水稻Rho GDP解离抑制因子OsRhoGDI2基因功能的初步鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
OsRacD是水稻小GTP结合蛋白Rho家族的一个新成员,已有的研究结果显示,OsRacD的功能之一是通过调控花粉管的延伸生长,参与水稻的育性控制,是一个重要的发育调控基因和信号通路中的开关分子。为进一步研究OsRacD相关信号通路及互作蛋白,梁卫红等以OsRacD为诱饵,采用酵母双杂交技术筛选了水稻幼穗cDNA文库,获得了若干潜在互作蛋白编码基因的cDNA序列。基于本实验室对OsRacD及其互作蛋白的研究,本论文对已经鉴定的一个负调控OsRacD活性的鸟苷酸解离抑制因子的编码基因—OsRhoGDI2进行了系列研究,对该基因在水稻育性控制的功能进行了初步鉴定。
     采用生物信息学分析,预测和比较了OsRhoGDI2和OsRacD蛋白的理化特点、修饰位点和亚细胞定位,进而构建了受控于CaMV35S启动子的与绿色荧光蛋白融合表达的OsRhoGDI2基因的双元植物表达载体pCAMBIA1302-OsRhoGDI2- GFP,采用农杆菌介导法转化洋葱表皮细胞,通过荧光显微镜观察了融合蛋白在活细胞内分布特点,证实OsRhoGDI2和OsRacD具有一些相似的理化特性和翻译后修饰位点,OsRhoGDI2融合蛋白主要分布在细胞质、细胞膜和细胞核。OsRhoGDI2与OsRacD在蛋白理化特性和胞内分布上存在的相关性提示,OsRhoGDI2蛋白可能在调控OsRacD的胞内分布和活性中发挥重要作用。
     为确定OsRhoGDI2基因的功能,借助农杆菌介导法将双元植物表达载体pCAMBIA1302-OsRhoGDI2-GFP转化水稻愈伤,经过浸染、筛选和分化,获得了12株分化苗,经基因组DNA的PCR检测,获得7株阳性转基因水稻。半定量RT-PCR检测结果显示,转基因水稻中OsRhoGDI2基因转录水平显著高于对照,说明OsRhoGDI2基因在CaMV35S启动子下,能够在水稻中过表达。表型分析显示,与对照水稻相比,转基因水稻的分蘖数和总稻粒数变化不大,而授粉粒数和结实率明显降低。统计分析显示,转基因水稻的授粉率和结实率显著降低,大多不足10%,而对照水稻结实率则达到96%,表明OsRhoGDI2基因的过表达和水稻育性存在负相关。为确认OsRhoGDI2基因在水稻育性控制中的功能,构建了OsRhoGDI2基因的干扰载体pART27-OsRhoGDI2,以期探讨OsRhoGDI2基因沉默对水稻的生长发育的影响,确定OsRhoGDI2与OsRacD蛋白的相互作用在水稻育性控制中的作用机制。
OsRacD belonging to the rice Rho family of small GTP-binding protein, previous results showed one of its function involved in rice photoperiod fertility conversion of photoperiod sensitive genic male sterile rice Nongken 58S, which influences rice fertility via controlling the pollen tube growth. To further investigate OsRacD-related signaling pathway and partners, using OsRacD as bait, the rice panicle cDNA library were screened by yeast two-hybrid system, and some cDNA sequences encoding putative targets were obtained. In this study, the functions of the gene OsRhoGDI2, a putative partner of OsRacD, which encoding a GDP dissociation inhibitor in rice fertility control had been identified by transgenic methods.
     Using bioinformatics analysis, the physicochemical characteristics, modification site and subcellular localization of OsRhoGDI2 and OsRacD protein had been predicted and analyzed. The GFP-fused binary plant expression vector pCAMBIA1302-OsRhoGDI2-GFP which controlled by the CaMV35S promoter was constructed. By Agrobacterium-mediated method, the recombinant vector pCAMBIA1302-OsRhoGDI2-GFP was transformed into onion epidermal cells, the subcellular localization of the fusion protein were observed under the fluorescence microscopy. The results showed that OsRhoGDI2 and OsRacD shared some similarities in physical and chemical properties, post-translational modification sites, and OsRhoGDI2 mainly distributed in the cytoplasm, nucleus and cell membrane in onion epidermal cells, suggest that OsRhoGDI2 may be an important partner of OsRacD which regulated its subcellular localization and activities.
