用户名: 密码: 验证码:
铜闪速吹炼过程仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜闪速熔炼-闪速吹炼技术是美国肯尼柯特公司和芬兰奥托昆普公司合作开发的清洁炼铜工艺(以下简称“双闪”工艺)。1995年,“双闪”工艺在美国Utah冶炼厂正式投入工业生产。生产实践表明,“双闪”工艺与传统的闪速熔炼-PS转炉吹炼工艺相比,具有清洁、高效、投资小、生产费用低等优点。同时国内最近新建的炼铜企业大多选用“双闪”工艺,因此进行闪速吹炼过程仿真研究进行模拟对于研究闪速吹炼工艺有一定的现实意义。
     随着科技的发展,计算机仿真技术逐渐引入到冶金工艺过程的模拟,它被认为是研究冶金工艺的第3种手段。冶金研究引入CFD技术,为传统工业试验起到了节约成本,减少试验用时的作用。因此,采用CFD技术进行闪速吹炼过程的研究较好的解决了传统研究无法进行闪速吹炼炉内部区域监测的问题,为闪速吹炼过程的研究提供了一个有效手段,通过CFD技术我们可以研究影响铜闪速吹炼过程的各种限制因素。
     本研究是在Fluent中使用UDF函数添加燃烧模型建立闪速吹炼仿真模型,进行了不同颗粒直径,不同工艺风量,不同中央氧量,有无燃烧风等情况的模拟。在上述条件下,本研究通过对闪速吹炼炉各场及颗粒的模拟,给出了颗粒的温度,氧化程度、颗粒运动速度、存活时间和沉淀池分布情况。本研究详细介绍了模拟过程的方式方法,这为闪速吹炼工艺仿真提供了一套较好的解决方案。主要进行的研究内容和研究成果有如下几点:
     (1)颗粒行为及颗粒氧化程度研究,在相同工况下进行多种单独颗粒条件的模拟发现,150um颗粒较20um颗粒温度上升慢,氧化程度低,但是150um的颗粒受分布风作用偏移反应塔中心的程度较20um的高。同时研究发现,在没有颗粒破碎和碰撞模拟的情况下大于70um的部分颗粒约有20-30%的Cu_2S仍然未反应。
     (2)不同风量对闪速吹炼过程的影响研究。在不同的分布风条件下,反应塔内的高温区域也不相同,分布风量为1059Nm~3/h较风量为765Nm~3/h的高温区域更大,而且中央区域的Cu_2S氧化程度较高。同时通过对1294Nm~3/h与1059Nm~3/h的分布风对比中可以看出,过高的分布风导致颗粒过度偏移反应塔中心,造成中央喷嘴下方O_2浓度过高。颗粒束中心区域Cu_2O生成较多,而颗粒束外侧区域由于氧气不足,导致其氧化不完全。因此在研究的模拟条件下,建议分布风控制在1059Nm~3/h附近。
     (3)通过对不同中央氧量的比较发现,中央氧为166Nm~3/h较498Nm~3/h的工况颗粒温度高温区域较小,而且较少的中央氧容易导致颗粒束中心区域更容易存在未反应的Cu_2S。从有无燃烧风模拟的比较发现,在没有燃烧风的工艺条件下,颗粒反应较慢,氧化程度不及有燃烧风的情况。
Copper Flash Smelting - Flash converting technology companies and the United States Kennecott-Outokumpu companies to develop copper technology (hereinafter referred to as "dual flash" process.) In 1995, the "dual flash" process in the United States Utah smelter was put into industrial production. Production practice shows that the "dual flash" flash smelting technology and the traditional converting of converter technology-PS compared with the clean, efficient, small investment, production cost is low. While domestic enterprises are the recent selection of new copper "dual flash" process, so the converting process simulation of flash to simulate the converting process for the study of flash has some practical significance.
     With the development of technology, computer simulation technology gradually introduced to the metallurgical process simulation, it is considered to be of metallurgical process means the first 3. Introduction of metallurgy CFD technology has played a test for the traditional industries to save costs and reduce the role of testing time. Therefore, the use of CFD technology to the process of flash converting a better solution to the traditional research can not be flash furnace converting the issue within the regional monitoring, for the converting process of Flash offers an effective means of technology through the CFD We can study the impact of copper flash smelting process of converting the various constraints.
