从镍钼矿中制取钼酸铵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍钼矿是我国特有的一种多金属复杂矿产资源,但因相对落后的开发技术及处理工艺,造成资源的极大浪费和严重的环境污染问题。本文根据镍钼矿资源特点及开发现状,首次提出了次氯酸钠(氯气)浸出全湿法和一次焙烧-碱浸法从镍钼矿中制取钼酸铵两种全新工艺路线,主要研究内容包括镍钼矿一次焙烧、焙砂碱浸、次氯酸钠浸出、氯气浸出、离子交换法从低浓度钼酸钠溶液中吸附钼、D314树脂吸附钼的平衡和动力学、离子交换法从钼酸铵溶液中去除微量钒、镍钼矿生产钼酸铵工艺设计等。研究成果在国内得到广泛应用,首次从镍钼矿中得到了符合国标(GB3460-82)的钼酸铵产品,极大地提高了镍钼矿开发金属回收率,降低了镍钼矿开发工艺过程中的三废排放,使镍钼矿开发领域整体工艺技术水平上了一个台阶。主要研究结果如下:
     为了减少传统镍钼矿多次焙烧-破碎工艺过程产生的巨大粉尘排放量,提出了镍钼矿一次焙烧-碱浸实验方案,考察了焙烧温度、焙烧时间、浸出温度、浸出时间、浸出液固比、氢氧化钠浓度等因素对钼浸出率的影响,实验结果显示,在最佳条件下,钼的浸出率可达到97%以上。
     为了彻底消除传统镍钼矿焙烧工艺过程产生的粉尘和S02烟气污染,提出了次氯酸钠浸出镍钼矿实验方案,考察了温度、次氯酸钠浓度、液固比、粒度、氢氧化钠加入量、碳酸钠加入量、浸出时间、终点pH值等条件对次氯酸钠浸出钼的影响,结果显示,在最佳条件下,钼的浸出率可达到98%。进一步的研究证明,次氯酸钠可选择性浸出镍钼矿中的钼,选择系数最高可达到3.5。
     首次提出了氯气浸出镍钼矿方法,并在自制的设备中进行了氯气浸出实验,考察了温度、NaOH加入量、终点pH值、镍钼矿粒度、液固比和通C12速度等因素对钼浸出率的影响,结果显示,在最佳条件下,钼的浸出率最高可达96%以上,浸出液含钼6-12g/L,pH8-9。
     经过树脂筛选实验,发现D314是一种最佳的从低浓度弱酸性含钼溶液中吸附钼的离子交换树脂;通过固定床实验,考察了料液pH值、浓度、吸附接触时间等因素对D314树脂吸附钼的影响,结果显示,D314树脂对钼的吸附容量远高于强碱性阴离子交换树脂,也明显高于其他弱碱性阴离子交换树脂;负钼D314树脂用10%的氨水解吸,可得到含钼120g·l-1以上的钼酸铵溶液。
     首次进行了D314树脂吸附钼的平衡和动力学研究,实验结果显示,交换反应240分钟基本达到平衡,pH值为3.5时,钼的吸附分配比最大达到69411,饱和吸附容量为292.30mg/mL湿树脂;对D314树脂吸附钼的饱和吸附容量和钼酸根在水溶液中的赋存形态进行分析和计算,得出钼以Mo40132-形态被树脂吸附;D314树脂吸附钼过程控制步骤为粒扩散步骤(PDF),表观活化能E为27.30kJ/mol。
     首次发现钒对钼酸铵质量的影响现象,创新性地提出螯合树脂去除钼酸铵溶液中微量钒的方法。搅拌试验结果显示,螯合离子交换树脂可以选择性吸附钼酸铵溶液中的钒,其中,DDAS、CUW和CW-2螯合树脂对钒(V)的吸附性能优于其他螯合离子交换树脂;通过固定床离子交换试验,考察了温度、溶液pH值、吸附接触时间等因素对除钒的影响,结果显示,在最佳条件下,DDAS、CUW和CW-2螯合树脂除钒率可达到99.5%以上,而钼的损失率小于0.27%,钒钼分离系数分别达到了126172、108097和105209;根据螯合树脂结构及钼酸铵溶液中微量钒存在形态,首次提出了螯合树脂吸附钒的络合反应机理。
     根据研究成果,设计了“镍钼矿次氯酸钠浸出-离子交换富集转型-解吸液净化-离子交换除钒-酸沉-四钼酸铵”和“一次焙烧-碱浸-离子交换富集转型-解吸液净化-离子交换除钒-酸沉-四钼酸铵”两条全新的镍钼矿制取钼酸铵工艺流程,这两条新工艺在十余家工厂得到成功应用,取得了显著的经济和环境效益。
Ni-Mo ore is a complicated multi-metal mineral resource which is specific to China. The low-level technics of traditional extracting process has made huge waste of resources and grievous pollution to the local environment in exploiting of Ni-Mo ore. According to the property of Ni-Mo ore and present exploiting process, experimental processes of "entire hydrometallurgical process of leaching Ni-Mo ore with sodium hypochlorite(or Cl2)" and "one step roasting-calcine leaching with NaOH" were put forward for the first time. The study mainly focused on one step roasting, leaching of Ni-Mo calcine with NaOH, leaching of Ni-Mo ore with sodium hypochlorite, leaching of Ni-Mo ore with Cl2, Mo adsorption by ion exchange from low concentration solution, equilibrium and kinetics of Mo adsorption with D314 resin, removal of vanadium from ammonium molybdate solution by ion exchange, processing design of ammonium molybdate production from Ni-Mo ore. The achievement had been widely applied and high quality product of ammonium molybdate was obtained firstly from Ni-Mo ore which is in accordance with the standard of GB3460-82 for the first time, metal recovery was greatly improved, and the release of pollutant was reduced greatly. Main experimental results are as follows:
