南四湖富营养化评价及水质数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南四湖是南水北调东线工程的重要输水通道和调蓄湖泊,其水质污染治理已成为迫切需要解决的问题。本文在对南四湖水质调查监测的基础上,采用数学方法对南四湖进行水质和富营养化评价,并对主要污染物的空间分布规律进行了分析,提出南四湖的污染控制对策。主要研究内容如下:
     (1)采用模糊数学方法对南四湖四个湖区进行水质评价,选取溶解氧、高猛酸盐指数、化学需氧量、氨氮和总磷作为评价指标。根据地表水环境质量标准,确定了四个湖区的水质类型,南四湖下级湖水质优于上级湖,处于Ⅰ类、Ⅱ类。2008年8月上级湖中南阳湖是Ⅲ类水,独山湖和昭阳湖是Ⅱ类水,到2008年12月,独山湖水质改善,成为Ⅰ类水,昭阳湖水质变为Ⅲ类。在2009年7月,上级湖湖区水质恶化,分别变为Ⅳ类、Ⅲ类和Ⅴ类水,而到2009年10月,水质变好,上级湖水质成Ⅰ类。
     (2)采用综合营养状态指数法对南四湖四个湖区进行富营养化评价,选取叶绿素a、总磷、总氮、透明度和高猛酸盐指数作为评价指标,并用Surfer绘图软件直观地描绘出南四湖富营养化综合营养指数的空间分布。根据湖泊富营养化分级评价标准,确定四个湖区的富营养化程度,上级湖的富营养程度要高于下级湖,南阳湖在2008年两次评价中都处于中营养,到2009年富营养程度有所减缓,处于贫营养。独山湖在2009年综合营养状态指数要高于2008年,且2009年10月达到了中营养程度。昭阳湖和微山湖在2008年和2009年都处于贫营养程度,但昭阳湖的污染程度比微山湖严重。
     (3)采用Surfer绘图软件将影响南四湖富营养程度的主要指标叶绿素a、总磷、总氮、高猛酸盐指数等主要污染物的空间分布进行可视化,并从南四湖入湖河流角度分析研究南四湖污染物浓度的分布特征,寻找南四湖不同区域发生富营养化的主要因子。在分布图中,上级湖的污染物浓度整体高于下级湖,四个湖区由北向南,南阳湖污染物浓度最高,其次是独山湖和微山湖,昭阳湖浓度最低。
     (4)根据南四湖上级湖的实际情况,利用地表水模拟系统中的RMA2和RMA4模块,建立上级湖的水动力模型和水质模拟模型,通过对丰水期流场和水质的模拟,了解丰水期的污染物运行规律。由污染物浓度分析可知,由入湖河流流入上级湖的污染物在前期对南阳湖的影响较大,短时间内污染物的浓度就会达到最大,在后期对独山湖、昭阳湖的影响大,污染物浓度不断富集。
     根据上级湖污染物的运行规律,结合南四湖的水质和富营养化评价结果,从入湖污染物削减、富营养化防治、底泥污染释放控制等方面,提出了具体可操作实施的水质改善和保护对策,为南四湖污染治理和实现南水北调东线的水质目标提供了依据。
As an important transmission channel and storage lake of South To North Water Transfer Project in Shandong Province,Nansihu Lake is facing a great challenge to guarantee the water safety in this project, and the control of water pollution has become an urgent problem to solve. In this paper, mathematic methods are adopted to evaluate the water quality and eutrophication on the base of the investigation and inspecting, also the spatial distribution of the main pollutants is researched and analyzed, so that we can provide some useful control measures of the pollution in Nansihu Lake. The main contents of this research are as follows:
     (1) In this paper, fuzzy mathematics is adopted to evaluate the water quality, and select DO, CODMn, COD, NH3-N and TP as the evaluate indices. According to the standards of environmental water quality, the type of water quality is determined. The water quality of Lower Lake is better than Upper Lake. The water quality of Nanyanghu Lake isⅢ-type water in Aug. 2008, while Dushanhu Lake and Zhaoyanghu Lake areⅡ-type water. In Dec. 2008, the water quality of Dushanhu Lake is changed better which wasⅠ-type water, Zhaoyanghu Lake is changed toⅢ-type water. The water quality of Upper Lake is deteriorated in July 2009, and changes better in Oct. 2009, which isⅠ-type water.
