med.1997;336(2):111-117.
    2. Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet.2003;361(9368): 1533-1544.
    3. Hassoun PM. Deciphering the"matrix"in pulmonary vascular remodeling. Eur Respir J.2005;25(5):778-779.
    4. Archer S, Rich S. Primary pulmonary hypertension:a vascular biology and translational research "Work in progress". Circulation.2000; 102(22):2781-2791.
    5. Frisdal E, Gest V, Vieillard-Baron A, et al. Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension. Eur Respir. 2001;18(5):838-845.
    6. Lepetit H, Eddahibi S, Fadel E, et al. Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension. Eur Respir.2005;25(5):834-842.
    7. Somerville RP, Oblander SA, Apte SS. Matrix metalloproteinases:Old dogs with new tricks. Genome Biol.2003;4(216):1-11.
    8. Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res.2000;23:86(12):1259-1265.
    9. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis:the good, the bad, and the ugly. Circ Res 2002;90(3):251-262.
    10. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev.2005;85(1):1-31.
    11. Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis.2002;45(3):173-202.
    12. Herget J, Novotna J, Bibova J, et al. Metalloproteinase inhibition by Batimastat attenuates pulmonary hypertension in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol.2003;285(1):L199-L208.
    13. Okada K, Bernstein ML, Zhang W, et al. Angiotensin-converting enzyme inhibition delays pulmonary vascular neointimal formation. Am J Respir Crit Care Med. 1998;158(3):939-950.
    14. Orte C, Polak JM, Haworth SG, et al. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. J Pathol.2000;192(3):379-384.
    15. Chassagne C, Eddahibi S, Adamy C,et al. Modulation of angiotensin Ⅱ receptor expression during development and regression of hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol.2000;22(3):323-332.
    16. Ferreira AJ, Shenoy V, Yamazato Y, et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med.2009; 179(11):1048-1054.
    17. Jeffery TK, Wanstall JC. Pulmonary vascular remodeling:a target for therapeutic intervention in pulmonary hypertension. Pharmacol Ther.2001;92(1):1-20.
    18. Morrell NW, Upton PD, Kotecha S, et al. Angiotensin Ⅱ activates MAPK and stimulates growth of human pulmonary artery smooth muscle via AT1 receptors. Am J Physiol.1999;277(3 Pt 1):L440-L448.
    19. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Deata Delta Ct) method. Methods.2001;25(4):402-408.
    20. Kleiner DE, Stetler-stevenson WG. Quantitative zymography:detection of pictogram quantities of gelatinases. Anal Biochem.1994;218(2):325-329.
    21.Ohbayashi H. Matrix metalloproteinases in lung diseases. Curr Protein Pept Sci. 2002;3(4):409-421.
    22. Tuder RM, Groves BM, Badesch DB, et al. Exuberant endothelial cell growth and element of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol.1994;144(2):275-285.
    23. Cool CD, Kennedy D, Voelkel NF, et al. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Human Pathol.1997;28(4):434-442.
    24. Campian ME, Hardziyenka M, Michel MC, et al. How valid are animal models to evaluate treatments for pulmonary hypertension? Naunyn Schmiedebergs Arch Pharmacol.2006;373(6):391-400.
    25. Fernandez-Patron C, Zouki C, Whittal R, et al. Matrix metalloproteinases regulate neutrophil-endothelial cell adhesion through generation of endothelin-1[1-32]. FASEB J.2001; 15(12):2230-2240.
    26. Van den Steen PE, Dubois B, Nelissen I, et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 2002;37(6):375-536.
    27. Kuzuya M, Kanda S, Sasaki T et al. Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation.2003; 108(11):1375-1381.
    28. Cowan KN, Jones PL, Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J Clin Invest.2000;105(1):21-34.
    29. Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer:innovations for the post-trial era. Nat Rev Cancer.2002;2(9):657-672.
    30. Vieillard-Baron A, Frisdal E, Raffestin B, et al. Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer limits monocrotaline-induced pulmonary vascular remodeling in rats. Hum Gene Ther.2003;14(9):861-869.
    31.Fortuna GM, Figueiredo-Lopes L, Dias-Junior CA, et al. A role for matrix metalloproteinase-9 in the hemodynamic changes following acute pulmonary embolism. Int J Cardiol.2007;114(1):22-27.
