2'-5'寡核苷酸合成酶基因启动子介导的重组Caspase-3基因治疗丙型肝炎的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浓度诱导细胞发生不可逆的细胞凋亡。因此,这种重组活化的Caspase-3分子在以诱导凋亡为目标的基因治疗策略中有着非常好的应用潜能。
     如何使导入的Caspase-3基因只在有HCV感染的肝细胞表达和激活,即治疗中的靶向性,是该策略需要解决的关键问题。有研究发现在人肝细胞系中HCV核心蛋白能特异性地与报告基因中的2'-5'寡核苷酸合成酶(OAS)基因启动子结合并激活,即使HCV核心蛋白有少数氨基酸的变异亦不会影响它与OAS启动子的结合和激活效率,而且HCV核心蛋白基因比较保守,如果我们利用OAS启动子来调控Caspase-3基因的表达,可以解决基因治疗的特异性难题。
     目的:根据上述研究进展,我们拟利用HCV表达的核心蛋白与OAS启动子特异性结合、启动下游基因表达的特性,使重组活化的Caspase-3基因处于OAS启动子调控下,构建HCV特异性Caspase-3治疗系统,并研究其选择性诱导HCV核心蛋白阳性肝细胞凋亡的作用。
     方法:首先,我们从人基因组DNA中克隆OAS启动子并构建荧光素酶报告载体。然后建立稳定表达HCV核心蛋白的肝细胞系L02/core,并分析OAS启动子在L02/core中以及正常肝细胞L02中的活性。
     接下来利用基因重组的方法构建OAS启动子调控下的重组型Caspase-3表达载体pGL3-OAS-re-Caspase-3,进一步将其转染入实验细胞中,测定细胞中Caspase-3酶活性。
     在已确定该表达载体能够特异性地诱导Caspase-3活性表达的基础上,使用荧光显微镜技术和流式细胞技术来探索OAS启动子调控下的重组Caspase-3系统在肝细胞中诱导凋亡的作用。
     结果:限制性酶切及基因测序证实成功构建了OAS启动子调控下的荧光素酶报告载体pGL3-OAS-Luci。RT-PCR及Western-blot证实成功建立了稳定表达HCV-core的肝细胞系L02/core。在L02/core中,OAS启动子的转录活性明显增高,表明HCV核心蛋白可以特异性激活OAS启动子。
     限制性酶切及基因测序证实成功构建了OAS启动子调控下的重组型Caspase-3表达载体pGL3-OAS-re-Caspase-3,通过检测Caspase-3特异性底物证实了重组型Caspase-3具有酶活性。进一步使用荧光显微镜技术和流式细胞技术证实了该表达载体具有明显的靶向性诱导HCV核心蛋白阳性肝细胞凋亡的作用。
     结论:
     1.成功克隆了OAS启动子,并证实HCV核心蛋白能特异性激活OAS启动子。
     2.成功构建了重组型Caspase-3基因,并首次构建OAS启动子调控下的真核表达载体pGL3-OAS-re-Caspase-3。
     3.首次确定了pGL3-OAS-re-Caspase-3系统能特异性地诱导HCV核心蛋白阳性肝细胞的凋亡。
     4.该实验为发展一种有吸引力的、特异性较强的丙型肝炎基因治疗新策略奠定了一定的基础。
Introduction:Hepatitis C virus(HCV) infection is a major cause of chronic hepatitis,liver cirrhosis and hepatocellular carcinoma worldwide. The current standard therapy for chronic hepatitis C consists of a combination of pegylated IFN alpha(pegIFNα) and ribavirin.It achieves a sustained viral clearance in only 50-60%of patients.Moreover,this treatment is associated with substantial side effects,precluding its use by many individuals.Thus,current therapies are inadequate for the majority of patients,and there is an urgent need for the novel hepatitis C therapeutic strategies.
     It is generally thought that HCV infects only a small fraction of hepatocytes,approximately 1-20%as judged by the detection of HCV proteins or HCV RNA in liver biopsy samples.Therefore,induction of hepatic apoptosis is a potential approach for treatment of chronic hepatitis C.