     This study is the use of UDF in Fluent combustion modeling flash function to add converting simulation model with different particle diameter, different processes components, different central oxygen, with or without burning air and so the simulation. Under these conditions, the study converting through the flash furnace Ge field and particle simulation, gives the particle temperature, oxidation, particle velocity, the survival time and the distribution of sedimentation tanks. This study details the ways and means of simulation, this converting process simulation for the flash to provide a better solution. Mainly for the research and findings are the following:
     (1) particle behavior and the degree of oxidation of particles in the same conditions for a variety of simulated conditions found in separate particles, 150um 20um particles than particles slow rise in temperature, oxidation low, but the particles 150um offset by the distribution of wind over the extent of reaction tower center 20um high. Also found that, in the absence of particle breakage and collision simulation is greater than 70um some cases about 20-30% of the Cu_2S particles remain unreacted.
     (2) The amount of wind converting on the flash process of research. The distribution in different wind conditions, the reaction tower is not the same high-temperature region, the distribution air volume 1059Nm~3 / h air volume than 765Nm~3 / h of heat a larger area, and the central region of the Cu_2S higher degree of oxidation. At the same time by 1294Nm~3 / h and 1059Nm~3 / h compared the distribution of the wind can be seen, the distribution of high winds led to over-shift reaction tower center of particles, resulting in high concentrations of O_2 below the central nozzle. Cu_2O particle beam generated more central region, while the particle beam outside the region due to lack of oxygen, resulting in incomplete oxidation. Therefore, under simulated conditions in the study, the proposed distribution of air control in the 1059Nm~3 / h near.
     (3) Comparison of different oxygen found in the central, central oxygen as 166Nm~3 / h over 498Nm~3 / h the temperature of the hot zone conditions smaller particles, and less prone to the central oxygen particle beam central region there are not more likely to respond the Cu_2S. Whether the combustion air from the comparison between the simulation, the wind in the absence of combustion conditions, the particles slow reaction, oxidation is less than a burning wind of the situation.
引文
[1]徐曙光,陈丽萍,张迎新.未来中国铜消费量的预测与评价[J].国土资源情报,2010,Vol.9:45~48
    [2]宛广山译.国际铜研究组织数据年鉴(2010).中经财贸.http://www.zcqh.com/userfiles/file/ICSG%20Report-2010.pdf,2010.8.17
    [3]曹异生.国际铜工业的进展与展望[J].世界有色金属,2009,Vol.7:22~25
    [4]朱祖泽,贺家齐.现代铜冶金学[M].北京:科学出版社2002,10~50
    [5]李卫民.铜吹炼技术的进展[J],云南冶金,2008,Vol.37(5):24~28
    [6]黄辉荣.铜锍吹炼工艺的选择及发展方向[J],矿冶,2004,Vol.13(4): 72~75
    [7]张文海.铜闪速吹炼述评.有色冶金设计与研究[J],1992,Vol.13(1):29~35
    [8]唐尊球.论我国铜吹炼技术发展方向[J],有色冶炼,2002,Vol.31(6):6~10
    [9]唐尊球.铜PS转炉与闪速吹炼技术比较[J].有色金属《冶炼部分》,2003.1:9~14
    [10]中国有色冶金.现代连续吹炼的最新进展[J].中国有色冶金.2008,2: 6~10
    [11]王永慧校.现代连续吹炼的最新进展[J].中固有色冶金,2008.2:6~10
    [12]张洪常.15.5m2连续吹炼炉的生产实践[J],中国有色冶金,2005.6:40~44