    32. Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol.2006;6(3):271-276.
    33. DeMarco VG, Habibi J, Whaley-Connell AT, et al. Oxidative stress contributes to pulmonary hypertension in the transgenic (mRen2)27 rat. Am J Physiol Heart Circ Physiol.2008;294(6):H2659-2668.
    34. Lefebvre F, Prefontaine A, Calderone A, et al. Modification of the pulmonary renin-angiotensin system and lung structural remodelling in congestive heart failure. Clin Sci(Lond).2006;111(3):217-224.
    35. Han SX, He GM, Wang T, et al. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats:Possible involvement of angiotensin-converting enzyme-2. Toxicol Appl Pharmacol.2010;245(1)100-107.
    36. de Cavanagh EM, Ferder M, Inserra F, et al. Angiotensin Ⅱ, mitochondria, cytoskeletal, and extracellular matrix connections:an integrating viewpoint. Am J Physiol Heart Circ Physiol.2009;296(3):H550-558.
    37. Luchtefeld M, Grote K, Grothusen C, et al. Angiotensin Ⅱ induces MMP-2 in a p47phox-dependent manner. Biochem Biophys Res Commun.2005;328(1):183-188.
    38. Jimenez E, Perez de la Blanca E, Urso L, et al. Angiotensin Ⅱ induces MMP 2 activity via FAK/JNK pathway in human endothelial cells. Biochem Biophys Res Commun.2009;380(4):769-774.
    39. Li M, Li Z, Sun X. Statins suppress MMP2 secretion via inactivation of RhoA/ROCK pathway in pulmonary vascular smooth muscles cells. Eur J Pharmacol. 2008;591(1-3):219-223.
    40. Deschamps AM, Spinale FG. Pathways of matrix metalloproteinase induction in heart failure:bioactive molecules and transcriptional regulation. Cardiovasc Res. 2006;69(3):666-676.
    41. Bergman MR, Cheng S, Honbo N, et al. A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fral and JunBFosB heterodimers. Biochem J.2003;369(Pt 3):485-496.
    42. Xie Z, Singh M, Singh K. Differential regulation of matrix metalloproteinase-2 and-9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1β. J Biol Chem.2004;279(38):39513-39519.
    43. Suh SJ, Jin UH, Kim SH, et al. Ochnaflavone inhibits TNF-a-induced human VSMC proliferation via regulation of cell cycle, ERK1/2, and MMP-9. J Cell Biochem. 2006;99(5):1298-1307.
    44. Williams B. Angiotensin Ⅱ and the pathophysiology of cardiovascular remodeling. Am J Cardiol.2001;87(8A):10C-17C.
    45. Domenighetti AA, Wang Q, Egger M, et al. Angiotensin Ⅱ-mediated phenotypic cardiomyocyte remodeling leads to age-dependent cardiac dysfunction and failure. Hypertension.2005 Aug;46(2):426-432.
    46. Jesmin S, Sakuma I, Hattori Y, et al. Role of angiotensin Ⅱ in altered expression of molecules responsible for coronary matrix remodeling in insulin-resistant diabetic rats. Arterioscler Thromb Vasc Biol.2003;23(11):2021-2026.
    47. Brassard P, Amiri F, Schiffrin EL. Combined angiotensin Ⅱ type 1 and type 2 receptor blockade on vascular remodeling and matrix metalloproteinases in resistance arteries. Hypertension.2005;46(3):598-606.
    48. Grassi G, Quarti-Trevano F, Mancia G. Cardioprotective effects of telmisartan in uncomplicated and complicated hypertension. J Renin Angiotensin Aldosterone Syst. 2008;9(2):66-74.
    49. Takenaka H, Kihara Y, Iwanaga Y, et al. Angiotensin Ⅱ, oxidative stress, and extracellular matrix degradation during transition to LV failure in rats with hypertension. J Mol Cell Cardiol.2006;41(6):989-997.
    50. Okada M, Harada T, Kikuzuki R, et al. Effects of telmisartan on right ventricular remodeling induced by monocrotaline in rats. J Pharmacol Sci.2009; 111(2):193-200.
    51. Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin Ⅱ receptor antagonist with selective PPARgamma-modulating activity. Hypertension.2004;43(5):993-1002.