     Activation of effector caspases is a central and ultimate step in many apoptosis pathways.Caspase-3 is the key executioner caspase,it exists as an inactive zymogen that is activated by upstream signals.Several groups have considered using the human caspase-3 gene as a novel form of anticancer gene therapy.However,overexpression of the wild-type caspase-3 in mammalian cells does not induce apoptosis,which is due to their inability to undergo autocatalytic processing without upstream caspase for activation.Recently,constitutively active recombinant caspase-3(re-caspase-3) has been was generated by making its small subunit preceding its large subunit.Unlike its wild-type counterpart that is the large subunit preceding the small subunit,the re-caspase-3 is capable of autocatalytic processing and inducing apoptosis independent of the upstream initiator caspase molecules.In addition,it could resist the effect of some apoptosis restraining genes.As caspase-3 is the most downstream executioner of apoptosis,the re-caspase-3 could be used at very low concentrations to induce apoptosis in target cells.
     However,if caspases-3 is transferred to normal tissues,it would be predicted to also undergo apoptosis,resulting in undesirable damage.To restrict induction of apoptosis to HCV infected cells and increase the safety of this approach,we needed to establish a HCV-specific caspase expression system.The HCV-core protein is currently considered to be a multifunctional protein that plays an important role in persistent infection and hepatocellular carcinogenesis.Naganuma et al found that HCV-core protein specifically activated the interferon(IFN)-inducible 2'-5'oligoadenylate synthetase(OAS) gene promoter in human hepatocyte cells,while the E1,E2,and NS5A proteins did not activate the OAS gene promoter.Moreover,the activation by the core protein is a general phenomenon,regardless of HCV genotype and strain.Therefore, utilization of the OAS gene promoter that is predominantly active in HCV-core positive hepatocytes would be an ideal system to restrict the cytotoxic caspase expression.
     Objective:Our current investigation attempts to construct an expression vector consisting of the re-caspase-3 under the OAS gene promoter(pGL3-OAS -re-caspase-3) and then investigate its effect on HCV-core positive liver cells.
     Methods:Human embryo hepatic cell line L02 was transfected with pcDNA3.1-core plasmid and selected by G418.Expression of HCV-core was detected by RT-PCR and western blot.The OAS promoter sequences was amplified from the genomic DNA and inserted into pGL3-Basic vector.The resultant pGL3-OAS-Luci plasmid was transiently transfected into L02/core cells and luciferase activity was assayed.
     Recombinant caspase-3 gene was constructed by making its small subunit preceding its large subunit.An expression vector consisting of the re-caspase-3 under the OAS gene promoter(pGL3-OAS -re-caspase-3) was constructed and transfectd into cells to investigate its effect on HCV-core positive liver cells.
     Results:L02/core cell line stably expressing HCV-core protein was established.The pGL3-OAS-Luci construct exhibited significant transcriptional activity in the L02/core cells but not in the L02 cells.
     The recombinant caspase-3 gene had enzymatic activity.The pGL3-OAS -re-caspase-3 construct induced apoptosis in HCV-core positive liver cells,but not in normal liver cells.
     Conclusion:
     1.We successfully cloned the 2'-5'oligoadenylate synthetase(OAS) gene promoter and demonstrated that it can be activated by HCV-core protein.
     2.We successfully constructed the expression vector consisting of recombinant caspase-3 gene under the OAS promoter, pGL3-OAS -re-caspase-3.
     3.For the first time,we demonstrated that pGL3-OAS -re-caspase-3 induced apoptosis in HCV-core positive liver cells significantly and specifically
     4.The present results strongly suggest that the transfer pGL3-OAS -re-caspase-3 is a novel targeting approach for the treatment of HCV infection.
