p-ZnO薄膜和ZnO发光器件的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种直接带隙宽禁带半导体材料,室温下禁带宽度为3.37 eV、激子束缚能高达60 meV,这使ZnO材料有望在短波长高效率光电器件领域内发挥重大作用。自从1996年日本和香港的科学家首次实现了ZnO薄膜的室温下光泵浦紫外激射以来,ZnO材料已经成为光电子领域中的研究热点。目前,ZnO发光器件的效率较低,ZnO同质结发光二极管(LED)、激光二极管(LD)仍未达到实用化的水平,其中一个重要原因是由于稳定、高质量、可重复的p-ZnO薄膜的制备尚有一定难度。本论文针对以上这个热点也是难点的问题,在p-ZnO掺杂和ZnO同质结LED制备方面开展了一系列研究工作。利用金属有机物化学气相沉积(MOCVD)技术,在多种衬底(GaAs、Si和蓝宝石)上制备了高质量的p-ZnO薄膜和ZnO同质结LED。利用多种表征手段对ZnO薄膜和器件进行了深入的研究。具体研究内容如下:
     首次通过扩散掺杂方法,在p-GaAs衬底上制备出具有紫外电致发光特性的ZnO同质结LED。首先通过优化实验条件的方法在GaAs衬底上制备出高质量ZnO薄膜,然后将ZnO薄膜在适当温度下进行退火处理,使GaAs衬底中的As扩散到ZnO薄膜中从而制备出As掺杂的p-ZnO(p-ZnO:As)薄膜,p-ZnO:As的空穴浓度最高可达-10~(18)/cm~3。在p-ZnO:As薄膜的基础上制备出了具有n-ZnO/p-ZnO:As/p-GaAs结构的ZnO同质结LED。该器件表现出了优异的整流特性,室温下可观测到明亮的电致发光。该器件电致发光谱中呈现出一个位于3.2eV附近的紫外发光峰和一个位于2.5eV附近的可见发光峰。相比于其他掺杂技术,扩散掺杂方法简单易行,而且p-GaAs衬底而具有良好的导电性和解理性,这为ZnO光电器件的制备提供了极大方便。
     利用等离子辅助MOCVD设备将笑气(N_2O)离化作为N源制备出N掺杂的p-ZnO(p-ZnO:N)薄膜,并在此基础上制备出具有n-ZnO/p-ZnO:N/Si结构的ZnO同质结LED。该器件表现出良好了p-n结整流特性,其电致发光光谱中呈现出两个发光峰,一个是位于3.14eV附近的较弱的紫外发光峰,另一个是位于2.5eV附近的强烈的可见发光峰。在众多的衬底材料中Si具有明显的优势,比如成本低廉、易于解理、具有很好的电导和热导性能、适合大规模集成工艺等特点,因此在Si衬底上制备ZnO同质结LED有着广阔的应用前景。
     原创性地开发了N_2O等离子保护退火工艺,实现了高质量p-ZnO:N薄膜的制备。首先利用氨气(NH_3)作为N掺杂源制备出ZnO:N薄膜,然后将ZnO:N薄膜进行高温退火处理。为了在一定程度上抑制高温下ZnO:N薄膜中O和N的分解,采用经射频发生器离化的N_2O作为ZnO:N薄膜的退火保护气体。通过这个技术制备出了质量较高的p型ZnO:N薄膜,其空穴浓度达到1.29×10~(17)/cm~3。在此基础上制备出以蓝宝石为衬底的ZnO同质结LED,该器件表现出了优异的p-n结整流特性,其电致发光谱中出现了一个位于3.2eV附近的紫外发光峰和一个位于2.4eV附近的可见发光峰。值得注意的是,在大部分关于蓝宝石衬底上制备的ZnO同质结LED电致发光的报道中,电致发光谱中可见光的发射往往占据绝对优势,然而在我们的结果中紫外光的发射强度几乎和可见光的发射强度相同。蓝宝石是目前工业中短波长发光器件的主要衬底,MOCVD又是规模制备发光器件的主要设备,所以利用MOCVD设备在蓝宝石衬底上制备ZnO同质结LED有着很强的市场潜力。
     利用强酸弱碱盐氯化铵(NH_4Cl)的水溶液成功地实现了ZnO薄膜的可控湿法刻蚀,并且研究了刻蚀对ZnO薄膜形貌和光学性质的影响。实验中利用不同浓度的NH_4Cl的水溶液,对ZnO薄膜进行了湿法刻蚀。结果显示,刻蚀的深度与刻蚀的时间成线性关系,刻蚀的速率与溶液的浓度也成线性关系,这就意味着可以通过控制刻蚀时间和溶液浓度来控制刻蚀深度和刻蚀速率,从而实现ZnO薄膜的可控刻蚀。湿法刻蚀技术简单易行、成本低廉。可控湿法刻蚀的实现为ZnO光电器件制备奠定了良好的工艺基础。
As anⅡ-Ⅵgroup semiconductor,ZnO has attracted great interest for its wide band gap (3.37eV) and relatively large exciton binding energy(60meV) at room temperature(RT).It has been regarded as one of the most promising candidates for the next generation of ultraviolet(UV) light-emitting diode(LED) and lasing diode(LD) operating at high temperatures and in harsh environments.Since the first report of realization of lasing emission at RT by the scientists at 1996,ZnO has become a focus in the field of optoelectronic technology.However,the realization of stable and reproducible p-type ZnO has long been the bottleneck of ZnO-base optoelectronic devices.Many researchers have managed to dope p-ZnO and fabricate ZnO based homojunction LED,while the report on effective ZnO light emitting devices is still limited.It is necessary to improve the qualities of ZnO light emitting devices to explore the advantages of ZnO material.