    52. Ameshima S, Golpon H, Cool CD, et al. Peroxisome proliferatorYactivated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res.2003;92(10):1162-1169.
    53. Matsuda Y, Hoshikawa Y, Ameshima S, et al. Effects of peroxisome proliferators-activated receptor gamma ligands on monocrotaline-induced pulmonary hypertension in rats. Nihon Kokyuki Gakkai Zasshi.2005;43(5):283-288.
    54. Crossno JT Jr, Garat CV, Reusch JE, et al. Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol.2007;292(4): L885-L897.
    55. Nisbet R, Kleinhenz D, Thorson H, et al. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med. 2007;175:A43.
    56. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-y is a negative regulator of macrophage activation. Nature.1998;391(6662):79-82.
    57. Lee KJ, Kim HA, Kim PH, et al. Ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD36-mediated activation of PPAR-y. Exp Mol Med. 2004;36(6):534-544.
    58. Ge H, Zhang JF, Guo BS, et al. Resveratrol inhibits macrophage expression of EMMPRIN by activating PPARgamma. Vascul Pharmacol.2007;46(2):114-121.
    59. Ringseis R, Schulz N, Saal D, et al. Troglitazone but not conjugated linoleic acid reduces gene expression and activity of matrix-metalloproteinases-2 and-9 in PMA-differentiated THP-1 macrophages. J Nutr Biochem.2008;19(9):594-603.
    60. Hanefeld M, Marx N, P futzner A, et al. Anti-inflammatory effects of pioglitazone and/or simvastatin in high cardiovascular risk patients with elevated high sensitivity C-reactive protein:the PIOSTAT Study. J Am Coll Cardiol.2007;49(3):290-297.
    61.Marfella R, D'Amico M, Di Filippo C, et al. Increased activity of the ubiquitin-proteasome system in patients with symptomatic carotid disease is associated with enhanced inflammation and may destabilize the atherosclerotic plaque:effects of rosiglitazone treatment. J Am Coll Cardiol. 2006;47(12):2444-2455.
    1. Jeffery TK, Wanstall JC. Pulmonary vascular remodeling:a target for therapeutic intervention in pulmonary hypertension. Pharmacol Ther.2001;92(1):1-20.
    2. Mandegar M, Fung YC, Huang W,et al. Cellular and molecular mechanisms of pulmonary vascular remodeling:role in the development of pulmonary hypertension. Microvasc Res.2004;68(2):75-103.
    3. Marshall RP. The pulmonary renin-angiotensin system. Curr Pharm Des. 2003;9(9):715-722.
    4. Orte C, Polak JM, Haworth SG, et al. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. J Pathol.2000;192(3):379-384.
    5. Morrell NW, Morris KG, Stenmark KR. Role of angiotensin-converting enzyme and angiotensin Ⅱ in development of hypoxic pulmonary hypertension. Am J Physiol. 1995;269(4 Pt 2):H1186-H1194.
    6. Kanno S, Wu Y-JL, Lee PC, et al. Angiotensin-converting enzyme inhibitor preserves p21 and endothelial nitric oxide synthase expression in monocrotaline-induced pulmonary arterial hypertension in rats. Circulation. 2001;104(8):945-950.
    7. Kishi K, Jin D, Takai S, et al. Role of chymase-dependent angiotensin Ⅱ formation in monocrotaline-induced pulmonary hypertensive rats. Pediatr Res.2006;60(1):77-82.
    8. Kato T, Nasu T, Sonoda H, et al. Evaluation of olmesartan medoxomil in the rat monocrotaline model of pulmonary hypertension. J Cardiovasc Pharmacol. 2008;51(1):18-23.
    9. Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol.2006;6(3):271-276.
    10. Tipnis SR, Hooper NM, Hyde R, et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem.2000;275(43):33238-33243.
    11. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin 1 to angiotensin 1-9. Circ Res.2000;87(5):El-E9.
    12. Hamming 1, Cooper ME, Haagmans BL, et al. The emerging role of ACE2 in physiology and disease. J Pathol.2007;212(1):1-11.
    13. Kuba K, ImaiY, Rao S, et al. Lessons from SARS:control of acute lung failure by the SARS receptor ACE2. J Mol Med.2006; 84(10):814-820.