引文
[1] Cao G, Kuriyama S, Gao J, Nakatani T, Chen Q, Yoshiji H, Zhao L, Kojima H,Dong Y, Fukui H, Hou J. Gene therapy for hepatocellular carcinoma based on tumour-selective suicide gene expression using the alpha-fetoprotein (AFP) enhancer and a housekeeping gene promoter. Eur J Cancer 2001; 37: 140-147
    [2] Konishi F, Maeda H, Yamanishi Y, Hiyama K, Ishioka S, Yamakido M.Transcriptionally targeted in vivo gene therapy for carcinoembrionic antigen-producing adenocarcinoma. Hiroshima J Med Sci 1999; 48: 79-89
    [3] Lee SE, Jin RJ, Lee SG, Yoon SJ, Park MS, Heo DS, Choi H. Development of a new plasmid vector with PSA-promoter and enhancer expressing tissue-specificity in prostate carcinoma cell lines. Anticancer Res 2000; 20:417-422
    [4] Hsu EC, Hsi B, Hirota-Tsuchihara M, Ruland J, Iorio C, Sarangi F, Diao J,Migliaccio G, Tyrrell DL, Kneteman N, Richardson CD. Modified apoptotic molecule (BID) reduces hepatitis C virus infection in mice with chimeric human livers. Nat Biotechnol 2003; 21: 519-525
    [5] Kerr IM, Brown RE. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A 1978; 75:256-260
    [6] Yu F, Floyd-Smith G. Protein synthesis-dependent and -independent induction of p69 2'-5'-oligoadenylate synthetase by interferon-alpha. Cytokine 1999; 11:744-750
    [7] Naganuma A, Nozaki A, Tanaka T, Sugiyama K, Takagi H, Mori M,Shimotohno K, Kato N. Activation of the interferon-inducible 2'-5'-oligoadenylate synthetase gene by hepatitis C virus core protein. J Virol 2000; 74: 8744-8750
    [8] Benech P, Vigneron M, Peretz D, Revel M, Chebath J. Interferon-responsive regulatory elements in the promoter of the human 2',5'-oligo(A) synthetase gene. Mol Cell Biol. 1987; 7: 4498-4504
    [9] Modi AA, Liang TJ. Hepatitis C: a clinical review. Oral Dis 2008; 14: 10-14
    [10] Zein CO, Zein NN. Advances in therapy for hepatitis C infection. Microbes Infect 2002; 4: 1237-1246
    [11] Di Bisceglie AM, Hoofnagle JH. Optimal therapy of hepatitis C. Hepatology 2002;36(5 Suppl 1): S121-127
    [12] Chander G, Sulkowski MS, Jenckes MW, et al. Treatment of chronic hepatitis C: a systematic review. Hepatology 2002; 36(5 Suppl 1): S135-144
    [13] Edwards KM, Davis JE, Browne KA, et al. Anti-viral strategies of cytotoxic T lymphocytes are manifested through a variety of granule-bound pathways of apoptosis induction. Immunol Cell Biol 1999; 77: 76-89
    [14] Thorberry NA, Lazebnik Y. Caspase: Ememies within. Science 1998; 281:1312-16
    [15] Yamabe K,Shimizu S, Ito T, et al. Cancer gene therapy using a pro-apoptotic gene, caspase-3. Gene Ther 1999; 12: 1952-1959
    [16] Friedrich K, Wieder T, Von HC, et al. Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance. Oncogene 2001; 20:2449-2460
    [17] Srinivasula SM, Ahmad M, MacFarlane M, Luo Z, Huang Z,Fernandes-Alnemri T, Alnemri ES. Generation of constitutively active recombinant caspases-3 and -6 by rearrangement of their subunits. J Biol Chem 1998; 273:10107-10111
    [18] Cam L, Boucquey A, Coulomb-L'hermine A, Weber A, Horellou P. Gene transfer of constitutively active caspase-3 induces apoptosis in a human hepatoma cell line. J Gene Med 2005; 7: 30-38
    [19] Hiramatsu N, Hayashi N, Haruna Y, Kasahara A, Fusamoto H, Mori C, Fuke I et al. Immunohistochemical detection of hepatitis C virus-infected hepatocytes in chronic liver disease with monoclonal antibodies to core, envelope and NS3 regions of the hepatitis C virus genome. Hepatology 1992; 16: 306-311
    [20] Lanford R, Bigger C. Advances in model systems for hepatitis C virus research. Virology 2002;293:1-9
    [21]Choo QL,Kuo G,Weiner A J,Overby LR,Bradley DW,Houghton M.Isolation of a cDNA clone derived from a blood-borne non-A,non-B viral hepatitis genome.Science.1989;244:359-362