     In this thesis,many research works are conducted to fabricae high quality native ZnO, p-ZnO film and ZnO based short wavelength LED.Metal-organic Chemical Vapor deposition (MOCVD) technique is used to deposite native and p-ZnO film on different substrates,such as GaAs,Si,and sapphire.Furthermore,the properties of ZnO LED are investigated.
     ZnO homojunction light-emitting diode with n-ZnO/p-ZnO:As/GaAs structure is produced by MOCVD on p-GaAs substrate,p-type ZnO:As film is obtained out of thermal diffusion of arsenic from GaAs substrate with subsequent thermal annealing.The hole concentration reached 10~(18)/cm~3.Desirable rectifying behavior is observed from the current-voltage curve of the ZnO p-n homojunction.Furthermore,two distinct electroluminescence bands centered at 3.2eV and 2.5 eV are observed from the junction under forward bias at room temperature.Among many dopoing methods,diffusion doping technique is comparatively easy to conduct.In addition,p-GaAs wafer has several fundamental advantages for fabricating ZnO-based LED and LD,such as its conductivity and cleavability.
     ZnO homojunction LED is fabricated on Si(100) substrate by plasma assisted MOCVD. The p-type ZnO:N layer is formed using radical N_2O as the nitrogen precursor.The N_2O is activated by a FR souce.The device exhibits desirable rectifying behaviour with a turn-on voltage of 3.3V and a reverse breakdown voltage higher than 6 V.Distinct electroluminescence emissions centred at 3.14eV and 2.5eV are detected from this device at forward current higher than 20mA at room temperature.Among many substrates,Si is especially attractive due to the well-known advantages such as low cost,conductive,easy to cleave and wellmatured technology,as well as its potential application in Si-based optoelectronic integrated circuits.
     A novel annealing technique to realize effective p-type ZnO:N has been developed.The reproducible p-type ZnO:N layer is formed with NH_3 as N doping source followed by thermal annealing in N_2O plasma protective ambient.Based on the p-ZnO:N film,ZnO homojunction LED with is fabricated on c-plane sapphire substrate.The device exhibited desirable rectifying behavior.Distinct electroluminescence emission centered at 3.2eV and 2.4eV are detected from this device.The ultraviolet emission is comparable to the visible emission in the electroluminescence spectrum.Furthermore,the realization of ultraviolet electroluminescence from ZnO LED fabricated by MOCVD technique paves the way for future industrialization.