     In order to identify the function of OsRhoGDI2 gene, the binary plant expression vector pCAMBIA1302-OsRhoGDI2-GFP was transformed into rice callus by Agrobacterium-mediated method, after infection, screening and re-differentiation, twelve transgenic rice were obtained, and seven of them were further verified by PCR amplification. RT-PCR detection showed the expression level of the gene OsRhoGDI2 were higher than that of control, suggest that the gene over-expressed in transgenic rice. The phenotype analysis showed that the tiller numbers and total rice grain numbers were similar between transgenic rice and control, but the pollination grain number and maturing rate of transgenic rice were decreased significantly compared with that of control. The statistic analysis data showed the pollination grain number and maturing rate of the transformation rice was less than 10%, while the control was up to 96%, suggested that function of OsRhoGDI2 may related with rice fertility. In order the study the relationships between OsRhoGDI2 and OsRacD in rice fertility control, the RNA interference binary vector pART27-OsRhoGDI2 was constructed, help the further study on the effects of gene silencing of OsRhoGDI2 and OsRhoGDI2-OsRacD interaction in the growth and development of rice panicle, which participated in the process of rice fertility regulation.
引文
[1] Mchughen A, Smyth S. US regulatory system for genetically modified genetically modified organism (GMO), rDNA or transgenic crop cultivars[J]. Plant Biotechnol J,2008,6(1):2~12.
    [2] Tabata S, Kaneko T, Nakamura Y, et al. Sequence and analysis of chromosome 5 of the plantArabidopsis thaliana[J]. Nature,2000,408(6814):823~826.
    [3] Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)[J]. Science,2002,296(5565):92~100.
    [4] Mariani C,Gossele V, Beuckeleer M D, et al. A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants[J].Nature, 1992,357~387.
    [5] Wang Y, Zha X J, Zhang S Y, et al. Down-regulation of the OsPDCD5 gene induced photoperiod-sensitive male sterility in rice[J]. Plant Science, 2010,178:221~228.
    [6] Kentaro I, Keita T, Shin W, et al. Stable male sterility induced by the expression of mutated melon[J]. Plant Science,2006,171:355~359.
    [7] Bandyopadhyay A, Datta K, Zhang J, et al. Enhanced photosynthesis rate in genetically engineered indica rice[J]. Plant Science, 2007,172: 1204~1209.
    [8] Zhang B J, Chen Q Z, Hua C, et al. Response of Gas Exchange and Water Use Efficiency to Light Intensity and Temperature in Transgenic Rice Expressing PEPC and PPDK Genes[J]. Agricultural Sciences in China,2009, 8(11): 1312~1320.
    [9] Yu J, Peng P, Zhang X, et al. Seed-specific expression of the lysine-rich protein gene sb401 significantly increases both lysine and total protein content in maize seeds[J]. Food Nutr Bull,2005,26(4):427~431.
    [10] Wakasa K, Hasegawa H, Nemoto H, et al. High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile[J]. J Exp Bot,2006,57(12):3069~3078.
    [11] Moemen S. Hanafy, Shaikh M, et al. Accumulation of free tryptophan in azuki bean (Vigna angularis) induced by expression of a gene (OASA1D) for a modified a-subunit of rice anthranilate synthase[J]. Plant Science, 2006,171:670~676.
    [12] Heng Xiu Y, Qiao Quan L, Li X, et al. Breeding and Field Performance of Novel Soft and Waxy Transgenic Rice Lines Without Selectable Marker[J]. Acta Agron Sin,2009,35(6): 967~973.
    [13] Krishnamurthy K, Giroux M J. Expression of wheat puroindoline genes in transgenic rice enhances gain softness[J]. Nat Biotech,2001,19:162~166.
    [14] Weselake RJ, Shah S, Tang M, et al. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content[J]. J Exp Bot, 2008;59:3543~9.
    [15] Xu J, Francis T, Mietkiewska E, et al. Cloning and characterization of an acyl-CoA-dependentdiacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content[J]. Plant Biotech J, 2008,6:799~818.