    14. Ferreira AJ, Shenoy V, Yamazato Y, et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med.2009;179(11):1048-1054.
    15. Yamazato Y, Ferreira AJ, Hong KH, et al. Prevention of pulmonary hypertension by Angiotensin-converting enzyme 2 gene transfer. Hypertension.2009;54(2):365-371.
    16. Ocaranza MP, Godoy I, Jalil JE, et al. Enalapril attenuates downregulation of Angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat. Hypertension.2006;48(4):572-578.
    17. Ishiyama Y, Gallagher PE, Averill DB, et al. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension.2004;43(5):970-976.
    18. Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest.2008; 118(7):2372-2379.
    19. Chan SY, Loscalzo J. Pathogenic mechanisms of pulmonary arterial hypertension. J Mol Cell Cardiol.2008;44(1):14-30.
    20. Minamino T, Christou H, Hsieh CM, et al. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci USA.2001;98(15):8798-8803.
    21.Mathew R. Inflammation and pulmonary hypertension. Cardiol Rev. 2010;18(2):67-72.
    22. Imai Y, Kuba K, Penninger JM. Angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Cell Mol Life Sci.2007;64(15):2006-2012.
    23. Li X, Molina-Molina M, Abdul-Hafez A, et al. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol.2008;295(1):L178-L185.
    24. Rentzsch B, Todiras M, Iliescu R, et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension.2008;52(5):967-973.
    25. Santos RA, Ferreira AJ, Simoes E Silva AC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp Physiol. 2008;93(5):519-527.
    26. Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J.2004;383(Pt 1):45-51.
    27. Santos RA, Simoes E Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100(14):8258-8263.
    28. Santos RA, Ferreira AJ, Pinheiro SV, et al. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin Investig Drugs. 2005;14(8):1019-1031.
    29. Reudelhuber TL. A place in our hearts for the lowly angiotensin 1-7 peptide? Hypertension.2006;47(5):811-815.
    30. Ferrario CM. Angiotensin-converting enzyme 2 and angiotensin-(1-7). An evolving story in cardiovascular regulation. Hypertension.2006;47(3):515-521.
    31. Harmer D, Gilbert M, Borman R, et al. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1-2):107-110.
    32. Zhang R, Wu Y, Zhao M, et al. Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol.2009;297(4):L631-L640.
    33. Han SX, He GM, Wang T, et al. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats:Possible involvement of angiotensin-converting enzyme-2. Toxicol Appl Pharmacol.2010;245(1)100-107.
    34. Zisman LS, Keller RS, Weaver B, et al. Increased angiotensin-(1-7)-forming activity in failing human heart ventricles:evidence for up regulation of the angiotensin-converting enzyme homologue ACE2. Circ.2003;108(14):1707-1712.
    35. Gallagher PE, Chappell MC, Ferrario CM, et al. Distinct roles for angiotensin Ⅱ and angiotensin-(1-7) in the regulation of angiotensin converting enzyme 2 in rat astrocytes. Am J Physiol Cell Physiol.2005;290(2):C240-C246.
    36. Koka V, Huang XR, Chung AC, et al. Angiotensin Ⅱ up-regulates angiotensin Ⅰ-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol.2008; 172(5):1174-1183.
    37. Feng Y, Yue X, Xia H, et al. Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin Ⅱ-mediated pressor and drinking responses and is associated with angiotensin Ⅱ type 1 receptor downregulation. Circ Res.2008;102(6):729-736.
    38. Xia H, Feng Y, Obr TD, et al. Angiotensin Ⅱ type 1 receptor-mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice. Hypertension.2009;53(2):210-216.
    39. Soler MJ, Ye M, Wysocki J, et al. Localization of ACE2 in the renal vasculature: amplification by angiotensin Ⅱ type 1 receptor blockade using telmisartan. Am J Physiol Renal Physiol.2009;296(2):F398-F405.
    40. Tsutamoto T, Nishiyama K, Yamaji M, et al. Comparison of the long-term effects of candesartan and olmesartan on plasma angiotensin II and left ventricular mass index in patients with hypertension. Hypertension Research.2010;33(2):118-122.