    [22]McHutchison JG,Patel K,Pockros P,Nyberg L,Pianko S,Yu RZ,Dorr FAet al.A phase I trial of an antisense inhibitor of hepatitis C virus(ISIS 14803),administered to chronic hepatitis C patients.J Hepatol 2006;44:88-96
    [23]Jarczak D,Korf M,Beger C,Manns MP,Kr(u|¨)ger M.Hairpin ribozymes in combination with siRNAs against highly conserved hepatitis C virus sequence inhibit RNA replication and protein translation from hepatitis C virus subgenomic replicons.FEBS J 2005;272:5910-5922
    [24]Kanda T,Steele R,Ray R,Ray RB.Small interfering RNA targeted to hepatitis C virus 5'nontranslated region exerts potent antiviral effect.J Virol 2007;81:669-676
    [25]Robson T,Hirst DG.Transcriptional Targeting in Cancer Gene Therapy.J Biomed Biotechnol 2003;2003:110-137
    [26]Bukh J.A critical role for the chimpanzee model in the study of hepatitis C.Hepatology 2004;39:1469-1475
    [27]Kremsdorf D,Brezillon N.New animal models for hepatitis C viral infection and pathogenesis studies.World J Gastroenterol 2007;13:2427-2435
    [28]成军,任进余,李莉,等.丙型肝炎病毒结构基因转基因小鼠引起肝脏脂肪变.世界华人消化杂志2002;10:1022-1026
    [29]Mercer DF,Schiller DE,Elliott JF,et al.Hepatitis C virus replication in mice with chimeric human livers.Nat Med 2001;7:927-933
    [30]Rensen PC,Sliedregt LA,Ferns M,et al..Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo.J Biol Chem.2001;276:37577-37584
    [1]World Health Organization(WHO).Hepatitis C.Fact Sheet No.164.Revised October 2000.WHO web site(online),http://www.who.int/mediacentre/factsheets/fs164/en/(2000).
    [2]Modi AA,Liang TJ.Hepatitis C:a clinical review.Oral Dis 2008;14:10-14.
    [3]Rosen HR,Gretch DR.Hepatitis C virus:current understanding and prospects for future therapies.Mol Med Today 1999;5:393-399.
    [4]Walewski JL,Keller TR,Stump DD,et al.Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame.RNA 2001;7:710-721.
    [5]Xu Z,Choi J,Yen TS,et al.Synthesis of a novel hepatitis C virus protein by ribosomal frameshift.EMBO J 2001;20:3840-3848.
    [6]Varaklioti A,Vassilaki N,Georgopoulou U,et al.Alternate translation occurs within the core coding region of the hepatitis C viral genome.J Biol Chem 2002;277:177713-17721.
    [7]Boulant S,Becchi M,Penin F,et al.Unusual multiple recoding events leading to alternative forms of hepatitis C virus core protein from genotype 1b.J Biol Chem 2003;278:45785-45792.
    [8]Di Bisceglie AM,Hoofnagle JH.Optimal therapy of hepatitis C.Hepatology,2002,36:S121-127
    [9]Ray RB,Ghosh AK,Meyer K,et al.Functional analysis of a transrepressor domain in the hepatitis C virus core protein.Virus Research 1999;59:211-217.
    [10]Hosui A,Ohkawa K,Ishida H,et al.Hepatitis C virus core protein differently regulates the JAK-STAT signaling pathway under interleukin-6 and interferon-gamma stimuli. J Biol Chem 2003; 278: 28562-28571.
    [11] Ray RB, Meyer K, Ray R. Suppression of apoptotic cell death by hepatitis C virus core protein. Virology 1996; 226: 176-182.
    [12] Zhu N, Khoshnan A, Schneider R, et al. Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF)receptor-l and enhances TNF-induced apoptosis. J Virol 1998; 72: 3691-3697.
    [13] Matsumoto M, Hsieh TY, Zhu N, et al. Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-P receptor. J Virol 1997; 71:1301-1309.
    [14] Cocquerel L, Meunier J C, Op de Beeck A, et al. Coexpression of hepatitisC virus envelope proteins El and E2 in cis improves the stability of membrane insertion of E2. J Gen Virol 2001; 82: 1629-1635.
    [15] Carrere-Kremer S, Montpellier-Pala C, Cocquerel L, et al. Subcellular localization and topology of the p7 polypeptide of hepatitis C virus.J Virol 2002; 76: 3720-3730.