     (2) TSI method is adopted to evaluate the eutrophication in Nansihu Lake, and select Chl.a, TP, TN, SD and CODMn as the evaluate indices, also visualize the concentration of pollutants using the Surfer plotting software. According to the classificate criterion, the degree of eutrophication can determined. The Nanyanghu Lake is mesotrophication in 2008, and the degree of eutrophication is reduced in 2009, which is oligotrophication. The TSI of Dushanhu Lake in 2009 is larger than that in 2008, and it has become mesotrophication in Oct. 2009. Zhaoyanghu Lake and Weishanhu Lake are oligotrophication in 2008 and 2009, but the pollute degree of Zhaoyanghu Lake is more serious than Weishanhu Lake.
     (3) In order to study the main factors of influencing the water quality of Nansihu Lake,Surfer is adopted in this paper to visualize the spatial distribution of concentration of Chl.a、TP、TN、CODMn which affecting the level of eutrophication, and also analyze the distribution of the pollutants which will contribute to Nansihu Lake Pollution Control. In the figure of spatial distribution, the concentration of pollutants in Upper Lake is higher than the Lower Lake. Nanyanghu Lake has the highest concentration of the pollutants, then Dushanhu Lake and Weishanhu Lake, Zhaoyanghu Lake has the lowest pollutant concentration.
     (4) The hydrodynamic model and water quality simulation model are established using RMA2 and RMA4 modules of SMS basing on the actual situation of Upper Lake. Through the simulation of hydrodynamic and water quality in the flood season, we can realize the moving rules of the pollution. Seen from the analysis of pollutant concentration, the pollutants flowing into Lake is affected Nanyanghu Lake largely in the early time, and its concentration will reached to the largest soon. And it affects Dushanhu Lake and Zhaoyanghu Lake largely in the later time, the pollutant is enriched gradually.
     Pollution control countermeasures for Nansi Lake are presented in this paper from the aspects of pollutants reduction flowing in the lake, eutrophication control and sediment release control according to the moving rules of the pollution. Moreover,this paper provides technological support for pollution control in East Route Project of South To North Water Transfer Project in combination with the evaluation results of water quality and eutrophication.
引文
[1]刘臣炜.城市浅水湖泊富营养化数值模拟研究[硕士学位论文].南京:河海大学.2007.
    [2]孙文章.东昌湖水质评价及水质评价研究[硕士学位论文].济南:山东大学.2007.
    [3]苗群.南四湖水环境质量评价研究[博士学位论文].青岛:青岛大学.2008.
    [4] WANG Fushun, WANG Yuchun, ZHANG Jing. A decade of variation of COD in the Changjiang River (Yangtze River) and its variation trend analysis[J]. CHINESE JOURNAL OF GEOCHEMISTRY, 2007,26(4):366-373.
    [5]仲少云,王庆,金秉福.模糊综合评判法在芝罘湾水质评价中的应用[J].海洋湖沼通报, 2007,(2):57-61.
    [6]李如忠.水质评价理论模式研究进展及趋势分析[J].合肥工业大学学报(自然科学版),2005, 28(4):369-373.
    [7]荆红卫,华蕾,孙成华,等.北京城市湖泊富营养化评价与分析[J].湖泊科学,2008,20(3):357-363.
    [8] CAI Hua-qing, LIU Jian-kang, Lorenz King. A comprehensive model for assessing lake eutrophication[J]. CHINESE JOURNAL OF APPLIED ECOLOGY, 2002,13 (12): 1674-1678.
