中国产NDM-1细菌流行现状及bla_(NDM-1)基因跨种属转移机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NDM-1型碳青霉烯酶是2009年发现的一种新型金属p-内酰胺酶,具有对头孢菌素及碳青霉烯类抗生素的高效水解活性。至今,产NDM-1酶菌株已经呈全球范围播散,成为严重威胁人类健康的“超级细菌”。但是目前,我国NDM-1菌株的流行病学数据缺乏,blaNDM-1基因迅速播散的机制仍不明确。
     本研究第一部分对收集于2009年1月至2010年9月间来自全国18个省市,57家医院的非重复革兰阴性杆菌12024株,其中大肠埃希菌3439株、肺炎克雷伯菌2840株、不动杆菌属细菌2835株以及铜绿假单胞菌2910株,运用PCR技术对blaNDM-1基因进行筛查。结果发现13株菌携带有blaNDM-1基因,均为不动杆菌属细菌。患者流行病学资料回顾性分析结果显示:其中8位患者年龄>60岁、4位<7岁,13位患者中只有2例发生死亡;所有患者半年内均未有出国旅游史。13株菌来自于10个不同的省份及9个不同的科室,7例来源于痰标本、3例血液、2例分泌物及1例尿液标本。筛查结果提示,在我国NDM-1菌株尚未出现流行,不动杆菌属细菌为blaNDM-1基因的重要携带菌,这与国外众多研究结果不同。由于不动杆菌属菌种数目多、菌种间性状相似度高,该属细菌的菌种鉴定一直是个难点。为对13株菌进行准确菌种鉴定,我们除使用生化鉴定外,依次采用了blaOXA-51-like基因、16S-23S rRNA ITS区序列、ARDRA酶切分析及rpoB基因序列分析等四种方法。结果显示13株菌中,A. baumannii4株,A. pittii3株,A. lwoffii、A. johnsonii、A. genospecies10、A. haemolyticus、A. junii及A. genospecies15TU各1株。运用E-test药敏条对菌株进行抗菌药物MIC值测试,结果显示13株不动杆菌菌株对包括碳青霉烯类在内的所有p-内酰胺类抗生素表现出一致的体外耐药表型,对氨基糖苷类(庆大霉素和阿米卡星)、喹诺酮类(环丙沙星)及单环酰胺类(氨曲南)等抗生素的药敏表型有差异,对多粘菌素类(多粘菌素)、甘氨酰环素类(替加环素)及四环素类(米诺环素)均表现为敏感。
     在此基础上,本研究的第二部分内容通过S1-酶切后脉冲场凝胶电泳(S1-PFGE)联合Southern blot杂交技术对13株不动杆菌属细菌的blaNDM-1基因进行定位,运用质粒接合实验及转化实验验证质粒的可转移性;通过酶切克隆研究blaNDM-1基因的周围结构;进一步运用第二代高通量测序技术完成了ABC8415菌株blaNDM-1质粒的测序,并根据pABC8415质粒序列设计引物进行PCR mapping研究其余12株菌的blaNDM-1质粒序列结构特点,对blaNDM-1质粒结构与耐药基因传递间的关系进行了深入探讨。
     本部分实验结果提示,所有菌株blaNDM-1基因均定位于质粒上,质粒大小30-55kb。除菌株ABC207外,其余12株菌的blaNDM-1质粒均通过接合成功进入E. coli J53接合受体菌中,药敏结果提示E. coli J53接合子对头孢菌素类抗生素耐药,但对碳青霉烯类仍表现为敏感,推测可能是由于供、受体菌间种属的差异导致NDM-1酶不能在受体菌E. coli J53中充分表达所致。9株非鲍曼不动杆菌blaNDM-1质粒均能通过转化的方式进入电转感受态细菌A. baylyi ADP1,转化子成功获得NDM-1酶介导对头孢菌素类及碳青霉烯类抗生素的耐药性。
     blaNDM-1基因周围结构分析结果显示该基因位于具有转移功能的大片段转座结构Tn125上,该完整的Tn125转座结构为9个基因的串联排列,顺序为:ISAba125-blaNDM-1-bleo-trpF-dsbc-cutA1-groES-groEL-ISAba125。在13株菌中发现了5种不同大小的转座结构(命名为Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ型转座结构)。此5种转座结构的主要区别是blaNDM-1基因下游序列发生了不同长度的截短,推测下游拷贝的ISAba125转座酶是参与转座结构产生的主要原因;而上游拷贝的ISAba125与blaNDM-1基因关系密切,构成稳定的ISAba125-blaNDM-1基因簇,是介导blaNDM-1基因在不同菌种间传递的主要转移酶。为明确ISAba125对blaNDM-1基因转移的作用以及blaNDM-1基因在不同种属细菌(包括肠杆菌科细菌及非发酵菌)中的进化关系,我们从NCBI上公布的、来源于不同菌属菌种的、带有ISAba125-blaNDM-1基因簇的参考序列中挑选出了9条序列,与本研究中13条序列进行基因相似性聚类分析,构建系统进化树,分析亲缘关系。纳入的参考序列来源菌种分别为大肠埃希菌2株、弗氏构橼酸杆菌1株、普罗威登菌属2株、鲍曼不动杆菌2株以及铜绿假单胞菌2株。结果发现22条序列分为两簇ClusterⅠ及Ⅱ,9条参考序列与8条本实验序列均归入Cluster I簇,另外5条归入ClusterⅡ簇,两簇间亲缘关系非常近,序列相差最多6bp。也就是说ISAba125-blaNDM-1基因簇在不同种属细菌中具有稳定性,不同种属细菌间ISAba125-blaNDM-1的进化关系是平行的。