    [16] Hong xia Y, Mei L, Ze jian G, et al. Evaluation and Application of Two High-Iron Transgenic Rice Lines Expressing a Pea Ferritin Gene[J]. Rice Science,2008,15(1): 51~56.
    [17] Lucca P, Hurrell R, Potrykus I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grain[J]. Appl Genet,2001,102:392~397.
    [18] Chen Z, Young T E, Ling J, et al. Increasing vitamin C content of plants through enhanced ascorbate recycling[J]. Proceedings of the National Academy of Sciences of the United States of America ,2003,100:3525~3530.
    [19] Van Eenennaam A L, Lincoln K, Durrett T P, et al. Engineering vitamin E content: from Arabidopsis mutant to soy oil[J]. Plant Cell,2003,15(12):3007~3019.
    [20] Riaz N, Husnain T, Fatima T, et al. Development of Indica Basmati rice harboring two insecticidal genes for sustainable resistance against lepidopteran insects[J]. South African Journal of Botany,2006,72:217~223.
    [21] Yong bin Q, Sheng hai Y, Yan ting L, et al. Development of Marker-Free Transgenic Cry1Ab Rice with Lepidopteran Pest Resistance by Agrobacterium Mixture-Mediated Co-transformation[J]. Rice Science,2009,16(3):181~186.
    [22] Duan X, Li X, Xue Q, et al. Transgenic rice harboring an introduced potato proteinase inhibitorII gene are insect resistant[J].Nat Biotech,1996,14:494~498.
    [23] Lauge R, Joosten M H, Haanstra J P, et al. Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen[J]. Proc Natl Acad Sci USA,1998,95(15):9014~9018.
    [24] Buschges R, Hollricher K, Panstruga R, et al. The barley Mlo gene: a novel control element of plant pathogen resistance[J]. Cell,1997,88(5):695~705.
    [25] Mesbah L A, Kneppers T J, Takken F L, et al. Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum)[J]. Mol Gen Genet,1999,261(1):50~57.
    [26] Chandra Babu R, Jing xian Z, et al. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection[J]. Plant Science 2004, 166:855~862.
    [27] Huang J, Sun S J, Xu D Q, et al. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245[J]. Biochem Biophys Res Commun,2009,389(3):556~561.
    [28] Holmstrom K O, Welin B, Mandal A, et al. Production of the Esche richia coli betain aldchyde dehydrogenase, an enzyme reguired for the synthesis of the osmoprotectant glycine betain, in transgenic[J]. Plant J,1994,6(5):749~758.
    [29] Romero C, Belles J M, Vaya J L, et al. Expression of the yeast trehalose-6-phosphate syntase gene in transgenic phenotypes include drought tolerance[J]. Planta,1997,201:293~297.
    [30] Feng yun Z, Shan li G, Hui Z, et al. Expression of yeast SOD2 in transgenic rice results in increased salt tolerance[J]. Plant Science , 2006, 170:216~224.
    [31] Lilius G, Holmberg N, BuO W L.Enhanced NaCL stress tolerance in transgenic tobacoo expressing bacterial choline dehydrogenase[J]. Biotech,1996,14:177~180.
    [32] Hightower R,Cathy B. Expression of antieeeze proteins in transgenic plants[J]. Planl Mol Bio1,1991,17(5):1013~1021.
    [33] Fan Y, Liu B, Wang H, et al. Cloning of an antifreeze protein gene from carrot and its influence on cold tolerance in transgenic tobacco plants[J]. Plant Cell Rep,2002,21(4):296~301.
    [34] Kochetov A V, Titov S E, Kolodyazhnaya Y S, et a1. Tobacco transformants bearing antisense suppressor of pro1ine dehydrogenase gene, are characterized by higher Proline Content and Cytoplasm Osmotic Pressure[J]. Russian Journal of Genetics,2004,40(2):216~218.
    [35] Dian-jun X, Xiang-yang H, Yu Z, et al. Over-Expression of ICE1 Gene in Transgenic Rice Improves Cold Tolerance[J]. Rice Science,2008,15(3):173~178.
    [36] Lacroix B, Tzfira T, Vainstein A, et al. A case of promiscuity: Agrobacterium's endless hunt for new partners[J]. Trends Genet,2006,22(1):29~37.
    [37] Tzvi T, Vitaly C. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology[J]. Current Opinion in Biotechnology, 2006, 17:147~154.