    [9]金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990.
    [10]尹儿琴,郝启勇,鲁孟胜,等.应用灰色关联分析法评价南四湖丰水期水质[J].环境科学动态, 2005,(1):8-9.
    [11] Lu Fei, Li Lei. Principal component analysis of water quality evalution in Liaohe River[J]. Wanter Conservancy Science and Technology and Economy, 2006,10(10):660-662.
    [12]郭劲松,王红,龙腾锐.水资源水质评价方法分析与进展[J].重庆环境科学,1999,21(6):1-3.
    [13] Yang Ming-der, Yang Yeh-fen, Hsu Chan-hsiang, et al. Application of furry theory to satellite data for determining eutrophic status[J]. IEEE,2004: 4897-4900.
    [14] M.D.Yang, J.Y.Lin, T.C.Su, et al. Furry Estimation of Trophic State Using Satellite data[J]. IEEE,2008:2117-2122.
    [15]李柏年.水质富营养化评价的状态矩阵方法[J].运筹与管理,2003,12(4):91-93.
    [16]华祖林,钱蔚,顾莉.改进型LM-BP神经网络在水质评价中的应用[J].水资源保护,2008, 24(4):22-30.
    [17] Yuanzhi Zhang, Jouni Pulliainen, Sampsa Koponen, et al. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data[J]. Remote Sensing of Environment, 2002,(81): 327-336.
    [18] ANDERSON J A. An Introduction to Neural Networks[M]. London: MIT Press,1995.
    [19]任黎,董增川,李少华.人工神经网络模型在太湖富营养化评价中的应用[J].河海大学学报, 2004, 32(2):147-150.
    [20]罗定贵,王学军,孙莉宁.水质模型研究进展与流域管理模型WARMF评述[J].水科学进展, 2005,16(2):289-294.
    [21]李云生,刘伟江,吴悦颖,等.美国水质模型研究进展综述[J].水利水电技术,2006,37(2):68-73.
    [22]万金保,李媛媛.湖泊水质模型研究进展[J].长江流域资源与环境,2007,16(6):805-809.
    [23]刘永,郭怀成,范英英,等.湖泊生态系统动力学模型研究进展[J].应用生态学报,2005, 16(6):1169-1175.
    [24]郭劲松,李胜海,龙腾锐.水质模型及其应用研究进展[J].重庆建筑大学学报,2002,24(2): 109-115.
    [25]徐祖信,廖振良.水质数学模型研究的发展阶段与空间层次[J].上海环境科学,2003,22(2): 79-85.
    [26] Xiaomi Zhang,Kenneth R. Rygwelski, Ronald Rossmann, et al. Model construct and calibration of an integrated water quality model (LM2-Toxic) for the Lake Michigan Mass Balance Project[J]. ECOLOGICAL MODELLING, 2008: 1-15.
    [27]杨具瑞,方铎,何文社.等滇池湖泊富营养化动力学模拟研究[J].环境科学与技术,2003,26(3): 37-38.
    [28]王祥三,陈小江.三峡库湾二维随机水质预测模型的研究[J].水电能源科学,2001,19(3):55-58.
    [29]龚春生,姚琪,范成新,等.含内源污染平面二维水流-水质耦合模型[J].水利学报,2006,37(2): 205-209.
    [30]李炜.环境水力学进展[M].武汉:武汉水利电力大学出版社,1999.
    [31] LiuY-S,Tang Z-W,Han M.The ecological dynamics models of Lake Dianchi and its application[J]. Res Environ Sci,1991,4(6):1-7.
    [32] Zheng B-H, Zhang Y-Z, Liang Z-B. Improvement of ecological dynamics models of Lake Dianchi[J]. Res Environ Sci, 1994,7(4):1-6.