     In order to reduce discharge of powder in traditional process, "one step roasting-leaching of calcine with NaOH" was put forward. The effects of roasting temperature, roasting time, leaching temperature, leaching time, L/S of leaching, consumption of NaOH etc on leaching ratio of Mo from Ni-Mo calcine had been investigated. The experimental results show that leaching ratio was above 97% at the optimal condition.
     In order to avoid the release of powder and SO2, "entire hydrometallurgical process of leaching of Ni-Mo ore with sodium hypochlorite(or Cl2)" was put forward for first time. The effects of leaching temperature, concentration of NaClO, L/S of leaching, particle size of Ni-Mo ore, consumption of NaOH and Na2CO3, leaching time, and end pH etc on leaching ratio of Mo from Ni-Mo ore had been investigated. The experimental results show that leaching ratio of above 98% was obtained at the optimal condition. Test result also proved that NaCIO could selectively leach Mo from Ni-Mo ore, and selective coefficient reached 3.5.
     The test of leaching by Cl2 was put forward for the first time and carried out in self-made leaching vessel. The effects of temperature, consumption of NaOH, end pH, particle size of Ni-Mo ore, and L/S of leaching, and add velocity of Cl2 etc on leaching ratio of Mo from Ni-Mo ore was investigated. The experimental results show that leaching ratio of Mo above 96% was obtained at the optimal condition, the Mo concentration of leaching solution is about 6-12g/L, pH is 8-9.
     The results of selecting test of resin show that D314 resin is the best to adsorb Mo from weak acidic solution. Effects of pH of solution, concentration, and contact time of ion exchange on adsorption capability of Mo were investigated with fixed bed. The experimental results show that work adsorption capability of D314 resin to Mo was above 160mg/L at optimal conditions. The laden resin was desorbed by 10% ammonia and obtained above 120g/L Mo concentration of desorbed solution.
     The investigation of equilibrium and kinetics with D314 resin absorbing Mo was carried out for the first time. The experimental results show that adsorbed equilibrium time is about 240 minutes; When pH of solution is 3.5, saturation adsorption is 292.30mg/mL, distribution ratio is higher than 69411; by calculation of saturation adsorption of Mo and analysis of the form of molybdate in solution, molybdenum could be adsorbed by D314 through Mo4O132- from solution; Reaction control step of ion exchange is PDF, and the apparent activation energy is 27.30KJ/mol.