     ZnO film is deposited on c-plane sapphire substrate.The etching treatments for as-grown ZnO film is performed in NH_4Cl aqueous solution as a function of NH_4Cl concentration and etching time.It is found that NH_4Cl solution is an appropriate candidate for ZnO wet etching because of its controllable and moderate etching rate.The influence of etching treatments on the morphology and optical properties of ZnO film has also been investigated.Wet etching technique has many fundamental advantages in fabricating semiconductor devices,such as its low cost and simpleness.
引文
[1]Nishizawa J-i,Itoh K,Okuno Y,et al.Blue light emission from ZnSe p-n junctions [J].Journal of Applied Physics,1985,57 (6):2210-2216.
    [2]Albert D,Nurnberger J,Hock V,et al.Influence of p-type doping on the degradation of ZnSe laser diodes [J].Applied Physics Letters,1999,74 (14):1957-1959.
    [3]Morkoc H,Strite S,Gao G B,et al.Large-band-gap SiC,Ⅲ-Ⅴ nitride,and Ⅱ-ⅥZnSe-based semiconductor device technologies [J].Journal of Applied Physics,1994,76 (3):1363-1398.
    [4]Pankove J I GaN:from fundamentals to applications [J].Materials Science and Engineering B,1999,61-62:305-309.
    [5]Zu P,Tang Z K,Wong G K L,et al.Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J].Solid State Communications,1997,103 (8):459-463.
    [6]Bagnall D M,Chen Y F,Zhu Z,et al.Optically pumped lasing of ZnO at room temperature [J].Applied Physics Letters,1997,70 (17):2230-2232.
    [7]Service R F Materials Science:Will UV Lasers Beat the Blues? [J].Science,1997,276 (5314):895.
    [8]Bagnall D M,Chen Y F,Zhu Z,et al.High temperature excitonic stimulated emission from ZnO epitaxial layers [J].Applied Physics Letters,1998,73 (8):1038-1040.
    [9]Tang Z K,Wong G K L,Yu P,et al.Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J].Applied Physics Letters,1998,72(25):3270-3272.
    [10]Tsukazaki A,Ohtomo A,Onuma T,et al.Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J].Nature Materials,2005,4(1):42-46.
    [11] Meyer B K,Alves H,Hofmann D M,et al.Bound exciton and donor-acceptor pair recombinations in ZnO [J],Physica Status Solidi B-Basic Research,2004,241(2):231-260.
    [12]Reynolds D C,Look D C,Jogai B Optically pumped ultraviolet lasing from ZnO [J].Solid State Communications,1996,99 (12):873-875.
    [13]Ozgur U,Alivov Y I,Liu C,et al.A comprehensive review of ZnO materials and devices [J].Journal of Applied Physics,2005,98 (4):041301(1-103).
    [14]Look D C,Hemsky J W,Sizelove J R Residual native shallow donor in ZnO [J].Physical Review Letters,1999,82 (12):2552-2555.
    [15]Gregory W T,Jules L R,Tohoms O R Zinc self-diffusion,electrical properties,and defect structure of undoped,single crystal zinc oxide[J].Journal of Applied Physics,2000,87(2):117-123.
    [16]Oba F,Nishitani S R,Isotani S,et al.Energetics of native defects in ZnO[J].Journal of Applied Physics,2001,90(2):824-828.
    [17]Van de Walle C G Hydrogen as a Cause of Doping in Zinc Oxide[J].Physical Review Letters,2000,85(5):1012(1-4).
    [18]Hofmann D M,Hofstaetter A,Leiter F,et al.Hydrogen:A Relevant Shallow Donor in Zinc Oxide[J].Physical Review Letters,2002,88(4):045504(1-4).
    [19]Vanheusden K,Seager C H,Warren W L,et al.Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J].Applied Physics Letters,1996,68(3):403-405.
    [20]Guo B,Qiu Z R,Wong K S Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on(001) silicon[J].Applied Physics Letters,2003,82(14):2290-2292.
    [21]Egelhaaf H J,Oelkrug D Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO[J].Journal of Crystal Growth,1996,161(1-4):190-194.
    [22]Kohan A F,Ceder G,Morgan D,et al.First-principles study of native point defects in ZnO[J].Physical Review B,2000,61(22):15019-15027.