    [38] Ward E, Barnes W. VirD2 protein of Agrobacteriumtumefaciens very tightly linked to the 5’end of T-strand DNA[J]. Science 1988,242(4880):927~930.
    [39] Filichkin S A, Gelvin S B. Formation of a putative relaxation intermediate during T-DNA processing directed by the Agrobacterium tumefaciens VirD1,D2 endonuclease[J]. Mol Microbiol, 1993,8(5): 915~926.
    [40] Tzfira T, Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology[J]. Curr Opin Biotechnol,2006,17(2):147~154.
    [41] Nakagawa T, Suzuki T, Murata S, et al. Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants[J]. Biosci Biotechnol Biochem,2007,71(8):2095~2100.
    [42] Horsch R B, et al. A simple and general method for transferring genes into plants[J]. Science,1985,227(4691):1229~1231.
    [43] Escudero J, Hohn B. Transfer and Integration of T-DNA without Cell Injury in the Host Plant.[J]. Plant Cell,1997,9(12):2135~2142.
    [44] Hansen G, Wright M S. Recent advances in the transformation of plants[J]. Trends Plant Sci,1999,4(6):226~231.
    [45] Grayburn W S, Vick B A. Transformation of sunflower (helianthus annuus L) following wounding with glass beads[J]. Plant Cell Rep,1995,14:285~289.
    [46] Stockes T.Gene transformation gets accupuncture[J]. Trends Plant Sci,2001,6(6):224
    [47] Christow P. Stratagies for variety-independent genetic transformation of important cereals[J]. Euphytica,1995,85:13~17.
    [48] Grimsley N, Hohn T, Davies J W, et al. Agrobacterium-mediated delivery of infections maize steak virus into maize plants[J]. Nature,1987,325:177~179.
    [49] Cheng M, Fry J E, Pang S Z, et al. Genetic transformation of wheat mediated by Agrobacteriumtumefaciens[J]. Plant Physiol,1997,115:971~980.
    [50] Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. Plant J,1994,6(2):271~282.
    [51] Kenjirou O. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.) [J]. Plant Science ,2009,176:522~527.
    [52] Sanford J C, Klein T M, Wolf E D, et al. Delivery of substances into cells and tissues using a particle bombardment process[J]. J Part Sci Technol,1987,5:27~37.
    [53] Klein T M, Wolf E D, Wu R, et al. High-velocity microprojectiles for deliverying nuclic acid into living cells[J]. Nature,1987,327:70~73.
    [54] McElory D, Brettell R I S. Foreign gene expression of in transgenic cereal[J]. Trends in Biotech,1994,12:62~67.
    [55] Fromm M E, Morrish F, Armstrong C, et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants[J]. Biotechnology (NY),1990,8(9):833~839.
    [56] Christou P, Mccabe D E, Swain W F. Stable Transformation of Soybean Callus by DNA-Coated Gold Particles[J]. Plant Physiol,1988,87(3):671~674.
    [57] Haynes J R, Mccabe D E, Swain W F, et al. Particle-mediated nucleic acid immunization[J]. J Biotechnol,1996,44(1-3):37~42.
    [58] Koziel M G, Belandi G L, et al. Field performance of elite transgeulc maize plants expressing an insecticidal protein derived from Bacillus thuringiensis[J]. Bio/Technology, 1993,11:194~200.
    [59] Reggiardo M I, Arana J L, et al. Transient transformation of maize tissues by microprojectile bombardment[J]. Plant Sci,1991,75(2):237~243.
    [60] Twell D, Klein T M, Fromm M E, et al. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment[J]. Plant Physiol,1989,91(4):1270~1274.
    [61] Koziel G M, Beland G L, Bowman C, et al. Field performance of elite transgenic maize plants expressing an insecti-cidal protein derived from Bacillus thuringiensis[J]. Bio Technl,1993,11:194~200.
    [62] Wan Y, Lemaux P G. Generation of Large Numbers of Independently Transformed Fertile Barley Plants[J]. Plant Physiol,1994,104(1):37~48.
    [63] Zhou H, Arrowsmith J W, Fromn M E, et al. Glyphosate-tolerant CP4 and GOX gene serve as a selectable marker in wheat transformation[J]. Plant Cell Rep,1993,12:159~163.