     The project that V(V) removal with chelate resins from ammonium molybdate solution is advanced for the first time. The experimental results show that chelate resins could adsorb vanadium preferentially from ammonium molybdate solution, but hardly adsorb Mo. Results of selecting resin show that DAS, CUW and CW-2 resins have higher adsorption capacity to vanadium than others. Effects of temperature, pH and adsorbing time to removal of vanadium were investigated, experimental results in fixed bed show that more than 99.5% of V(Ⅴ) can be adsorbed, but adsorbing ratio of Mo(Ⅵ) is less than 0.27%, separation coefficient of vanadium and molybdenum reached 126172,108097 and 105209 respectively at optimal conditions. According to the structure of chelate resins and the form of V(Ⅴ) in ammonium molybdate solution, mechanism of adsorbing V(Ⅴ) with chelate resin in ammonium molybdate solution was advanced for first time.
     According to the results achieved, two new processing flows of production ammonium molybdate from Ni-Mo ore were put forward, which are "leaching by NaClO-enrichment and transformation by ion exchange-purifying-removal of vanadium by ion-exchange-crystallization of ammonium molybdate by acidification" and "one step roasting-leaching by NaOH-enrichment and transformation by ion exchange-purifying-removal of vanadium by ion-exchange-crystallization of ammonium molybdate by acidification". The two processes succeeded in industrialization, and obtained enormous economic profit and environment protecting efficiency.
引文
[1]张启修,赵秦生主编.钨钼冶金.北京:冶金工业出版社,2005
    [2]李洪桂主编.稀有金属冶金学.北京:冶金工业出版社,2001
    [3]C.K.Gupta. Extactive metallurgy of molybdenum. CRE Press. Inc.1992
    [4]王顺昌.世界钼经济近况,中国钼业,1997,21(2,3):22-33
    [5]董允杰.中国钼工业概况,世界有色金属,1996,2:10-13
    [6]王顺昌.世界钼经济概况,有色金属技术经济研究,1997,11(150):34-40
    [7]吴爱祥.我国钼资源的分布与特征,中国钼业,1994,4(53):5-6
    [8]范德廉,叶杰,杨瑞英等.杨子台前寒武/寒武纪界限附近的地质事件与成矿作用.沉积学报,1987,5(3):81-95
    [9]李胜荣,高振敏.湘黔寒武系底部黑色岩系贵金属元素来源示踪.中国科学(D),2000,30(2):169-174
    [10]汪永红,李胜荣.湘黔地区前寒武-寒武纪过渡时期硅质岩生成环境研究.地学前沿,2005,12(4):622-629
    [11]JIANG Shaoyong etl. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China. PROGRESS IN NATURE SCIENCE,2003,13(10): 788~794
    [12]毛晓冬,汪啸风,陈孝红.扬子地台东南缘震旦纪---早寒武世沉积环境及有关矿产,华南地质与矿产.1998,2:24-31
    [13]毛景文,张光弟,杜安道等.遵义黄家湾镍钼铂族元素矿床地质、地球化学和Re-Os同位素年龄测定——兼论华南寒武系底部黑色页岩多金属成矿作用.地质学报,2001,5(2):235-243
    [14]樊正烈.贵州钼矿地质特征及找矿前景.贵州地质,2006,23(2):103-108
    [15]曾明果.遵义黄家湾镍钼矿地质特征及开发前景.贵州地质.1998,15(4):305-310