     pABC8415质粒全长39365bp,具有31个CDS,其中已知蛋白20个,未知蛋白11个,未找到质粒复制相关蛋白。质粒结构包括了两个部分:骨架区及可变区。骨架区编码与质粒复制、转移及毒力等功能相关的基本蛋白,GC含量为37.26%;可变区则即blaNDM-1基因所在Tn125转座区,GC含量高达61.42%。PCR mapping结果揭示其余12株细菌blaNDM-1质粒与pABC8415质粒结构非常相似,该类未知型别质粒仅在NDM-1不动杆菌属细菌中特异性存在。根据Tn125转座结构区的GC含量变化推测该区域外源性的可能性大,携带有blaNDM-1基因的Tn125转座子以大片段水平转移的方式进入质粒。通过比对Tn125转座结构序列在不动杆菌属与肠杆菌科细菌间的差异,我们推测blaNDM-1基因是从其他未知高GC物种经由不动杆菌属细菌进入肠杆菌科细菌中的进化顺序。
     本部分研究可以得出以下几个结论:blaNDM-1质粒及ISAba125转座酶是介导blaNDM-1基因在不动杆菌属不同菌种间水平转移的重要转座元件;而不动杆菌属细菌是blaNDM-1基因进入肠杆菌科细菌的关键中间环节。
     鉴于国外有关blaNDM-1基因广泛存在于肠杆菌科细菌质粒上的报道,为了解blaNDM-1质粒在肠杆菌科细菌与不动杆菌属细菌之间序列特征上的差异,探索blaNDM-1基因的跨种属水平转移机制,我们对一株来源于弗氏枸橼酸杆菌的blaNDM-1质粒进行了研究。
     通过基因定位实验发现blaNDM-1基因定位于50-78.2kb大小的可转移性质粒上,质粒型别IncX3型,全质粒GC含量49.03%。该blaNDM-1质粒结构也由骨架区(40kb)及可变区(14kb)两部分组成。质粒的骨架区包括了诸如复制蛋白基因(repB gene)及鞭毛基因(pilX genes)等编码质粒功能蛋白的基因。blaNDM-1基因定位于可变区,该区同时含有另一个β-内酰胺酶耐药基因blaSHV-12,位于blaNDM-1基因下游;可变区有许多与基因转移相关的Is元件或转座子,如IS26,ISAba125、IS26、IS5、tnpA和tnpF;blaNDM-1基因上游的ISAba125转座结构被ⅠS5转座结构插入打断。通过比对该质粒序列与不动杆菌属Ⅰ型Tn125转座结构,我们发现两者均携带有与blaNDM-1基因亲缘关系密切的一簇基因blaNDM-1-bleo-trpF-ds6C-cutA1-groEL-insE-tnpA,片段大小8321bp,该区域的GC含量为58%,命名为NCT (NDM-1composite transposon, NDM-1复合转座子)区;而pCFNDM-CN除NCT区以外的区域与肺炎克雷伯菌pIncX-SHV质粒(序列号JN247852)很相似(覆盖度96%,相似度99%)。因此,我们推测NCT区是外源性的,是由ISAba125转座酶携带从不动杆菌属细菌跨种属水平转移到肺炎克雷伯菌pIncX-SHV质粒中。
     综上所述,通过本研究发现我国尚未出现产NDM-1酶菌株流行的情况;blaNDM-1基因定位于具有可转移功能的质粒上,且能随由ISAba125转座酶介导跨种属水平转移,这些证据解释了NDM-1菌株迅速引起全球播散的原因,也警示我们blaNDM-1基因所能造成的潜在威胁,必须引起广泛重视。
New Delhi metallo-beta-lactamase (NDM-1) is a novel type of metallo-β-lactamase (MBL) reported in2009, which shows highly hydrolytic activity to β-lactams including cephalosporins and carbapenems. NDM-1-producing pathogens have disseminated world widely and developed to "superbugs" threatening human health. However, epidemic data of NDM-1-producing bacteria in our country is absent, even the speading mechanism for blaNDM-1gene spreading is still unclear.
     In this study, a national wide survey of multidrug resistance in Gram-negative bacteria was undertaken in China from January2009to September2010. A total of12024clinical isolates, including3439E.coli,2840K. pneumonia,2835Acinetobacter spp. and2910P. aeruginosa, were collected from57hospitals representing18provinces and screened by PCR for the presence of blaNDM-1gene.13blaNDM-1positive isolates were identified as Acinetobacter spp.. According to the epidemiological data for the13corresponding patients, eight were over60years old and