    [23]Leiter F H,Alves H R,Hofstaetter A,et al.The oxygen vacancy as the origin of a green emission in undoped ZnO[J].Physica Status Solidi B-Basic Research,2001,226(1):R4-R5.
    [24]Wu X L,Siu G G,Fu C L.et al.Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films[J].Applied Physics Letters,2001,78(16):2285-2287.
    [25]Cao H,Zhao Y G,Ho S T,et al.Random laser action in semiconductor powder[J].Physical Review Letters.1999,82(11):2278-2281.
    [26]Cao H,Zhao Y G,Ong H C,et al.Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films[J].Applied Physics Letters,1998,73(25):3656-3658.
    [27]王兆阳.ZnO和ZnO/MgO复合层薄膜的PLD法制备及其特性研究[D].大连:大连理工大学物理系,2006.
    [28]Ohtomo A.Tamura K,Kawasaki M.et al.Room-temperature stimulated emission of excitons in ZnO/(Mg,Zn)O superlattices[J].Applied Physics Letters,2000,77(14):2204-2206.
    [29]Foster N F,Rozgonyi G A ZINC OXIDE FILM TRANSDUCERS[J].Applied Physics Letters,1966,8(9):221-223.
    [30]Ide T,Shimizu M,Nakajima A,et al.Gate-length dependence of DC characteristics in submicron-gate AlGaN/GaN high electron mobility transistors[J].Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2007,46(4B):2334-2337.
    [31]Nakahata H,Hachigo A,Fuji S,et al.Equivalent circuit parameters of surface-acoustic-wave interdigital transducers for ZnO/diamond and SiO2/ZnO/diamond structures[J].Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2002,41(5B):3489-3493.
    [32]韦敏,邓宏,王培利等.ZnO基紫外探测器的研究进展与关键技术[J].材料导报,2007,21(12):1-3.
    [33]Fabricius H,Skettrup T,Bisgaard P Ultraviolet detectors in thin sputtered ZnO films[J].Applied Optics,1986,25(16):2764-2767.
    [34]Liang S,Sheng H,Liu Y,et al.ZnO Schottky ultraviolet photodetectors[J].Journal of Crystal Growth,2001,225(2-4):110-113.
    [35]叶志镇,张银珠.陈汉鸿等.ZnO光电导紫外探测器的制备和特性研究[J].电子学报,2003,31(11)1605-1607.
    [36]Xu Z-Q,Deng H,Xie J,et al.Ultraviolet photoconductive detector based on Al doped ZnO films prepared by sol-gel method[J].Applied Surface Science,2006,253(2):476-479.
    [37]Hu J,Gordon R G Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition[J].Journal of Applied Physics,1992,71(2):880-890.
    [38]Xu X L,Lau S P.Chen J S,et al.Dependence of electrical and optical properties of ZnO films on substrate temperature[J].Materials Science in Semiconductor Processing,2001.4(6):617-620.
    [39]Yi L.Hou Y,Zhao H,et al.The photo- and electro-luminescence properties of ZnO:Zn thin film[J].Displays,2000,21(4):147-149.
    [40]Alivov Y I,Van Nostrand J E,Look D C,et al.Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes[J].Applied Physics Letters.2003,83(14):2943-2945.
    [41]Yu Q X,Xu B,Wu Q H,et al.Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode[J].Applied Physics Letters,2003,83(23):4713-4715.
    [42]Dayan N J,Sainkar S R,Karekar R N,et al.Formulation and characterization of ZnO:Sb thick-film gas sensors[J].Thin Solid Films,1998,325(1-2):254-258.
    [43]马艳.znO薄膜的MOVPE法生长、掺杂及X光取向研究[D].长春:吉林大学电子科学与工程学院,2004.
    [44]Nomura K,Ohta H,Ueda K,et al.Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor[J].Science,2003,300(5623):1269-1272.
    [45]Makino T,Chia C H,Tuan N T,et al.Radiative and nonradiative recombination processes in lattice-matched(Cd,Zn)O/(Mg,Zn)O multiquantum wells[J].Applied Physics Letters,2000,77(11):1632-1634.
    [46]Ozgur U,Alivov Y I,Liu C,et al.A comprehensive review of ZnO materials and devices[J].Journal of Applied Physics,2005,98(4):041301-041103.