    [33] Zhang Y-Z,Zheng B-H,Hou Y-G. Study of improvement to ecodynamic model for Lake[J]. Chengdu Univ Technol Sci,1996,(2):1-7.
    [34] Pang Y, Yao Q, Pu P-M. Air Water Numerical Simulation of Taihu Lake[M]. Beijing: China Meteorogical Press.
    [35] Liu Y-B, Chen W-M, Fan C-X. Ecolgical simulation of blue algal bloom in Meiliang Bay,TaihuLake and analysis of its harness straggles[J]. Lake Sci, 1998,10(4):53-59.
    [36] Xu C-G, Hu Y-M, Chang Y, et al. Sensitivity analysis in ecological modeling[J].Chin Appl Ecol, 15(6):1056-1062.
    [37] Xu F L, Jorgensen S E, Tao S. Modeling the effects of macrophyte restoration on water quality and ecosystem of Lake Chao[J]. Ecol Mod, 1999,117:239-260.
    [38] Ruan J-R, Cai Q-H, Liu J-K. Dynamical modeling of P and phytoplankton in Lake Donghu, Wuhan City[J]. Acta Hydrobiol Sin,1988,12(4):289-307.
    [39] Oihao Weng. Modeling Urban Growth Effects on Surface Runoff with the Integration of Remote Sensing and GIS[J]. Environmental management, 2001,28(6):737-748.
    [40] Sang-Seop Na, Hyun-Ku Rhee. Anexperimental study for property control in a continuous styrene polymerization reactor using a polynomial ARMA model[J]. Chemical engineering science, 2002,57(7):1165-1173.
    [41]卢小燕,徐福留,詹巍.等湖泊富营养化模型的研究现状与发展趋势[J].水科学进展,2003, 14(6):792-798.
    [42] Fang-Mei Tseng, Gwo-Hshiung Tseng, Hsiao-Cheng Yu, et al. Fuzzy ARIMA model for forecasting the foreign exchange market[J]. Fuzzy sets and systems, 2001,118(1):9-19.
    [43]曹晓静,张航.地表水质模型研究综述[J].水利与建筑工程学报,2006,4(4):18-21.
    [44]沈吉,张祖陆,杨丽原,等.南四湖—环境与资源研究[M].北京:地震出版社,2008.
    [45]杨丽原,沈吉,刘恩峰,等.南四湖现代沉积物中营养元素分布特征[J].湖泊科学,2007,19(4): 390-396.
    [46]杨丽原,李艳红,刘恩峰,等.近50年来自然与人类活动影响下南四湖水位变化研究[J].中国农村水利水电,2009,(7):25-27.
    [47]杨丽原.南四湖现代沉积环境的地球化学特征及污染分析[博士学位论文].南京:中国科学院研究生院.2004.
    [48]南四湖省级自然保护区综合考察报告.济宁:山东省林业监测规划院.2003.
    [49]周振民,付艳平.开封市地表水水质模糊综合评价研究[J].中国农村水利水电,2009,(1):23-25.
    [50]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社,2005.
    [51]孙丽敏,孟利.劳动河水质的模糊综合评价及分析[J].环境保护科学,2005,31(129):63-65.
    [52]田景环,邱林,柴福鑫.模糊识别在水质综合评价中的应用[J].环境科学学报,2005,25(7): 950-953.
    [53]朱红玉,杜少少,谷媛媛,等.模糊数学在地表水水质评价中的应用[J].水科学与工程技术, 2008,(5):77-79.
    [54] K.Sasikumar, P.P.Mujumdar. Fuzzy opimization model for water quality management of a river system[J]. Journal of water resources planning and management, 1998,124(2):79-88.
    [55] Y.Y.Yin, et al. Fuzzy relation analysis for multicriteria water resources management[J]. Journal of water resources planning and management, 1999,125(1):41-47.
    [56]曹炳元,等.应用模糊数学与系统[M].北京:科学出版社,2005:66-73.