four were less than7years old. With the exception of two, all of the patients fully recovered. The patient histories were confirmed as lacking any foreign travel. These13isolates were recovered from10provinces in China and were scattered9different wards. The samples obtained for culture included sputum (n=7), blood (n=3), secretion (n=2) and urine (n=1). Our results, different with previous research, suggest that the alarming potential of NDM-1-producing bacteria has yet to be appeared in China. The genus Acinetobacter is the most common bacteria which is prone to carry blaNDM-1currently. The species identification of Acinetobacter genus is difficult to identify owing to the large number of species and high phenotypic similarity between different species. To clarify the species correctly, four methods were utilized in our study beside the phenotypic test using the VITEK2system: blaoXA-51-like gene,16S-23S rRNA intergenic spacer (ITS) sequencing, ARDRA and partial rpoB sequence analysis. By combining the data obtained from the above four methods, we classified the NDM-1-producing strains to eight different Acinetobacter spp., including A. baumannii (n=4), A. pittii (n=3), A. lwoffii (n=1), A.johnsonii (n=1), A. genospecies10(n=1), A. haemolyticus (n=1), A. junii(n=1) and A. genospecies15TU (n=1). All the13isolates were positive for the MBL phenotype and were highly resistant to both carbapenems and broad-spectrum cephalosporins, but showed variable susceptibilities to fluoroquinolones and aminoglycosides by E-test.
     To unveil the location of the blaNDM-1gene, investigate the surrounding genetic structure, study the plasmid feature and reveal the association between plasmid structure and spread of resistant gene, further works were carried out on these13isolates. S1-PFGE assay and Southern blot hybridization were performed to determine the plasmid location of blaNDM-1. The transferability of blaNDM-1-harbouring plasmid was confirmed by conjugation experiments and electrotransformation. The surrounding genetic structure of the blaNDM-i gene was analysed using a restriction endonucleas-based cloning approach. Genome sequence of the blaNDM-1plasmid from strain ABC8415(pABC8415) was completed by using next-generation sequencing. PCR mapping followed by sequence analysis was done in order to investigate the plasmid structure of the rest12isolates.