    [47]Ataev B M,Bagamadova A M,Djabrailov A M,et al.Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD[J].Thin Solid Films.1995,260(1):19-20.
    [48]Assuncao V,Fortunato E,Marques A,et al.Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f.sputtering at room temperature[J].Thin Solid Films,2003,427(1-2):401-405.
    [49]Liu Z F,Shan F K,Li Y X,et al.Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition[J].Journal of Crystal Growth,2003,259(1-2):130-136.
    [50]Ko H J,Chen Y F,Hong S K,et al.Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy[J].Applied Physics Letters,2000,77(23):3761-3763.
    [51]Myong S Y,Baik S J,Lee C H,et al.Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl_3(6H_2O) as new doping material[J].Japanese Journal of Applied Physics Part 2-Letters,1997,36(8B):L1078-L1081.
    [52]D.C.Look B C,Ya.I.Alivov,S.J.Park,The future of ZnO light emitters[J].physica status solidi(a),2004,201(10):2203-2212.
    [53]Yan Y,Al-Jassim M M,Wei S-H Doping of ZnO by group-IB elements[J].Applied Physics Letters,2006,89(18):181912-181913.
    [54]Fu Z X,Lin B X,Liao G H Photovoltaic Effect of ZnO/Si Heterostructure[J].Chinese Physics Letters,1999,16(10):753-755.
    [55]Garces N Y,Giles N C,Halliburton L E,et al.Production of nitrogen acceptors in ZnO by thermal annealing[J].Applied Physics Letters,2002,80(8):1334-1336.
    [56]周婷,叶志镇,赵炳辉等,NO和N_2O流量对ZnO薄膜p型导电性能的影响[J].无机材料学报,2005,20(04):954-958.
    [57]Kaminska E,Piotrowska A,Kossut J,et al.Transparent p-type ZnO films obtained by oxidation of sputter-deposited Zn3N2[J].Solid State Communications,2005,135(1-2):11-15.
    [58]Liang H W,Lu Y M,Shen D Z,et al.P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO[J].Physica Status Solidi a-Applications and Materials Science,2005,202(6):1060-1065.
    [59]Sun J C,Liang H W,Zhao J Z,et al.Ultraviolet electroluminescence from n-ZnO:Ga/p-ZnO:N homojunction device on sapphire substrate with p-type ZnO:N layer formed by annealing in N_2O plasma ambient[J].Chemical Physics Letters,2008,460(4-6):548-551.
    [60]Yang T,Bian J,Liang H,et al.High quality p-type ZnO films grown by low pressure plasma-assisted MOCVD with N_2O rf plasma doping source[J].Journal of Materials Processing Technology,2008,204(1-3):481-485.
    [61]Look D C,Reynolds D C,Litton C W,et al.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J].Applied Physics Letters,2002,81(10):1830-1832.
    [62]Ashrafi A B M A,Suemune I,Kumano H,et al.Nitrogen-doped p-type ZnO layers prepared with H2O vapor-assisted metalorganic molecular-beam epitaxy[J].Japanese Journal of Applied Physics Part 2-Letters,2002,41(11B):L1281 -L1284.
    [63]Ye Z Z,Lu J G,Chen H H,et al.Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering[J].Journal of Crystal Growth,2003,253(1-4):258-264.
    [64]Guo X L,Tabata H,Kawai T Epitaxial growth and optoelectronic properties of nitrogen-doped ZnO films on(11(2)over-bar-0) Al2O3 substrate[J].Journal of Crystal Growth,2002,237:544-547.
    [65]Aoki T,Hatanaka Y,Look D C ZnO diode fabricated by excimer-laser doping[J].Applied Physics Letters,2000,76(22):3257-3258.
    [66]Kim K-K,Kim H-S,Hwang D-K,et al.Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant[J].Applied Physics Letters,2003,83(1):63-65.
    [67]Lee W,Jeong M-C,Myoung J-M Optical characteristics of arsenic-doped ZnO nanowires[J].Applied Physics Letters,2004,85(25):6167-6169.