    41. Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin Ⅱ receptor antagonist with selective PPARgamma-modulating activity. Hypertension.2004;43(5):993-1002.
    1. Jeffery TK, Wanstall JC. Pulmonary vascular remodeling:a target for therapeutic intervention in pulmonary hypertension. Pharmacol Ther.2001;92(1):1-20.
    2. Hassoun PM. Deciphering the"matrix"in pulmonary vascular remodeling. Eur Respir J.2005;25(5):778-779.
    3. Frisdal E, Gest V, Vieillard-Baron A, et al. Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension. Eur Respir. 2001;18(5):838-845.
    4. Lepetit H, Eddahibi S, Fadel E, et al. Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension. Eur Respir.2005;25(5):834-842.
    5. Back M, Ketelhuth DF, Agewall S. Matrix Metalloproteinases in Atherothrombosis. Prog Cardiovasc Dis.2010;52(5):410-428.
    6. Somerville RP, Oblander SA, Apte SS. Matrix metalloproteinases:Old dogs with new tricks. Genome Biol.2003; 4(216):1-11.
    7. Busti C, Falcinelli E, Momi S, et al. Matrix metalloproteinases and peripheral arterial disease. Intern Emerg Med.2010;5(1):13-25.
    8. Morgunova E, Tuuttila A, Bergmann U, et al. Structure of human pro-matrix metalloproteinase-2:activation mechanism revealed. Science.1999;284(5420):1667-1670.
    9. Visse R, Nagase H. Matrix metalloproteinases and Tissue inhibitors of metalloproteinases:structure, function, and biochemistry. Circ Res. 2003;92(8):827-839
    10. Van Wart HE, Birkedal-Hansen H. The cysteine switch:a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA.1990;87(14):5578-5582.
    11.Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol.2008;75(2):346-359.
    12. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J.1999;13(8):781-792.
    13. Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res.2000;23:86(12):1259-1265.
    14. Mountain DJ, Singh M, Menon B, et al. Interleukin-lbeta increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells:role of PKCa/bl and MAPKs. Am J Physiol Cell Physiol.2007;292(2):C867-C875.
    15. Grandas OH, Mountain DJ, Kirkpatrick SS, et al. Effect of hormones on matrix metalloproteinases gene regulation in human aortic smooth muscle cells. J Surg Res. 2008;148(1):94-99.
    16. Hobeika MJ, Thompson RW, Muhs BE, et al. Matrix metalloproteinases in peripheral vascular disease. J Vasc Surg.2007;45(4):849-857.
    17. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res.2006;69(3):562-573.
    18. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis:the good, the bad, and the ugly. Circ Res 2002;90(3):251-262.
    19. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev.2005;85(1):1-31.
    20. Castro MM, Rizzi E, Prado CM, et al. Imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases in hypertensive vascular remodeling. Matrix Biol.2010;29(3)194-201.
    21. Zhang J, Nie L, Razavian M, et al. Molecular imaging of activated matrix metalloproteinases in vascular remodeling. Circulation.2008; 118(19):1953-1960.
    22. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;330(20):1431-1438.
    23. Kim YS, Galis ZS, Rachev A, et al. Matrix metalloproteinase-2 and-9 are associated with high stresses predicted using a nonlinear heterogeneous model of arteries. J Biomech Eng.2009;131(1):011009.
    24. Ota R, Kurihara C, Tsou TL, et al. Roles of matrix metalloproteinases in flow-induced outward vascular remodeling. J Cereb Blood Flow Metab. 2009;29(9):1547-1558.
    25. Tummers AM, Mountain DJ, Mix JW, et al. Serum levels of matrix metalloproteinase-2 as a marker of intimal hyperplasia. J Surg Res.2010; 160(1)9-13.
    26. Urbonavicius S, Urbonaviciene G, Honore B, et al. Potential circulating biomarkers for abdominal aortic aneurysm expansion and rupture-a systematic review. Eur J Vasc Endovasc Surg.2008;36(3):273-280.
    27. Sluijter JP, de Kleijn DP, Pasterkamp G. Vascular remodeling and protease inhibition-bench to bedside. Cardiovasc Res.2006;69(3):595-603.