     These13blaNDM-1genes were located on plasmids, with sizes ranging from~30to~55kb. All plasmids except one (strain ABC207) and9non-baumannii Acinetobacter spp. isolates could be transferred to E.coli J53by conjugation and A. baylyi ADP1by electrotransformation. The transconjugants were resistant to all cephalosporins and β-lactam/β-lactamase inhibitor combinations, but susceptible to carbapenems, aztreonam, fluoroquinolones and aminoglycosides, and were negative for the MBL phenotype, a finding that might be because of the differences between the Acinetobacter donor and the Enterobacteriaceae recipient. A. baylyi ADP1 transformants exhibited relatively high resistance to both carbapenems and cephalosporins and presented an MBL-positive phenotype either.
     The blaNDM-1gene resided in an ISAba125-associated transposon (Tn125) with potential transferability. A series of conserved genes was found in the Tn125structure: ISAba125-blaNDM-1-bleo-trpF-dsbc-cutA1-groES-groEL-ISAba125. Five types of Tn125structure (I, II, III, IV and V) were identified, with differences in downstream of the blaNDM-1gene, which suggested that the ISAba125transposon downstream was very likely responsible for the fragment deletion. While the ISAba125upstream, combined closely with blaNDM-1gene, might be the main transposase mediating horizontal genetic transfer of the blaNDM-1gene among species. To clarify the role of ISAba125-blaNDM-1in the dissemination of the blaNDM-1gene, the same region of other nine reference sequences, which belonged to four different genera (including two Pseudomonas auroginosa isolates, two Providencia spp., two E. coli, one Citrobacter freundii and two A. baumannii), were compared with that of our13sequences. Then Mega5software was applied to draw alignment tree reflecting the evolution of the blaNDMu-1. It suggested all of the involved sequences could be clustered into two groups, cluster I and II, with merely0-6base pair difference within or between the two groups. Nine reference sequences and eight our sequences were grouped to cluster I, while the rest five were grouped to cluster II. The alignment result showed us ISAba125-blaNDM-1is a relatively stable structure in Acinetobacter spp. and other genera such as Enterobacteriaceae spp. and non-fermentive bacteria, which reveals the parallel evolution of the ISAba125-blaNDM-1in different species.
     pABC8415was39364bp in size, possessed31open reading frames (ORFs) and hold20annotated proteins and11hypothetical proteins. The plasmid consist of a backbone region responsible for plasmid replication and transfer with average G+C content of37.36%, and a variable region harbouring the blaNDM-1gene with G+C content of61.42%. No plasmid replication protein was predicated. All of the reat12 blaNDM-1plasmids showed highly similarity on the plasmid structure with pABC8415. Therefore, we confirm this kind of untyped plasmid was specialized to Acinetobacter spp.. The average G+C content (%) of the region between the two copies of ISAba125, designated as Tn125, was markedly higher than the surrounding sequence which suggested it plays a vital role in the gene mobilization. Our analysis on the genetic environment of blaNDM-1between Acinetobacter spp. and Enterobacteriaceae revealed that Tn125transposon structure might be transferred from a progenitor to Acinetobacter spp. horizontally and that further transfer events mediated by other insertion elements ensued between Acinetobacter spp. and Enterobacteriaceae.
     We concluded that both blaNDM-1plasmid and Tn125transposon contribute to the gene mobilization within different Acinetobacter species. While Acinetobacter species play as an intermediate link in blaNDM-1gene transmission to Enterobacteriaceae. In order to reveal the epidemiological and evolutional characteristics of blaNDM-1gene in Enterobacteriaecea, as well as to investigate the different feature of blaNDM-1plasmid between Enterobacteriaceae and Acinetobacter spp. in China, further plasmid sequencing and comparative genomic analysis were undertaken on a blaNDM-1-positive Citrobacter freundii isolate.