    [13] Ilkka V. Kojo, Ari Jokilaakso, and Pekka Hanniala,Flash Smelting and Converting Furnaces: A 50 Year Retrospect[J],Historical Insight,2000.2,56~61
    [14]姚素平.“双闪”铜冶炼工艺在中国的优化和改进[J].有色金属《冶炼部分》,2008.6:9~14
    [15]张法平.奥托昆普闪速熔炼和闪速吹炼工艺[J].有色冶金设计与研究,1993,Vol.14(4).12:50~58
    [16]欧阳红兵译.肯尼柯特闪速吹炼炉设计改进[J].有色冶金设计与研究,2001,Vol.22(4):11~16
    [17]徐传华.奥托昆普公司的冶炼技术[J],有色冶炼,2000.5:39~42
    [18]唐翊平.闪速吹炼工艺[J].有色冶金设计与研究,1993.4:1~9
    [19]袁剑平.闪速吹炼技术在祥光铜业的应用[J].有色金属《冶炼部分》,2007.2 40~43
    [20]周松林.祥光“双闪”铜冶炼工艺及生产实践[J].有色金属《冶炼部分》,2009.2:11~18
    [21]李卫民摘译.三菱法连续吹炼冶金学[J].中国有色冶金,2008.3:1~6
    [22]林荣跃.澳斯麦特铜连续吹炼试验[J].有色金属《冶炼部分》,2009.3:17~20
    [23]李卫民摘译.澳斯麦特技术一铜吹炼的发展[J].中国有色冶金,2009.1:1~7
    [24]李样人摘译.澳斯麦特工艺--21世纪的铜生产工艺[J].中国有色冶金,2008.1:6~13
    [25]简洪生等.大冶诺兰达熔炼工艺的技术进步[J].中国有色冶金,2009.1:22~26
    [26]胡广生.诺兰达炉系统设备及其运行实践[J].有色设备,2005.2:8~15
    [27]陈卓.铜闪速炉系统数值熔炼模型及反应塔炉膛内形在线仿真监测研究[博士学位论文],中南大学,2002
    [28]绉小平.反应塔炉壁温度场及内壁挂渣在线仿真系统研究与开发:[硕士学位论文].江西:江西理工大学,2007
    [29]沈洪远.有色冶金过程数据挖掘及其在铜锍吹炼中的应用研究:[博士学位论文].中南大学,2008
    [30]薛立华.铜锍P_S转炉吹炼终点复合式预报系统的开发与应用:[硕士学位论文].中南大学,2003
    [31]吴卫国.铜闪速熔炼多相平衡数模研究与系统开发[硕士论文].江西理工大学,2007
    [32]童长仁,刘道斌,杨凤丽.基于元素势的多相平衡计算及在铜冶炼中的应用[J].《过程工程学报》.Vol.8(s1),2008:45-49
    [33]李欣峰.炼铜闪速炉熔炼过程的数值分析与优化[博士学位论文].中南大学,2001
    [34] MANUEL PEREZ-TELLO,HONG YONG SOHN ,KIRSI ST.MARIE.Experimental Investigation and Three-Dimensional Computational Fluid-Dynamics Modeling of the Flash-Converting Furnace Shaft:Part I.Experimental Observation of Copper Converting Reactions in Terms of Converting Rate ,ConvertingQuality ,Changes in Particle Size ,Morphology ,and Mineralogy[J]. METALLURGICAL AND MATERIALS TRANNSACTIONS B,2001,10:847~869
    [35] Jussi VAARNO,Juha JARVI,Tapio AHOKAINEN.Development of a mathematical model of flash smelting and converting processes[C] .Third International of Conference On CFD in Minerals and process Industries CSIRO,Melbourne Australia ,2003.12:10-12
    [36] Andrew A.shook FLASH CONVERTING OF CHALCOCITE CONCENTRATE [D]: A STUDY OF THE FLAME The University of British Columbia, 1987
    [37]谢锴.人工智能与混沌理论在铜锍吹炼炉实时仿真与优化决策中的应用研究[博士学位论文].中南大学,2001
    [38] LI Xin-feng,MEI Chi,ZHOU Ping. Mathematical model of multistage and multiphase chemical reactions in flasm furnace[J].Trans.Noferrous Met.Soc.China,2003.Vol.13(2):203~207
    [39] (美)约翰D.安德森.计算流体力学基础及其应用(吴颂平.刘赵淼译)[M].北京:机械工业出版社,2007
    [40] R.B.Bird W.E.Stewart E.N.Lightfoot.Transport Phenomena(Second Edition)[M]. John Wiley & Sons Inc,2002
    [41] (美)唐塞?赛比奇.工程计算流体力学(符松译)[M].北京:清华大学出版社,2009
    [42]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001
    [43]任鸿九.有色金属熔池熔炼[M].北京:冶金工业出版社,2001
    [44]梅炽.有色冶金炉窑仿真与优化[M].北京:冶金工业出版社,2001
    [45] H.K. Versteeg,W.Malasekera.An introduction to computational fluid dynamics[J].Longman Scientific & Technical,1995
    [46]余其铮编著.辐射换热原理[M].哈尔滨:哈尔滨工业大学出版社,2000
    [47] E. H. Chui and G. D. Raithby. Computation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method[J]. Numerical Heat Transfer, Part B, 1993,23:269~288
    [48] P. Cheng. Two-Dimensional Radiating Gas Flow by a Moment Method[J].AIAA Journal, 1964,2:1662~1664
    [49] R. Siegel and J. R. Howell.Thermal Radiation Heat Transfer.Hemisphere Publishing Corporation[J], Washington DC, 1992.