    28. Todorovich HL, Dodo H, Ye C, et al. Increased pulmonary artery elastolytic activity in adult rats with monocrotaline-induced progressive hypertensive pulmonary vascular disease compared with infant rats with nonprogressive disease. Am Rev Respir Dis.1992;146(1):213-223.
    29. Ebrahem Q, Chaurasia SS, Vasanji A, et al. Cross-talk between vascular endothelial growth factor and matrix metalloproteinases in the induction of neovascularization in vivo. Am J Pathol.2010;176(1):496-503.
    30. Ohbayashi H. Matrix metalloproteinases in lung diseases. Curr Protein Pept Sci. 2002;3(4):409-421.
    31. Tuder RM, Groves BM, Badesch DB, et al. Exuberant endothelial cell growth and element of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol.1994;144(2):275-285.
    32. Cool CD, Kennedy D, Voelkel NF, et al. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Human Pathol.1997;28(4):434-442.
    33. Campian ME, Hardziyenka M, Michel MC, et al. How valid are animal models to evaluate treatments for pulmonary hypertension? Naunyn Schmiedebergs Arch Pharmacol.2006;373(6):391-400.
    34. Fernandez-Patron C, Zouki C, Whittal R, et al. Matrix metalloproteinases regulate neutrophil-endothelial cell adhesion through generation of endothelin-1[1-32]. FASEB J.2001; 15(12):2230-2240.
    35. Van den Steen PE, Dubois B, Nelissen I, et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 2002;37(6):375-536.
    36. Mathew R. Inflammation and pulmonary hypertension. Cardiol Rev. 2010;18(2):67-72.
    37. Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis.2002;45(3):173-202.
    38. Kuzuya M, Kanda S, Sasaki T et al. Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation.2003;108(11):1375-1381.
    39. Cowan KN, Jones PL, Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J Clin Invest.2000;105(1):21-34.
    40. Eddahibi S, Adnot S. Endothelins and pulmonary hypertension, what directions for the near future? Eur Respir J.2001; 18(1):1-4.
    41. Ambalavanan N, Bulger A, Murphy-Ullrich J, et al. Endothelin-A receptor blockade prevents and partially reverses neonatal hypoxic pulmonary vascular remodeling. Pediatr Res.2005;57(5 Pt 1):631-636.
    42. Dupuis J, Hoeper MM. Endothelin receptor antagonists in pulmonary arterial hypertension. Eur Respir J.2008;31(2):407-415.
    43. Sun XZ, Li ZF, Liu Y, et al. Inhibition of cGMP phosphodiesterase 5 suppresses MMP2 production in pulmonary artery smooth muscles cells. Cliri Exp Pharmacol Physiol.2010;37(3):362-367.
    44. Li M, Li Z, Sun X. Statins suppress MMP2 secretion via inactivation of RhoA/ROCK pathway in pulmonary vascular smooth muscles cells. Eur J Pharmacol. 2008;591(1-3):219-223.
    45. Novotna J, Bibova J, Hampl V. Hyperoxia and recovery from hypoxia alter collagen in peripheral pulmonary arteries similarly. Physiol Res.2001;50(2):153-163.
    46. Herget J, Novotna J, Bibova J, et al. Metalloproteinase inhibition by Batimastat attenuates pulmonary hypertension in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol.2003;285(1):L199-L208.
    47. Crossno JT Jr, Garat CV, Reusch JE, et al. Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol. 2007;292(4):L885-L897.
    48. Maxova H, Novotna J, Vajner L, et al. In vitro hypoxia increases production of matrix metalloproteinases and tryptase in isolated rat lung mast cells. Physiol Res. 2008;57(6):903-910.
    49. Fortuna GM, Figueiredo-Lopes L, Dias-Junior CA, et al. A role for matrix metalloproteinase-9 in the hemodynamic changes following acute pulmonary embolism. Int J Cardiol.2007;114(1):22-27.
    50. Souza-Costa DC, Zerbini T, Palei AC, et al. L-arginine attenuates acute pulmonary embolism-induced increases in lung matrix metalloproteinase-2 and matrix metalloproteinase-9. Chest.2005;128(5):3705-3710.
    51. Vieillard-Baron A, Frisdal E, Raffestin B, et al. Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer limits monocrotaline-induced pulmonary vascular remodeling in rats. Hum Gene Ther.2003;14(9):861-869.