     A blaNDM-1-positive C. freundii was isolated from a patient suffering from a urinary tract infection. S1nuclease-based PFGE analysis followed by Southern blot hybridization, a conjugation experiment and electrotransformation confirmed that the blaNDM-i gene was located on a plasmid with size ranging from~50kb to~78.2kb. High-throughput sequencing of the blaNDM-1plasmid (pCFNDM-CN) showed that it was a54kb IncX-type plasmid and contained a backbone region (40kb) and a variable region (14kb). Several conserved gene clusters were annotated in the backbone region, including a repB gene associated with replication and a series of pilX genes related to plasmid mobilization. The blasHV-12gene and the blaNDM-1gene were found within the variable region. In addition, insertion sequences (IS26, ISAba125and IS5) and transposase genes (IS26-tnpA and tnpF) responsible for gene horizontal transfer were also clustered in this region. A series of conserved genes (blaNDM-1-bleo-trpF-dsbC-cutAl-groEL-insE-tnpA) was found in the structure of the NDM-1composite transposon (NCT,8321bp in size). The mean G+C content of the whole plasmid was49.03%, whereas it was significantly higher in the NCT (over58%). The backbone region of pCFNDM-CN presented high similarity to pIncX-SHV (GenBank accession no. JN247852;96%query coverage,99%maximum nucleotide identity) which originated from a K. pneumoniae strain, but showed some differences in the insertion site of the NCT. Our research suggested that the NCT might play an essential role in the mobilization of the blaNDM-1gene from Acinetobacter spp. to Enterobacteriaceae.
     In summary, we investigated the prevalence of blaNDM-1in China and concluded that NDM-1-producing isolates are rare in our country. However, attention should be given to detecting, monitoring and controlling their dissemination because this resistance gene resides in an ISAba125transposon with potential transferability cross species
引文
1. Yong D, Toleman MA, Giske CG et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial agents and chemotherapy 2009; 53:5046-54.
    2. Walsh TR, Weeks J, Livermore DM et al. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health:an environmental point prevalence study. The Lancet infectious diseases 2011; 11:355-62.
    3. Rolain JM, Parola P, Cornaglia G. New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect 2010; 16:1699-701.
    4. Karthikeyan K, Thirunarayan MA, Krishnan P. Coexistence of blaOXA-23 with blaNDM-1 and armA in clinical isolates of Acinetobacter baumannii from India. J Antimicrob Chemother 2010; 65: 2253-4.
    5. Bogaerts P, Bouchahrouf W, de Castro RR et al. Emergence of NDM-1-producing Enterobacteriaceae in Belgium. Antimicrobial agents and chemotherapy 2011; 55: 3036-8.
    6. Poirel L, Lagrutta E, Taylor P et al. Emergence of metallo-beta-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrobial agents and chemotherapy 2010; 54:4914-6.
    7. Poirel L, Ros A, Carricajo A et al. Extremely drug-resistant Citrobacter freundii isolate producing NDM-1 and other carbapenemases identified in a patient returning from India. Antimicrobial agents and chemotherapy 2011; 55:447-8.
    8. Peirano G, Schreckenberger PC, Pitout JD. Characteristics of NDM-1-producing Escherichia coli isolates that belong to the successful and virulent clone ST131. Antimicrobial agents and chemotherapy 2011; 55: 2986-8.
    9. Nordmann P, Poirel L, Walsh TR et al. The emerging NDM carbapenemases. Trends in microbiology 2011; 19:588-95.
    10. Arpin C, Noury P, Boraud D et al. NDM-1-producing Klebsiella pneumoniae resistant to colistin in a French community patient without history of foreign travel. Antimicrobial agents and chemotherapy 2012; 56: 3432-4.
    11. Leverstein-Van Hall MA, Stuart JC, Voets GM et al. Global spread of New Delhi metallo-beta-lactamase 1. The Lancet infectious diseases 2010; 10:830-1.
    12. Chen Z, Qlu S, Wang Y et al. Coexistence of blaNDM-1 with the prevalent blaOXA23 and blaIMP in pan-drug resistant Acinetobacter baumannii isolates in China. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 2011; 52:692-3.
    13. Ho PL, Lo WU, Yeung MK et al. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PloS one 2011; 6: e17989.
    14. Kulah C, Mooij MJ, Comert F et al. Characterisation of carbapenem-resistant Acinetobacter baumannii outbreak strains producing OXA-58 in Turkey. International journal of antimicrobial agents 2010; 36:114-8.
    15. Chang HC, Wei YF, Dijkshoorn L et al. Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S-23S rRNA gene spacer region. Journal of clinical microbiology 2005; 43: 1632-9.
    16. Dijkshoorn L, Van Harsselaar B, Tjernberg I et al. Evaluation of amplified ribosomal DNA restriction analysis for identification of Acinetobacter genomic species. Systematic and applied microbiology 1998; 21:33-9.