    [64] Hadi M Z, McMullen M D, Finer J J, et al. Transformation of 12 different plasmids into soybean via particle bombardment[J]. Plant Cell Rep,1996,15(7):500~505.
    [65] Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research.[J]. Acta Physiol Scand,2003,177(4):437~447.
    [66] Kohli A, Leech M, Vain P, et al. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots.[J]. Proc Natl Acad Sci USA,1998,95(12):7203~7208.
    [67] Morikawa H, Lida A, Matsui C,et al.Gege transfer into intact plant cells by electroinjection thtough cell walls and membrances[J].Gene,1986,41(1):121~124.
    [68] Newell C A. Plant transformation technology. Developments and applications[J]. MolBiotechnol,2000,16(1):53~65.
    [69] Russell D A, Fromm M E. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice[J]. Transgenic Res,1997,6(2):157~168
    [70] Dresselhaus T, Cordts S, Heuer S, et al. Novel ribosomal genes from maize are differentially expressed in the zygotic and somatic cell cycles[J]. Mol Gen Genet,1999,261(2):416~427.
    [71] Paszkowski J, Shillito R D, Saul M, et al. Direct gene transfer to plants.[J]. EMBO J,1984,3(12):2717~2722.
    [72] Zhu Z, Sun B, Liu C, et al. Transformation of wheat protoplasts mediated by cationic liposome and regeneration of transgenic plantlets[J]. Chin J Biotechnol,1993,9(4):257~261.
    [73] Dekeyser R A, Claes B, De Rycke R, et al. Transient Gene Expression in Intact and Organized Rice Tissues[J]. Plant Cell,1990,2(7):591~602.
    [74] Zhou G Y, Weng J, Zheng Y,et al. Introductin of exogenous DNA into cotton embryos[J]. Meth Enzymol,1983,101:433~481.
    [75] Luo Z, Wu R. A simple method for the transformation of rice via the pollen tube Pathway[J]. Plant Mol Biol Report,1988;6(3):165~74.
    [76] Mu H M, Liu S J, Zhou W J, et al. Transformation of wheat with insecticide gene of arrowhead proteinase inhibitor by pollen tube pathway and analysis of transgenic plants [J]. Yi Chuan Xue Bao,1999,26(6):634~642.
    [77] Hu C Y,Wang L. In planta soybean transformation technologies developed in China: procedure,confirmation and field performance[J]. In Vitro Cell Dev Biol Plant 1999;35(5):417~20.
    [78] Song X, Gu Y, Qin G, et al. Application of a transformation method via the pollen-tube pathway in agriculture molecular breeding[J]. Sci J 2007;4(1):77~9.
    [79] Liu L, Deng Y X, Liang Y, et al. Increased oral AUC of baicalin in streptozotocin-induced diabetic rats due to the increased activity of intestinal beta-glucuronidase.[J]. Planta Med,2010,76(1):70~75
    [80] Czajkowski R, De Boer W J, Van Veen J A, et al. Downward Vascular Translocation of a Green Fluorescent Protein-Tagged Strain of Dickeya sp. (Biovar 3) from Stem and Leaf Inoculation Sites on Potato[J]. Phytopathology,2010,100(11):1128~1137.
    [81] Tavare J M, Fletcher L M, Welsh G I. Using green fluorescent protein to study intracellular signalling[J]. J Endocrinol,2001,170(2):297~306
    [82] Gambhir S S, Barrio J R, Herschman H R, et al. Assays for noninvasive imaging of reporter gene expression[J]. Nucl Med Biol,1999,26(5):481~490.
    [83] Matsuoka T, Kuribara H, Takubo K, et al. Detection of ecombinant DNA segments introduced to genetically modified maize [J]. Journal of Agricultural and Food Chemistry, 2002,50: 2100 ~2109.
    [84] Delano James, Anna-Mary Schmidt, Erika Wall, et. Reliable Detection and denification of Genetically Modified Maize, Soybean, and Canola by Multiplex PCR Analysis [J]. Agric. Food Chen, 2003, 51: 5829 ~5832.
    [85] Iglesias V A, Moscone E A, Papp I, et al. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco[J]. Plant Cell,1997,9(8):1251~1264.