    [68]Ryu Y R,Lee T S,Leem J H,et al.Fabrication of homostructural ZnO p--n junctions and ohmic contacts to arsenic-doped p-type ZnO[J].Applied Physics Letters,2003,83(19):4032-4034.
    [69]Limpijumnong S,Zhang S B,Wei S-H,et al.Doping by Large-Size-Mismatched Impurities:The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide [J].Physical Review Letters,2004,92(15):155504(1-4).
    [70]Ryu Y R,Zhu S,Look D C,et al.Synthesis of p-type ZnO films[J].Journal of Crystal Growth,2000,216(1-4):330-334.
    [71]Xiu F X,Yang Z,Mandalapu L J,et al.High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy[J].Applied Physics Letters,2005,87(15):152101 - 152103.
    [72]Yamamoto T,Katayama-Yoshida H Solution using a codoping method to unipolarity for the fabrication of p-type ZnO[J].Japanese Journal of Applied Physics Part 2-Letters,1999,38(2B):L166-L169.
    [73]Joseph M,Tabata H,Kawai T p-type electrical conduction in ZnO thin films by Ga and N codoping[J].Japanese Journal of Applied Physics Part 2-Letters,1999,38(11A):L1205-L1207.
    [74]Ye Z-Z,Zhu-Ge F,Lu J-G,et al.Preparation of p-type ZnO films by Al+N-codoping method[J].Journal of Crystal Growth,2004,265(1-2):127-132.
    [75]Compaan A D,Gupta A,Lee S,et al.High efficiency,magnetron sputtered CdS/CdTe solar cells[J].Solar Energy,2004,77(6):815-822.
    [76]Zhang D K,Liu Y C,Liu Y L,et al.The electrical properties and the interfaces of Cu_2O/ZnO/ITO p-i-n heterojunction[J].Physica B:Condensed Matter,2004,351(1-2):178-183.
    [77]Ohta H,Orita M,Hirano M,et al.Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction,p-SrCu[sub 2]O[sub 2]and n-ZnO[J].Journal of Applied Physics.2001,89(10):5720-5725.
    [78]Alivov Y I,Kalinina E V,Cherenkov A E,et al.Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates[J].Applied Physics Letters,2003,83(23):4719-4721.
    [79]Guo X L,Choi J H,Tabata H,et al.Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode[J].Japanese Journal of Applied Physics Part 2-Letters,2001,40(3A):L177-L180.
    [80]Ryu Y R,Lee T S,Lubguban J A,et al.Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes[J].Applied Physics Letters,2006,88(24):241108(1-3).
    [81]Chu S,Olmedo M,Yang Z,et al.Electrically pumped ultraviolet ZnO diode lasers on Si[J].Applied Physics Letters,2008,93(18):181106(1-3).
    [82]叶志镇,徐伟中,曾昱嘉等,MOCVD法制备ZnO同质发光二极管[J].半导体学报,2005,26(11):2264-2266.
    [83]Jiao S J,Zhang Z Z,Lu Y M,et al.ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J].Applied Physics Letters,2006,88(3):031911(1-3).
    [84]Liu W,Gu S L,Ye J D,et al.Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique[J].Applied Physics Letters,2006,88(9):092101(1-3).
    [85]Du G T,Liu W F,Bian J M,et al.Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis[J].Applied Physics Letters,2006,89(5):052113(1-3).
    [86]董鑫.MgZnO薄膜材料的MOCVD法生长、退火及其发光器件研究[D].大连:大连理工大学物理系,2008.
    [87]黄胜涛.固体X射线学.北京:高等教育出版社,1985.
    [88]刘恩科,朱秉升,罗晋升等.半导体物理学[M].北京:国防工业出版社,2002.
    [89]陆家和,陈长彦.现代分析技术[M].北京:清华大学出版社,1995.
    [90]马金鑫,朱国凯.扫描电子显微镜入门[M].北京:科学出版社,1985.
    [91]朱慧超.采用MOCVD方法在Si和InP衬底上制备ZnO薄膜及其发光器件[D].长春:吉林大学电子科学与工程学院,2007.
    [92]华中一,罗维昂.表面分析[M].上海:复旦大学出版社,1989.
    [93]刘维峰.ZnO:Al透明导电膜和ZnO发光器件的制备及特性研究[D].大连:大连理工大学物理系,2006.