    52. Cantini-Salignac C, Lartaud I, Schrijen F, et al. Metalloproteinase-9 in circulating monocytes in pulmonary hypertension. Fundam Clin Pharmacol. 2006;20(4):405-410.
    53. Giannelli G, Iannone F, Marinosci F, et al. The effect of bosentan on matrix metalloproteinase-9 levels in patients with systemic sclerosis-induced pulmonary hypertension. Curr Med Res Opin.2005;21(3):327-332.
    1. Jeffery TK, Wanstall JC. Pulmonary vascular remodeling:a target for therapeutic intervention in pulmonary hypertension. Pharmacol Ther.2001;92(1):1-20.
    2. Mandegar M, Fung YC, Huang W,et al. Cellular and molecular mechanisms of pulmonary vascular remodeling:role in the development of pulmonary hypertension. Microvasc Res.2004;68(2):75-103.
    3. Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol.2006;6(3):271-276.
    4. Tipnis SR, Hooper NM, Hyde R, et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem.2000;275(43):33238-33243.
    5. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res.2000;87(5):E1-E9.
    6. Hamming I, Cooper ME, Haagmans BL, et al. The emerging role of ACE2 in physiology and disease. J Pathol.2007;212(1):1-11.
    7. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev.2006;86(3):747-803.
    8. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature.2002;417(6891):822-828.
    9. Oudit GY, Crackower MA, Backx PH, et al. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc Med.2003;13(3):93-101.
    10. Oudit GY, Kassiri Z, Patel MP, et al. Angiotensin Ⅱ-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res.2007;75(1):29-39.
    11. Santos RA, Ferreira AJ, Pinheiro SV, et al. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin Investig Drugs. 2005;14(8):1019-1031.
    12. Reudelhuber TL. A place in our hearts for the lowly angiotensin 1-7 peptide? Hypertension.2006;47(5):811-815.
    13.Ferrario CM. Angiotensin-converting enzyme 2 and angiotensin-(1-7). An evolving story in cardiovascular regulation. Hypertension.2006;47(3):515-521.
    14. de Gasparo M, Catt KJ, Inagami T, et al. International union of pharmacology. ⅩⅩⅢ. The angiotensin 11 receptors. Pharmacol Rev.2000;52(3):415-472.
    15. Jones ES, Vinh A, McCarthy CA, et al. AT2 receptors:functional relevance in cardiovascular disease. Pharmacol Ther.2008;120(3):292-316.
    16. Carey RM, Padia SH. Angiotensin AT2 receptors:control of renal sodium excretion and blood pressure. Trends Endocrinol Metab.2008;19(3):84-87.
    17. Kaschina E, Grzesiak A, Li J, et al. Angiotensin Ⅱ type 2 receptor stimulation:a novel option of therapeutic interference with the renin-angiotensin system in myocardial infarction? Circulation.2008;118(24):2523-2532.
    18. Santos RA, Ferreira AJ, Simoes E Silva AC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp Physiol. 2008;93(5):519-527.
    19. Santos RA, Campagnole-Santos MJ, Andrade SP. Angiotensin-(1-7):an update. Regul Pept.2000;91(1-3):45-62.
    20. Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838-14843.
    21. Schiavone MT, Santos RA, Brosnihan KB, et al. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci USA.1988;85(11):4095-4098.
    22. Brosnihihan KB, Li P, Ferrario CM. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension.1996;27(3 Pt 2):523-528.
    23. Ferrario CM, Chappell MC, Tallant EA, et al. Counterregulatory actions of angiotensin-(1-7). Hypertension.1997;30(3 Pt2):535-541
    24. Loot AE, Roks AJM, Henning RH, et al. Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats. Circulation. 2002;105(13):1548-1550.
    25. Ferreira AJ, Jacoby BA, Araujo CA, et al. The nonpeptide angiotensin-(1-7) receptor Mas agonist AVE 0991 attenuates heart failure induced by myocardial infarction. Am J Physiol.2007;292(2):H1113-H1119.
    26. Diez-Freire C, Vazquez J, Correa de Adjounian MF, et al. ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiol Genomics.2006;27(1):12-19.
    27. Iyer SN, Ferrario CM, Chappell MC. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension. 1998;31(1 Pt2):356-361.