    [16]鲍振襄,陈放.湘西北黑色岩系中贵金属矿化地质特征及成矿控制因素.有色金属矿产与勘察.1997,6(2):88-94
    [17]鲍正襄,万榕江,包觉敏.湘西北镍钼矿床成矿特征与成因.湖北地矿,2001,15(1):14-32
    [18]李有禹.湘西北镍钼多金属喷气沉积矿床的地球化学特征.地球化学,1997,26(3):89-95
    [19]潘家永,马东升,夏菲等.湘西北下寒武统镍-钼多金属富集层镍与钼的赋存状态.矿物学报,2005,25(3):283-288
    [20]罗卫,戴塔根.湘西北下寒武统黑色页岩中贵金属镍-钼-钒矿床的有机成矿作用.矿产与资源,2007,21(5):504-508
    [21]汪永清.湘西北地区下寒武统镍钼矿地质特征及找矿远景.西部探矿工程,2007,(9):136-137
    [22]罗泰义,宁兴贤,罗远良等.贵州遵义早寒武黑色岩系底部Se的超常富集.矿物学报,2005,25(3):275-282
    [23]鲍振襄.湖南西北部黑色岩系中的贵金属矿化.矿物岩石,1997,17(2):70-77
    [24]肖启云,李胜荣,蔡克勤.湘黔下寒武统黑色岩系不同矿物组合中铂族元素特征.中国地质,2006,5(33):1083-1091
    [25]张光弟,李九玲,熊群尧等.贵州遵义黑色页岩铂族元素金属富集特点及富集模式.矿床地质,2002,21(4):377-385
    [26]陈礼运,宋平,高晓宝.高品位原生钼矿的综合利用.中国钼业,2003,27(3):17-18
    [27]陈代雄,唐美莲,薛伟等.高碳钼镍矿可选性试验研究.湖南有色金属,2006,22(6)
    [28]何旭初.一种选冶结合的镍钼矿镍、钼分离方法.中国专利,CN95110744.5,1995-05-03
    [29]伍宏培,冯光芬.钼镍矿的浓酸熟化浸出解聚溶剂萃取工艺.中国专利,CN88102597.6,1988-04-19
    [30]贺青花,何旭初,何金初.湘西镍钼富矿氧化焙烧研究.湖南冶金,1999,(2):14-17
    [31]秦纯.用碳酸钠转化处理黑色页岩分离钼镍的工艺.中国专利,CN97107568.9,1997-06-23
    [32]邹贵田.用稀酸从钼镍共生矿提取钼和镍盐的方法.中国专利,CN99114737.5,1999-03-23
    [33]邹贵田.用弱碱从钼镍共生矿提取钼和镍盐的方法.中国专利,CN99114736.7,1999-03-23
    [34]Peters E. Direct leaching of sulfides:chemistry and applications. Metallurgical transactions, B,1976,7:505-517
    [35]Barry; Henry F., Hallada, Calvin J., McConnell; Robert W.. LIQUID PHASE OXIDATION PROCESS. USA Pat,3656888,1972
    [36]Bauer; Gunter, Eckert; Joachim. Method of recovering molybdenum oxide. USA Pat,4512958,1985
    [37]Sutfly H. Inter J of Miner proc,1977,(2):83-88
    [38]吴爱祥.用细菌从辉钼矿中浸出钼的探讨.中国钼业,1996,20(1)
    [39]Antonijevic M M et al. Minerals Engineering,1992,5(2):223-233
    [40]聂树人,索有瑞.难选冶金矿石浸金.北京:地质出版社,1997
    [41]Yen W.T.难浸金矿石的次氯酸盐浸出工艺.国外黄金参考,1991,(11):29-封四
    [42]王淀佐,毛培章,邱冠周等.FeAsS、FeS2、Au的NaClO-NaOH体系热力学分析与金的一步浸出.有色金属,1998,50(1):40-44
    [43]黎铉海,粟海锋,黄祖强等.次氯酸钠一步法浸金的原理与试验研究.LM&P化工矿物与加工,2001,(1):15-18
    [44]周以富,高振敏.次氯酸钠高碱高盐氧化分解贵州某难处理金矿载金硫化矿的研究.黄金科学技术,2000,8(3):36-42
    [45]从辉钼矿浮选精选尾矿中用水液法回收钼,杨矿科技,1979,6
    [46]黄宝茅,程光荣.用萃取法从尾矿次氯酸钠浸出溶液中回收钼酸铵的研究.湿法冶金,1995,(04):1-8
    [47]余庆华,陈庭章.从选钼尾矿中回收钼.矿业工程,1992,12(2):47-50
    [48]邹平,赵有才,杜强等.低品位辉钼矿堆浸回收钼的新工艺.中国专利,CN02113699.8,2002-12-25
    [49]Kyung Ho Park, B.Ramachandra Reddy, D.Mohapatra, Chul-Woo Nam. Hydrometallurgical processing and recovery of molybdenum trioxide from spent catalyst. Int.J.Miner.process,2006,(80):261-265
    [50]Hyvarinen Olli. Hamalainen, Matti. HydroCopper [trademark]-A new technology producing copper directly from concentrate. Hydrometallurgy,2005,77(1-2):61-65