    [86] Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans[J].Plant Cell,1990,2(4):279~289.
    [87] Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences.[J]. Mol Microbiol,1992,6(22):3343~3353.
    [88] Guo S, Kemphues K J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed.[J]. Cell,1995,81(4):611~620.
    [89] Marx J. Interfering with gene expression[J]. Science,2000,288(5470):1370~1372.
    [90] Mello C C, Jr Conte D. Revealing the world of RNA interference.[J]. Nature, 2004( 431): 338-342.
    [91] Lu, R., et al. , High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance[J]. EMBO J, 2003. 22(21): 5690~5699
    [92] Byzova, M, et al. , Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner[J]. Planta, 2004. 218(3):79~387.
    [93] Miki D, Itoh R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice[J]. Plant Physiol, 2005, 138(4): 1903~1913
    [94] Etienne-Manneville S, Hall A. Rho GTPases in cell biology[J]. Nature,2002,420(6916): 629~635.
    [95] Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins[J]. Physiol Rev. 2001,81(1): 153~208.
    [96] Li H, Shen J J, Zheng Z L, et al. The Rop GTPase switch controls multiple developmental processes in Arabidopsis[J]. Plant Physiol. 2001,126(2):670-684.
    [97] Jones M A, Shen J J, Fu Y, et al. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth[J]. Plant Cell, 2002,14(4):763~776.
    [98] Fu Y, Li H, Yang Z. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis[J]. Plant Cell,2002, 14(4): 777-794.
    [99] Deborah P D, Julie R, AndrawisA, et al. Genes encoding small GTP- binding analogous to mammalian rac are preferentially expressed in developing cotton fibers[J] . Mol Geb Genet.1995,248 (1) : 43~51.
    [100] Trotochaud A E, Hao T, Wu G, et al. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein[J]. Plant Cell,1999,11(3):393~406.
    [101] Yang Z . Cell Polarity Signaling in Arabidopsis[J]. Annu Rev Cell Dev Biol, 2008,24 (1): 551~ 575.
    [102]梁卫红,刘肖飞,毕佳佳,吕超慧,彭威风.水稻OsRacD蛋白G15V、T20N点突变对其细胞定位的影响及其与靶蛋白的相互作用[J].中国生物化学与分子生物学报,2009,25(9): 828~833.
    [103] Liang W H, Tang C R, Wu N H. Cloning and characterization of a new actin gene from Oryza sativa L[J]. Progress in natural science, 2004,14(10):867~874.
    [104]梁卫红,唐朝荣,吴乃虎.两种水稻GDP解离抑制蛋白基因的分离及特征分析[J].中国生物化学与分子生物学报, 2004,12(6):785~791.
    [105]梁卫红,唐朝荣,吴乃虎.两种水稻GDP解离抑制蛋白基因的分离及特征分析[J].中国生物化学与分子生物学报,2004,12(6):785~791.
    [106] Seibel N M, Eljouni J, Nalaskowski M M, Hampe W. Nuclear localization of enhanced green fluorescent protein homomultimers[J]. Analytical Biochemistry , 2007, 368: 95~ 99.
    [107] Ye J R, Huang M J, Wu N H. Fertility analysis of the Arabidopsis transformed with antisense rice osRACDgene[J].Prog Nat Sci,2003,13(3):424~428.
    [108] Ye J R, Huang M J, Zhang S H, et al. The correlation analysis of the expression of OsRacD and rice photoperiod fertility transition[J].Prog Nat Sci,2004, 14(2):166~172.
    [109] Der M C, Bokoch G M. GDIs: Central regulatory molecules in Rho GTPase activation[J]. Trends Cell Bio,2005,15(7):356~363.
    [110] Dransart E, Olofesson B, Cherfils J. RhoGDIs revisited : novel roles in Rho regulation[J]. Traffic, 2005,6(11):957~966.
    [111]张利娟,梁卫红,刘悦霞,刘肖飞,侯成千,毕佳佳.两种水稻OsRhoGDIs基因启动子的克隆及分析[J].中国农业科学, 2008, 41(10): 2916~2922.
    [112] Mi Z Y, Wang S S, Wu N H. Isolation of OsRacD gene encoding a small GTP-binding protein from rice[J]. Chin Sci Bull, 2002, 47(20): 1673~1679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700