    [57]徐建华.现代地理学中的数学方法(第二版)[M].北京:高等教育出版社,2002:305-335.
    [58] Zadeh L A. Fuzzy sets[J]. Information and Control, 1965,8:338-353.
    [59] Negoita C V. Expert systems and furry systems[M ]. Menlo Park, Calif., 1985.
    [60]荆红卫,华蕾,孙成华,等.北京城市湖泊富营养化评价与分析[J].湖泊科学,2008, 20(3):357-363.
    [61] Carlson R E. A trophic state index for lakes[J]. Limnology and Oceangraphy, 1977,22(2): 361-369.
    [62]朱广伟.太湖富营养化现状及原因分析[J].湖泊科学,2008,20 (1):21-26.
    [63]袁志宇,赵斐然.水体富营养化及生物学控制[J].中国农村水利水电,2008, (3): 57-59.
    [64] CRESSER N A C. Statistics for spatial data[M]. New York: John-Wiley and Sons.1993.
    [65]张弛.基于Surfer软件的地形图快速绘制方法[J].计算机应用,2009,(3):41-43.
    [66]毛兴华,胡方西.将MapInfo和Surfer结合绘制等值线[J].测绘通报,2001,(10):39-40.
    [67]宋明艺,张春灌.借助Surfer软件实现快速绘制平面等值线图[J].工程地球物理学报, 2009,6(2):244-246.
    [68] KRIGE D G. A statistical approach to some basic mine valuation problem on the Witwatersrand[J]. Chem Metall and Min Soc South Africa, 1951,52(6):119-139.
    [69]文雅,郭治兴.应用Win-Surfer软件绘制降水等值线图[J].土壤与环境,2002,11(4):360-362.
    [70] FREEDMAN B. Environmental ecology[M]. Sandiego: Academic Press,2002.
    [71]张文林.巢湖流域水环境问题与可持续发展战略[J].水利科技与经济,2005,11(9):516-518.
    [72]赵群.南四湖水环境问题以及修复对策的探讨[J].环境科学动态,2005,(1):29-31.
    [73]杨丽原,孟祥华,刘恩峰,等.南四湖上级湖磷的分布及其平衡研究[J].灌溉排水学报, 2009,28(3B):72-74.
    [74]朱建荣.长江口外海区叶绿素a浓度分布及其动力成因分析[J].地球科学,2004,34(8): 757-762.
    [75]张祥伟,邹晓雯.我国北方河流湖泊的水环境状况与水污染防治问题[J].水资源保护, 2000,(2):9-11.
    [76] Havens K E, Jin K R, Rodusky A J, et al. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level[J]. Sci World, 2001,(1):44-70.
    [77]杨伟红,郭茂.开封市水资源保护与污染防治研究[J].中国农村水利水电,2003(6):50-52.
    [78] Wetzel R G. Limnology, Lake and River Ecosystems[M]. London, Academy Press, 2001.
    [79]孙娟.南四湖湿地功能变化及评价分析研究[硕士学位论文].济南:山东师范大学.2002.
    [80] Jos T A. Verhoeven, Andrew J. Baird. Hydrological and biogeochemical processes in wetland ecosystem in relation to biodiversity restoration[J].Wetlands Ecology and Management, 2003, (11):365-366.
    [81]李孝坤.三峡库区水环境问题及保护对策[J].水资源保护,2005,21(5):66-69.
    [82]张卫河.东风水库水环境问题及对策初探[J].水利科技,2007(2):9-10.
    [83]李孝坤.重庆三峡库区水环境问题及保护对策探讨[J].水土保持研究,2005,12(4):220-222.
    [84]刘洁,吴仁海.珠江三角洲水环境问题及其调控方略探讨[J].环境科学与技术,2004,27(5): 45-47.
    [85]周顺,陶建国.苏南农村水环境改善初探[J].中国农村水利水电,2005,(7):24-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700