    [51]Herreros O., Quiroz R., Manzano E.,Bou C., Vinals J.. Copper extraction from reverberatory and flash furnace slags by chlorine leaching. Hydrometallurgy, 1998,49(1-2):87-101
    [52]薛文颖,申勇峰,赵先明.氯气浸出-电积工艺从铜渣中提取镍.有色金属,2008,60(1):77-79
    [53]陈松,安然,李继州,刘志红,张多默.镍精矿氯气浸出液净化除铁工艺.中南工业大学学报,2000,31(5):419-421
    [54]钟启愚.硫化铋中矿氯气浸出-置换法生产金属铋.有色金属,1996,4:19-21
    [55]张勇德,李岭值,阮仁满.黄铜矿的湿法冶金工艺研究进展.稀有金 属,2005,29(1):83-87
    [56]王含渊,江培海,张寅生,黄忠淼.钴白合金湿法冶金工艺研究.矿冶,1997,6(1):67-71
    [57]Pool D.L.,Scheiner B.J.,Hill S.D., Recovery of Metal Values from Lead Smelter Malter by Chlorine-Oxygen Leaching. Report of Investigations-United States, Bureau of Mines,1982:22
    [58]Barr D.s., Scheiner B.J., Hendrix J. L.. Exanination of the chlorate factor in electrooxidation leaching of molybdenite concentrates using flow-though cells. Int. J. Miner, process,1977,4:83
    [59]Scheiner B.J., Lindstrom R.E..Extraction of molybdenum and rhenium from concentrates by electrooxidation. U.S.. Bur. Mines Rep.Ivest.,No.7802,1973
    [60]赵中伟.辉钼矿湿法浸出过程某些理论问题之浅见.稀有金属与硬质合金,1995,6:1-4
    [61]Krishnaswamy P. Hydrometallurgy research, Development and Plant Practice. K Ossec-Asare eds. Salt Lake City, Utah,1983
    [62]Peters E. Advances in Mineral Processing:A half-Century of Progress in application of theory to Practice. Proceedings of a Symposium Honoring, N Arbiter on His 75th Birthday. New Orleans. P Somasundaran ed.1986:445-462
    [63]周相武,汪晓军,刘娇,王炜.次氯酸钠溶液氧化性研究.氯碱工业,2006,(8):28-30
    [64]刘曾宁,王光建.消毒剂生产与应用.北京:化学工业出版社,2003:77-82
    [65]雍丽珠,孙秀武,吴光华.高浓度次氯酸钠溶液的制备及具稳定性能的探讨.中国氯碱,2004,(1):13-15
    [66]苏瑜,罗鑫龙,马德琈等.次氯酸钠水溶液稳定性及增稠体系研究.精细化工,2000,17(12):708-711
    [67]《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册:稀有高熔点金属(上)(W、Mo、Re、Ti).北京:冶金工业出版社,1999
    [68]李洪桂.离子交换技术在钼冶金中的应用.中国钼业,1994,18(3):1-7
    [69]华东发,张之洁,周朝辉等.钼酸铵除铜工艺研究.湿法冶金,1998,65(1):11-13
    [70]秦玉楠.离子交换法从铜钼精矿生产纯MoO3新工艺.离子交换与吸附,1997,13(1):88-92
    [71]D.K. Huggins, P.B. Queneau, R.C. Ziegler, H.H.K. Nauta. Ion exchange purification of ammonium molybdate solutions. Hydrometallurgy, 1980,6(1-2):63-73
    [72]梁宏,卢基爵.离子交换法从含钼酸性废液中回收钼.中国钼业,1999,(6):43-45
    [73]何焕杰,王永红,赵德启.用D380阴离子交换树脂从硫酸铵溶液中提取钼.信阳师范学院学报(自然科学版),1992,5(2):194-198
    [74]张晓东,成肇安.用Swc树脂提取钼的研究.中国钼业,1997,21(1):26-27
    [75]李洪桂.离子交换技术在钼冶金中的应用.中国钼业,1994,51(3)
    [76]车荣睿.离子交换法在治理含钼废水中的应用.离子交换与吸附,1994,10(2):180-184
    [77]张启伟、熊春华.D301R树脂吸附钼(Ⅵ)的研究.有色金属,2005,57(3):58-61