    28. Ebermann L, Spillmann F, Sidiropoulos M, et al. The angiotensin-(1-7) receptor agonist AVE0991 is cardioprotective in diabetic rats. Eur J Pharmacol. 2008;590(1-3):276-280.
    29. Santos RAS, Simoes E Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100(14):8258-8263.
    30. Guy JL, Jackson RM, Acharya KR, et al. Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry.2003;42(45):13185-13192.
    31. Oudit GY, Imai Y, Kuba K, et al. The role of ACE2 in pulmonary diseases-relevance for the nephrologists. Nephrol Dial Transplant.2009;24(5):1362-1365.
    32. Harmer D, Gilbert M, Borman R, et al. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1-2):107-110.
    33. Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J.2004;383(Pt 1):45-51.
    34. Kuba K, Imai Y, Rao S, et al. Lessons from SARS:control of acute lung failure by the SARS receptor ACE2. J Mol Med.2006;84(10):814-820.
    35. Turner AJ. Angiotensin-converting enzyme 2:cardioprotective player in the renin-angiotensin system? Hypertension.2008;52(5):816-817.
    36. Rentzsch B, Todiras M, Iliescu R, et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension.2008;52(5):967-973.
    37. Der Sarkissian S, Grobe JL, Yuan L, et al. Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension.2008;51(3):712-718.
    38. Dong B, Zhang C, Feng JB, et al. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(7):1270-1276.
    39. Feng Y, Yue X, Xia H, et al. Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin Ⅱ-mediated pressor and drinking responses and is associated with angiotensin 11 type 1 receptor downregulation. Circ Res.2008; 102(6):729-736.
    40. Nicholls J, Peiris M. Good ACE, bad ACE do battle in lung injury, SARS. Nat Med. 2005;11(8):821-822.
    41. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436(7047):112-116.
    42. Imai Y, Kuba K, Penninger JM. Angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Cell Mol Life Sci.2007;64(15):2006-2012.
    43. Li X, Molina-Molina M, Abdul-Hafez A, et al. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol.2008;295(1):L178-L185.
    44. Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol.2004;43(12 Suppl S):13S-24S.
    45. Raizada MK, Ferreira AJ. ACE2:a new target for cardiovascular disease therapeutics. J Cardiovasc Pharmacol.2007;50(2):112-119.
    46. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med.2005;11(8):875-879.
    47. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol.2004;203(2):631-637.
    48. Riviere G, Michaud A, Breton C, et al. Angiotensin-converting enzyme 2 (ACE2) and ACE activities display tissue-specific sensitivity to under nutrition-programmed hypertension in the adult rat. Hypertension.2005;46(5):1169-1174.
    49. Wiener RS, Cao YX, Hinds A, et al. Angiotensin converting enzyme 2 is primarily epithelial and is developmentally regulated in the mouse lung. J Cell Biochem. 2007;101(5):1278-1291.
    50. Yamamoto K, Ohishi M, Katsuya T, et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin Ⅱ. Hypertens.2008;47(4):718-726.
    51.Ferreira AJ, Shenoy V, Yamazato Y, et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med.2009; 179(11):1048-1054.
    52. Fraga-Silva RA, Sorg BS, Wankhede M, et al. ACE2 activation promotes anti-thrombotic activity. Mol Med.2010;16(5-6):210-215.
    53. Yamazato Y, Ferreira AJ, Hong KH, et al. Prevention of pulmonary hypertension by Angiotensin-converting enzyme 2 gene transfer. Hypertension.2009;54(2):365-371.
    54. Han SX, He GM, Wang T, et al. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats:Possible involvement of angiotensin-converting enzyme-2. Toxicol Appl Pharmacol.2010;245(1)100-107.
    55. Treml B, Neu N, Kleinsasser A, et al. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit Care Med.2010;38(2):596-601.
    56. Morrell NW, Morris KG, Stenmark KR. Role of angiotensin-converting enzyme and angiotensin Ⅱ in development of hypoxic pulmonary hypertension. Am J Physiol. 1995;269(4 Pt 2):H1186-H1194.
    57. Zhang R, Wu Y, Zhao M, et al. Role of HIF-1 alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol.2009;297(4):L631-L640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700