    [16] De Francesco R, Tomei L, Altamura S, et al. Approaching a new era for hepatitis C virus therapy: inhibitors of the NS3-4A serine protease and the NS5B RNA-dependent RNA polymerase. Antiviral Res 2003; 58: 1-16.
    [17] Wolk B, Sansonno D, Krausslich HG, et al. Subcellular localization, stability,and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J Virol 2000; 74: 2293-2304.
    [18] Ishido S, Hotta H. Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett 1998; 438: 258-262.
    [19] Simmonds P, Holmes EC, Cha TA, et al Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol 1993; 74:2391.
    [20] Fattovich G, Ribero ML, Pantalena M. et al. Hepatitis C virus genotypes: distribution and clinical significance in patients with cirrhosis type C seen at tertiary referral centres in Europe. J Viral Hepat 2001; 8: 206-216.
    [21] Nakamura H, Uyama H, Enomoto H et al. The combination therapy of interferon and amantadine hydrochloride for patients with chronic hepatitis C. Hepatogastroenterology 2003; 50: 222-226.
    [22] Tan SL, Pause A, Shi Y, et al. Hepatitis C therapeutics: current status and emerging strategies. Nat Rev Drug Discov 2002; 1: 867-881.
    [23] De Francesco R, Rice CM. New therapies on the horizon for hepatitis C: are we close? Clin Liver Dis 2003; 7: 211-242.
    [24] Frecer V, Kabelac M, De Nardi P, et al. Structure-based design of inhibitors of NS3 serine protease of hepatitis C virus. J Mol Graph Model 2004; 22:209-220.
    [25] Huang Z, Murray MG, Secrist JA. Recent development of therapeutics for chronic HCV infection. Antiviral Res 2006; 71: 351-362.
    [26] Seiwert SD, Andrews SW, Jiang Y, et al . Preclinical characteristics of the hepatitis C virus NS3/4A protease inhibitor ITMN-191 (R7227). Antimicrob Agents Chemother 2008; 52: 4432-4441.
    [27] Narjes F, Koch U, Steinkuhler C. Recent developments in the discovery of hepatitis C virus serine protease inhibitors - towards a new class of antiviral agents? Expert Opin Investig Drugs 2003; 12: 153-163.
    [28] Sarrazin C, Rouzier R, Wagner F, et al. SCH503034, a novel hepatitis C virus protease inhibitor, plus pegylated interferon alpha - 2b for genotype 1 nonresponders. Gastroenterology 2007; 132: 1270-1278.
    [29] Bressanelli S, Tomei L, Rey FA, et al. Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol 2002; 76:3482-3492.
    [30] Pierra C, Amador A, Benzaria S, et al . Synthesis and pharmacokinetics of valopicitabine (NM283), an efficient prodrug of the potent anti-HCV agent 2'-C-methylcytidine. J Med Chem 2006; 49: 6614-6620.
    [31] Ludmerer SW, Graham DJ, Boots E, et al. Replication fitness and NS5B drug sensitivity of diverse hepatitis C virus isolates characterized by using a transient replication assay.Antimicrob Agents Chemother 2005;49:2059-2069.
    [32]Erhardt A,Deterding K,Benhamou Y,et al.Safety,pharmacokinetics and antiviral effect of BILB 1941,a novel hepatitis C virus RNA polymerase inhibitor,after 5 days oral treatment.Antivir Ther 2009;14:23-32.
    [33]VolarevicM,Smolic R,Wu CH,et al.Potential role of RNAi in the treatment of HCV infection.Expert Rev Anti Infect Ther 2007;5:823-831.
    [34]雷迎峰,薛小平,尹文,等.RNAi对HCV NS5B基因表达的抑制作用.第四军医大学学报2003;24:1082-1084.
    [35]Seo MY,Abrignani S,Houghton M,et al.Small interfering RNA mediated inhibition of hepatitis C virus replication in the human heaptoma cell line Huh7.J Virol 2003;77:810-812.
    [36]饶林,詹林盛,彭剑淳,等.siRNA抑制丙型肝炎病毒IRES介导的基因表达.中国生物化学与分子生物学报2004;20:38-43.
    [37]McHutchison JG,Bartenschlager R,Patel K,et al.The face of future hepatitis C antiviral drug development:recent biological and virologic advances and their translation to drug development and clinical practice.J Hepatol 2006;44:411-421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700