    17. La Scola B, Gundi VA, Khamis A et al. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. Journal of clinical microbiology 2006; 44:827-32.
    18. Toi 'di Ade' kambi, Michel Drancourt, Raoult D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 2009; 17:37-45.
    19. Bartual SG, Seifert H, Hippler C et al. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. Journal of clinical microbiology 2005; 43:4382-90.
    20.王辉,俞云松,王明贵等.替加环素体外药敏实验操作规程专家共识.中华检验医学杂志2013;36:584-7.
    21. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement M100-S20. CLSI W, PA, USA,2010.
    22. Andrews JM. BSAC Methods for Antimicrobial Susceptibility Testing VMhwbouRBVMfpM.
    23. Wyeth Pharmaceuticals. Tygacil Product Insert. http://www.tygacil.com (19 December 2006 dla.
    24. Nordmann P, Poirel L, Toleman MA et al. Does broad-spectrum beta-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? The Journal of antimicrobial chemotherapy 2011; 66:689-92.
    25. Wisplinghoff H, Edmond MB, Pfaller MA et al. Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals:clinical features, molecular epidemiology, and antimicrobial susceptibility. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 2000; 31:690-7.
    26. Espinal P, Seifert H, Dijkshoorn L et al. Rapid and accurate identification of genomic species from the Acinetobacter baumannii (Ab) group by MALDI-TOF MS. Clinical microbiology and infection:the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2012; 18:1097-103.
    27. Turton JF, Woodford N, Glover J et al. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. Journal of clinical microbiology 2006; 44:2974-6.
    28. Case RJ, Boucher Y, Dahllof I et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Applied and environmental microbiology 2007; 73:278-88.
    29. Gundi VA, Dijkshoorn L, Burignat S et al. Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species. Microbiology 2009; 155:2333-41.
    30. Nemec A, Musilek M, Sedo O et al. Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int J Syst Evol Microbiol 2010; 60:896-903.
    31. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nature reviews Microbiology 2007; 5: 939-51.
    32. Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis 2008; 8: 751-62.
    33. Munoz-Price LS, Weinstein RA. Acinetobacter infection. The New England journal of medicine 2008; 358:1271-81.
    34. Rhomberg PR, Jones RN. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program:a 10-year experience in the United States (1999-2008). Diagnostic microbiology and infectious disease 2009; 65:414-26.
    35. Gales AC, Jones RN, Sader HS. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli:report from the SENTRY antimicrobial surveillance programme (2001-2004). Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2006; 12:315-21.
    36. Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens:results from the SENTRY Antimicrobial Surveillance Program (2006-09). The Journal of antimicrobial chemotherapy 2011; 66:2070-4.
    1. Dizbay M, Tunccan OG, Sezer BE et al. Nosocomial imipenem-resistant Acinetobacter baumannii infections: epidemiology and risk factors. Scandinavian journal of infectious diseases 2010; 42:741-6.
    2. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nature reviews Microbiology 2001; 5: 939-51.
    3. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii:emergence of a successful pathogen. Clinical microbiology reviews 2008; 21:538-82.
    4. Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrobial agents and chemotherapy 2010; 54:24-38.
    5. Nordmann P, Poirel L, Walsh TR et al. The emerging NDM carbapenemases. Trends in microbiology 2011; 19:588-95.
    6. Hu H, Hu Y, Pan Y et al. Novel plasmid and its variant harboring both a bla(NDM-1) gene and type IV secretion system in clinical isolates of Acinetobacter lwoffii. Antimicrobial agents and chemotherapy 2012; 56:1698-702.
    7. Metzgar D, Bacher JM, Pezo V et al. Acinetobacter sp. ADP1:an ideal model organism for genetic analysis and genome engineering. Nucleic acids research 2004; 32:5780-90.
    8. Bertini A, Poirel L, Mugnier PD et al. Characterization and PCR-Based Replicon Typing of Resistance Plasmids in Acinetobacter baumannii. Antimicrobial agents and chemotherapy 2010; 54:4168-77.
    9. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome research 2008; 18:821-9.
    10. Pfeifer Y, Wilharm G, Zander E et al. Molecular characterization of blaNDM-1 in an Acinetobacter baumannii strain isolated in Germany in 2007. The Journal of antimicrobial chemotherapy 2011; 66: 1998-2001.