    [94]Hong S-K,Hanada T,Ko H-J,et al.Control of polarity of ZnO films grown by plasma-assisted molecular-beam epitaxy:Zn- and O-polar ZnO films on Ga-polar GaN templates[J].Applied Physics Letters,2000,77(22):3571-3573.
    [95]方容川.固体光谱学[M].合肥:中国科技大学出版社,2001.
    [96]Klingshirn C F.Semiconductor Optics.Berlin:Springer-Verlag,1997.
    [97]Huang Y,Seo H J,Feng Q,et al.Effects of trivalent rare-earth ions on spectral properties of PbWO4 crystals[J].Materials Science and Engineering B,2005,121(1-2):103-107.
    [98]Sun J C,Zhao J Z,Liang H W,et al.Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure[J].Applied Physics Letters,2007,90(12):121128(1-3).
    [99]Sun J C,Liang H W,Zhao J Z,et al.Annealing effects on electrical and optical properties of ZnO films deposited on GaAs by metal organic chemical vapor deposition [J].Applied Surface Science,2008,254(22):7482-7485.
    [100]Look D C,Renlund G M,Burgener R H,et al.As-doped p-type ZnO produced by an evaporation/sputtering process[J].Applied Physics Letters,2004,85(22):5269-5271.
    [101]Vaithianathan V,Lee B-T,Kim S S Preparation of As-doped p-type ZnO films using a Zn_3As_2/ZnO target with pulsed laser deposition[J].Applied Physics Letters,2005,86(6):062101(1-3).
    [102]Collaboration I,Wahl U,Rita E,et al.Direct Evidence for As as a Zn-Site Impurity in ZnO[J].Physical Review Letters,2005,95(21):215503(1-4).
    [103]Limpijumnong S,Smith M F,Zhang S B Characterization of As-doped,p-type ZnO by x-ray absorption near-edge structure spectroscopy:Theory[J].Applied Physics Letters,2006,89(22):222113(1-3).
    [104]Wang P,Chen N,Yin Z,et al.As-doped p-type ZnO films by sputtering and thermal diffusion process[J].Journal of Applied Physics,2006,100(4):043704(1-4).
    [105]Kang H S,Kim G H,Kim D L,et al.Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film[J].Applied Physics Letters,2006,89(18):181103(1-3).
    [106]Ryu Y R,Lubguban J A,Lee T S,et al.Excitonic ultraviolet lasing in ZnO-based light emitting devices[J].Applied Physics Letters,2007,90(13):131115(1-3).
    [107]Yuen C,Yu S F,Leong E S P,et al.Room temperature deposition of p-type arsenic doped ZnO polycrystalline films by laser-assist filtered cathodic vacuum arc technique [J].Journal of Applied Physics,2007,101(9):094905(1-7).
    [108]Bylander E G Surface effects on the low-energy cathodoluminescence of zinc oxide[J].Journal of Applied Physics,1978,49(3):1188-1195.
    [109]梁红伟.高质量氧化锌薄膜和低维结构的制备及研究[D].长春:中国科学院长春光机与物理研究所,2005.
    [110]Zhang S B,Wei S H,Zunger A Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J].Physical Review B,2001,63(7):075205(1-4).
    [111]Yuldashev S U,Panin G N,Choi S W,et al.Electrical and optical properties of ZnO films grown on GaAs substrates[J].Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2003,42(6A):3333-3336.
    [112]Reynolds D C,Look D C,Jogai B,et al.Polariton and free-exciton-like photoluminescence in ZnO[J].Applied Physics Letters,2001,79(23):3794-3796.
    [113]Hwang D-K,Kim H-S,Lim J-H,et al.Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering[J].Applied Physics Letters,2005,86(15):151917(1-3).
    [114]Lee W,Jeong M C,Myoung J M Optical characteristics of arsenic-doped ZnO nanowires[J].Applied Physics Letters,2004,85(25):6167-6169.
    [115]Ryu Y R,Lee T S,White H W Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition[J].Applied Physics Letters,2003,83(1):87-89.
    [116]Wang L J,Giles N C Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy[J].Journal of Applied Physics,2003,94(2):973-978.