    [50]李人宪.有限体积法基础[M].北京:国防工业出版社,2008.03
    [51] (美)钟(Chung,T.J.).流体动力学的有限元分析(张二骏等译)[M].电力工业出版社,1980.11
    [52]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002
    [53]侯凌云,侯晓春.喷嘴技术手册[M].北京:中国石化出版社,2007
    [54] J.W. Matousek.The Oxidation Mechanism in Copper Smelting and Converting[J],JOM 1998,4:64~66
    [55] G.J. MORGAN and J.K. BRIMACOMBE ,Kinetics of the Flash Converting of MK (Chaicocite) Concentrate[J], METAI.LURGICAL AND MATERIALS TRANSACTIONS B,1996.6,163~175
    [56] P.C. CHAUBAL, H.Y. SOHN, D.B. GEORGE.Mathematical Modeling of Minor-Element Behavior in Flash Smelting of Copper Concentrates and Flash Converting of Copper Mattes[J], METAI.LURGICAL AND MATERIALS TRANSACTIONS B,1989.2,39~42 [ 57]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004:148~150
    [58] Manuel Perez-Tello, Hong Yong Sohn , Philip John Smith. Experimental Investigation and Three-Dimensional Computational Fluid-Dynamics Modeling of the Flash-Converting Furnace Shaft: Part II. Formulation of Three-Dimensional Computational Fluid-Dynamics Model Incorporating the Particle-Cloud Description[J]. Metallurgical and Materials Transactions B.2001.Vol.32(5): 869~886
    [59] F.R.A. Jorgensen and P.T.L. Koh . Combustion in Flash Smelting Furnaces [J].JOM.2001.3:16~20
    [60] P.C.CHAUBAL,H.Y.SOHN.D.B.GEORGE, L.K.BAILEY.Mathematical Modeling of Minor-Element Behavior in Flash Smelting of Copper Concentrates and Flash Converting of Copper Mattes [J].METALLURGICAL AND MATERIALS TRANNSACTIONS B,1989.3:39~52
    [61] G. J. Morgan and J. K. Brimacombe.Kinetics of the Flash Converting of MK (Chalcocite Concentrate)[J]. Metallurgical and Materials Transactions B,1996,Vol.27:163~177
    [62] N. KEMORI, W.T. DENHOLM, H. KUROKAWA. Reaction Mechanism in a Copper Flash Smelting Furnace[J]. METALLURGICAL AND MATERIALS TRANNSACTIONS B,1989,Vol.20:327-337
    [63]梅炽.有色冶金炉设计手册[M].北京:冶金工业出版,2000.09
    [64]赵海波,郑楚光.离散系统动力学演变过程的颗粒群平衡模拟[M].北京:科学出版社,2008
    [65] Li Yan ,Raj Gupta ,Terry.Wall Fragmentation Behavior of Pyrite and Calcite during High Temperature Processing and Mathematical Simulation[J]. Energy & Fuels,2001,15:389~394
    [66] G.R.Liu,M.B.Liu.光滑粒子流体动力学(韩旭,杨刚,强洪夫译)[M].湖南大学出版社,2005.11
    [67]童长仁,吴金财,李明周.基于分步回归策略的霍脱尔气体发射率数学模型[J].冶金能源,2008.Vol.28(1):23-27
    [68]马奇,刘庆国,葛哲令.闪速吹炼技术的实践与改进[J].中国有色冶金.2010.4:9~12
    [69] Manuel Pérez-Tello, JoséA. Tirado-Ochoa, Hong Yong Sohn.Size Distribution Analysis for Copper Matte Particles Oxidized Under Flash-Converting Conditions[J] ,JOM,2002.10:27~31
    [70]王海川,董元箎.冶金热力学数据测定与计算方法[M].北京:冶金工业出版社,2005
    [71]童景山.流体热物性学[M].北京:中国石化出版社,2008.08
    [72] (美) B. E.波林,(美) J. M.普劳斯尼茨.J.气液物性估算手册[M].北京:化学工业出版社,2006
    [73]刘麟瑞,王丕珍.冶金炉料手册[M].北京:冶金工业出版社,2000.04

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700