    11. Walsh TR, Weeks J, Livermore DM et al. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health:an environmental point prevalence study. The Lancet infectious diseases 2011; 11: 355-62.
    12. Centers for Disease C, Prevention. Detection of Enterobacteriaceae isolates carrying metallo-beta-lactamase - United States,2010. MMWR Morbidity and mortality weekly report 2010; 59:750.
    13. Deshpande P, Rodrigues C, Shetty A et al. New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae:treatment options with carbapenems compromised. The Journal of the Association of Physicians of India 2010; 58: 147-9.
    14. Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet infectious diseases 2010; 10:597-602.
    15. Mulvey MR, Grant JM, Plewes K et al. New Delhi metallo-beta-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerging infectious diseases 2011; 17:103-6.
    16. Poirel L, Lagrutta E, Taylor P et al. Emergence of metallo-beta-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrobial agents and chemotherapy 2010; 54:4914-6.
    17. Poirel L, Ros A, Carricajo A et al. Extremely drug-resistant Citrobacter freundii isolate producing NDM-1 and other carbapenemases identified in a patient returning from India. Antimicrobial agents and chemotherapy 2011; 55:447-8.
    18. Wu HS, Chen TL, Chen IC et al. First identification of a patient colonized with Klebsiella pneumoniae carrying blaNDM-1 in Taiwan. Journal of the Chinese Medical Association:JCMA 2010; 73:596-8.
    19. Zarfel G, Hoenigl M, Leitner E et al. Emergence of New Delhi metallo-beta-lactamase, Austria. Emerging infectious diseases 2011; 17:129-30.
    20. Carattoli A, Bertini A, Villa L et al. Identification of plasmids by PCR-based replicon typing. Journal of microbiological methods 2005; 63:219-28.
    21. Dolejska M, Villa L, Poirel L et al. Complete sequencing of an IncHIl plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. The Journal of antimicrobial chemotherapy 2013; 68:34-9.
    22. Poirel L, Dortet L, Bernabeu S et al. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrobial agents and chemotherapy 2011; 55:5403-7.
    23. Sole M, Pitart C, Roca I et al. First description of an Escherichia coli strain producing NDM-1 carbapenemase in Spain. Antimicrobial agents and chemotherapy 2011; 55:4402-4.
    24. Ho PL, Lo WU, Yeung MK et al. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PloS one 2011; 6:e17989.
    25. Sekizuka T, Matsui M, Yamane K et al. Complete sequencing of the bla(NDM-1)-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens. PloS one 2011; 6:e25334.
    26. Bonnin RA, Poirel L, Carattoli A et al. Characterization of an IncFII plasmid encoding NDM-1 from Escherichia coli ST131. PloS one 2012; 7:e34752.
    27. Carattoli A, Villa L, Poirel L et al. Evolution of IncA/C blaCMY-(2)-carrying plasmids by acquisition of the blaNDM-(1) carbapenemase gene. Antimicrobial agents and chemotherapy 2012; 56:783-6.
    28. Poirel L, Bonnin RA, Nordmann P. Analysis of the resistome of a multidrug-resistant NDM-1-producing Escherichia coli strain by high-throughput genome sequencing. Antimicrobial agents and chemotherapy 2011; 55:4224-9.
    29. Villa L, Poirel L, Nordmann P et al. Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrBl genes. The Journal of antimicrobial chemotherapy 2012; 67:1645-50.
    30. Partridge SR, Iredell JR. Genetic contexts of blaNDM-1. Antimicrobial agents and chemotherapy 2012; 56:6065-7; author reply 71.
    1. Maltezou HC. Metallo-beta-lactamases in Gram-negative bacteria: introducing the era of pan-resistance? International journal of antimicrobial agents 2009; 33:405 e1-7.
    2. Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases: a last frontier for beta-lactams? The Lancet infectious diseases 2011; 11:381-93.
    3. Nordmann P, Gniadkowski M, Giske CG et al. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clinical microbiology and infection:the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2012; 18:432-8.
    4. Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK:a molecular, biological, and epidemiological study. The Lancet infectious diseases 2010; 10:597-602.
    5. Yong D, Toleman MA, Giske CG et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial agents and chemotherapy 2009; 53:5046-54.