    [78]O.N.Kononova, A.G Kholmogrorov, S.V.Kachinl. Ion exchange recovery of molybdenum fromnitric acidic solutions using macroporous anion exchangers with long-chained cross-linking agents. Hydrometallurgy,2003,68:83~87
    [79]文颖频,张启修,肖连生.离子交换法从解钼液中富集回收钨钼.稀有金属与硬质合金,2000,142(9):1-4
    [80]文颖频.离子交换法从解钼液中分离回收钨钼的研究.常州技术师范学院学报,2001,7(2):22-26
    [81]杨子超,王秀山,宋瑞萍等.稀有金属,1988,12(1):6
    [82]熊春华,舒增年.2-氨基-三氮脞树脂对钼(Ⅵ)的吸附性能及机理的研究.有色金属,2000,(5):61-64
    [83]舒增年,熊春华,王永江.不同体系中4-氨基吡啶树脂吸附钼(Ⅵ)的研究.有色金属,2001,(6):36-38
    [84]El-Naggar I.M.; Mowafy E.A.; Ibrahim G.M.; Aly H.F.. Sorption Behaviour of Molybdenum on Different Antimonates Ion Exchangers. Adsorption,2003,9(4):331-336
    [85]张启修.冶金分离科学与工程,北京:科学出版社,2004:125-126
    [86]姜志新.离子交换动力学及其应用(上).离子交换与吸附,1989,5(1):54-73
    [87]姜志新.离子交换动力学及其应用(下).离子交换与吸附,1989,5(3):221-233
    [88]张贵清.连续离子交换除镍电解液中微量铅锌的研究.博士论文,2003,7:38-53
    [89]何焕华,王秀山,杨子超,杨居梅.D-380大孔弱碱树脂吸附铼的传质动力学研究.陕西师大学报(自然科学版),1992,22(3):47-50
    [90]宋胤杰,赵爱民.用三种模型处理二元离子交换动力学对比研究.核化学与放射化学,1994,3:151-159
    [91]陶祖怡.四种常用的离子交换动力学模型及速度方程.离子交换与吸 附,1990,3:232-237
    [92]刑正,陈星蕖,陶祖怡.层进机理离子交换反应动力学-1有限浴中粒度均一的离子交换剂的交换反应.化学学报,1983,41(11):1006
    [93]徐爱东.近年来钼市场分析.世界有色金属,2006.3:41-46
    [94]JANG Shaoyong, YANG Jinhong, LING Hongfei, FENG Hongzhen, CHEN Yongqun, CHEN Jianhua et al. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science,2003 13(10):788~794
    [95]罗卫,戴塔根.湘西北下寒武统黑色岩系中贵金属镍-钼-钒矿床的有机成矿作用.矿产与地质,2007,5(21):504-509
    [96]陈建华,彭家强,温官国.贵州松桃下寒武统九门冲组钼钒矿的赋存状态初步研究.贵州地质,2007,3(24):185-188
    [97]李青刚,肖连生,张贵清,张启修.镍钼矿生产钼酸铵全湿法生产工艺及实践.稀有金属,2007,3(31):
    [98]席歆,姚谦.国外含钒石油渣提钒生产现状.世界有色金属,2001,5:36-41
    [99]朝阳,春晖.从废催化剂中提取钼、钒、镍的试验.铁合金,2001,157(2):29-31
    [100]Chen Yun, Feng Qiming; Shao Yanhai; Zhang Guofan; Ou Leming; Lu Yiping. Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst. International Journal of Mineral Processing,2006,79(1):42-48
    [101]王淑芳,妈成兵,袁应斌.从重油加氢脱硫催化剂中回收钼和钒的研究.中国钼业,2007,6(37):24-26
    [102]Stas Jamal, Dahdouh Ajaj, Al-chayah Omar.Recovery of vanadium, nickel and molybdenum from fly ash of heavy oil-fired electrical power station. Periodica Polytechnica:Chemical Engineering, v 51, n 2,2007:67~70
    [103]Holloway P.C., Etsell T.H.. Process for the complete utilization of oil sands fly ash. Canadian Metallurgical Quarterly,2006,45(1):25-32
    [104]施友富、王海北.废催化剂中钼和钒的分离.中国钼业.2004,28(2)
    [105]Wilhelmus P.,Gerhard E.W.K.,Roeland H.. Process for the separate recovery of vanadium and molybdenum. USA Pat.4051221,1977
    [106]Lyaudet Georges, Vial Jean. Process for the separate recovery of molybdenum and vanadium. USA Pat.4,587,109,1986