    [117]Tsukazaki A,Kubota M,Ohtomo A,et al.Blue light-emitting diode based on ZnO[J].Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2005,44(20-23):L643-L645.
    [118]Chen P,Ma X,Yang D Ultraviolet electroluminescence from ZnO/p-Si heterojunctions[J].Journal of Applied Physics,2007,101(5):053103(1-4).
    [119]史光国,半导体发光二极管及固态照明[M].北京:科学出版社,2005.
    [120]Sun J C,Liang H W,Zhao J Z,et al.Realization of Ultraviolet Electroluminescence from ZnO Homojunction Fabricated on Silicon Substrate with p-Type ZnO:N Layer Formed by Radical N_2O Doping[J].Chinese Physics Letters,2008,25(12):4345-4347.
    [121]Sun J C,Bian J M,Liang H W,et al.Realization of controllable etching for ZnO film by NH_4Cl aqueous solution and its influence on optical and electrical properties[J].Applied Surface Science,2007,253(11):5161-5165.
    [122]Kaidashev E M,Lorenz M,von Wenckstern H,et al.High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition[J].Applied Physics Letters,2003,82(22):3901-3903.
    [123]Chen Y,Bagnall D M,Koh H-j,et al.Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire:Growth and characterization[J].Journal of Applied Physics,1998,84(7):3912-3918.
    [124]Park S I,Cho T S,Doh S J,et al.Structural evolution of ZnO/sapphire(001)heteroepitaxy studied by real time synchrotron x-ray scattering[J].Applied Physics Letters,2000,77(3):349-351.
    [125]Yan Y F,Zhang S B,Pantelides S T Control of doping by impurity chemical potentials:Predictions for p-type ZnO[J].Physical Review Letters,2001,86(25):5723-5726.
    [126]Wang J Z,Du G T,Zhao B J,et al.Epitaxial growth of NH_3-doped ZnO thin films on sapphire substrates [J].Journal of Crystal Growth,2003,255 (3-4):293-297.
    [127]Lu J G,Fujita S,Kawaharamura T,et al.Roles of hydrogen and nitrogen in p-type doping of ZnO [J].Chemical Physics Letters,2007,441 (l-3):68-71.
    [128]Fons P,Tairipo H,Niki S,et al.Soft X-ray XANES of N in ZnO:N-Why is doping so difficult? [J].Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2006,246 (1):75-78.
    [129]Ma J,Ji F,Ma H L,et al.Preparation and Characterization of Zno Films by an Evaporating Method [J].Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1995,13 (1):92-94.
    [130]Dai J N,Su H B,Wang L,et al.Properties of ZnO films grown on (0001) sapphire substrate using H2O and N2O as O precursors by atmospheric pressure MOCVD [J].Journal of Crystal Growth,2006,290 (2):426-430.
    [131]Ma J G,Liu Y C,Mu R,et al.Method of control of nitrogen content in ZnO films:Structural and photoluminescence properties [J].Journal of Vacuum Science & Technology B.2004,22 (1):94-98.
    [132]Perkins C L,Lee S-H,Li X,et al.Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy [J].Journal of Applied Physics,2005,97(3):034907(1-7).
    [133]Matsui H,Saeki H,Kawai T,et al.N doping using N_2O and NO sources:From the viewpoint of ZnO [J].Journal of Applied Physics,2004,95 (10):5882-5888.
    [134]Reynolds D C.Look D C,Jogai B,et al.Neutral-donor-bound-exciton complexes in ZnO crystals [J].Physical Review B,1998,57 (19):12151-12155.
    [135]Zhao L,Liu C,Teng X,et al.The surface topography of GaN grown on Si substrate before and after wet chemical etching [J].Materials Science in Semiconductor Processing.2006.9 (1-3):403-406.
    [136]Shalish I.Temkin H.Narayanamurti V Size-dependent surface luminescence in ZnO nanowires [J].Physical Review B,2004,69 (24):245401(1-4).
    [137]Wang X F.Zhao F L.Xie P B.et al.Surface emission characteristics of ZnO nanoparticles [J].Chemical Physics Letters,2006,423 (4-6):361-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700