    [107]Emillio S.. Process for electively removing molybdenum from liquid mixtures containing it together with vanadium. USA Pat.2004/0262232A1,2004
    [108]E.森提门迪,N.帕纳里提.从含钼和钒的溶液混合物中选择性脱除钼的方法.中国专利,CN1511195A,2004
    [109]John E. Litz. Process for recovering molybdenum from solution in a form that is substantially free from vanadium. USA Pat.4814149,1989
    [110]Sebenik, Roger F., LaValle etc. Recovery of metal values from spent hydrodesulfurization catalysts. USA Pat.4495157,1985
    [111]周新花,郑洁修,马玉龙.溶剂萃取法从含钒水浸溶液中分离钒和钼.武汉大学学报(自然科学版),1991,4:83-88
    [112]Chen Jyh-Herng, Kao Ying-Yun, Lin Chia-Hung. Selective separation of vanadium from molybdenum using D2EHPA-immobilized amberlite XAD-4 resin. Separation Science and Technology,2003,38(15):3827-3852
    [113]Weiping Zhang,Katesutoshi Inoue, Kazuharu Youshizuka etc. Extraction and selective striping of molybdenum[Ⅵ] and vanadium[Ⅳ] from sulfuric acid solution containing aluminum[Ⅲ],cobalt[Ⅱ], nickel[Ⅱ] and iron[Ⅲ] by LIX63 in Exxsol D80. Hydrometallurgy,1996,(41) 45~53
    [114]Hirai, Takayuki, Komasawa, Isao. Separation and purification of vanadium and molybdenum by solvent extraction followed by reductive stripping. Journal of Chemical Engineering of Japan, v 23, n 2, Apr,1990, p 208-213
    [115]Hirai, Takayuki, Komasawa, Isao. Electro-reductive stripping of vanadium in solvent extraction process for separation of vanadium and molybdenum using tri-n-octylmethylammonium chloride. Hydrometallurgy, v 33, n 1-2, Jun,1993, p 73-82
    [116]Hirai, Takayuki, Komasawa, Isao. Electro-reductive stripping of vanadium in solvent extraction process for separation of vanadium and molybdenum. Journal of Chemical Engineering of Japan, v 24, n 1, Feb,1991, p 124-125
    [117]P.Henry, A. Van Lierde. Selective separation of vanadium from molybdenum by electrochemical ion exchange. Hydrometallurgy 48(1998)73-81
    [118]Pope M.T.,et al.Clays and Clay Minerals.1968,22:527
    [119]Andrei A. Zagorodni. Ion exchange materials:Properties and applications.北京:科学出版社,2007,5:55-67
    [120]朱屯.萃取与离子交换.北京:冶金工业出版社,2005:397
    [121]Schilde U.Uhlemann, E.. Separation of several oxoanions with a special chelating resin containing methylamino-glucitol groups. Reactive Polymers,1993, 20(3):181-188
    [122]http://www.chinafastener.biz/gb/news.aspx?ID=1274
    [123]http://www.atk.com.cn/antaike/cn/news/detail.php3?news_id=1236083058
    [124]http://www.cechem.net/index.asp

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700