    6. Walsh TR. Emerging carbapenemases:a global perspective. International journal of antimicrobial agents 2010; 36 Suppl 3:S8-14.
    7. Johnson AP, Woodford N. Global spread of antibiotic resistance:the example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance. Journal of medical microbiology 2013; 62:499-513.
    8. Jovcic B, Lepsanovic Z, Suljagic V et al. Emergence of NDM-1 metallo-beta-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrobial agents and chemotherapy 2011; 55: 3929-31.
    9. Dolejska M, Villa L, Poirel L et al. Complete sequencing of an IncHIl plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. The Journal of antimicrobial chemotherapy2013; 68:34-9.
    10. Nordmann P, Couard JP, Sansot D et al. Emergence of an autochthonous and community-acquired NDM-1-producing Klebsiella pneumoniae in Europe. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2012; 54:150-1.
    11. Villa L, Poirel L, Nordmann P et al. Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrBl genes. The Journal of antimicrobial chemotherapy 2012; 67:1645-50.
    12. Ho PL, Li Z, Lo WU et al. Identification and characterization of a novel incompatibility group X3 plasmid carrying blaNDM-1 in Enterobacteriaceae isolates with epidemiological links to multiple geographical areas in China. Emerg Microbes Infect2012; 1:e39.
    13. Johnson TJ, Bielak EM, Fortini D et al. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 2012; 68:43-50.
    14. Ho PL, Cheung YY, Lo WU et al. Molecular Characterization of an Atypical IncX3 Plasmid pKPC-NY79 Carrying bla KPC-2 in a Klebsiella pneumoniae. Current microbiology2013; 67:493-8.
    15. Partridge SR, Ellem JA, Tetu SG et al. Complete sequence of pJIE143, a pir-type plasmid carrying ISEcpl-blaCTX-M-15 from an Escherichia coli ST131 isolate. Antimicrobial agents and chemotherapy 2011; 55:5933-5.
    1. Spellberg B, Blaser M, Guidos RJ et al. Combating antimicrobial resistance:policy recommendations to save lives. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 2011; 52 Suppl 5:S397-428.
    2. Kock R, Becker K, Cookson B et al. Methicillin-resistant Staphylococcus aureus (MRSA):burden of disease and control challenges in Europe. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2010; 15:19688.
    3.执笔汪.2006年中国CHINET细菌耐药性监测.中国感染与化疗杂志2008;8:1-9.
    4. 朱德妹,胡付品等汪.2007年中国CHINET细菌耐药性监测.中国感染与化疗杂志2008;8:325-33.
    5. 汪复,朱德妹,胡付品.2008年中国CHINET细菌耐药性监测.中国感染与化疗杂志2009;9:321-9.
    6. 朱德妹,汪复,胡付品.2009年中国CHINET细菌耐药监测结果.中国感染与化疗杂志2010;10:325-34.
    7. 朱德妹,汪复,胡付品.2010年中国CHINET细菌耐药性监测.2010.
    8. 胡付品,朱德妹,汪复等.2011年中国CHINET细菌耐药性监测.2012.
    9. Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerging infectious diseases 2011; 17:1791-8.
    10. Yang YJ, Wu PJ, Livermore DM. Biochemical characterization of a beta-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrobial agents and chemotherapy 1990; 34:755-8.
    11. Rasmussen BA, Bush K, Keeney D et al. Characterization of IMI-1 beta-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrobial agents and chemotherapy 1996; 40:2080-6.
    12. Osano E, Arakawa Y, Wacharotayankun R et al. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrobial agents and chemotherapy 1994; 38: 71-8.
    13. Rhomberg PR, Jones RN. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: a 10-year experience in the United States (1999-2008). Diagnostic microbiology and infectious disease 2009; 65:414-26.
    14. Walther-Rasmussen J, Hoiby N. OXA-type carbapenemases. The Journal of antimicrobial chemotherapy 2006; 57:373-83.
    15. Bush K. The ABCD's of beta-lactamase nomenclature. Journal of infection and chemotherapy:official journal of the Japan Society of Chemotherapy 2013; 19:549-59.
    16. Qi Y, Wei Z, Ji S et al. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. The Journal of antimicrobial chemotherapy 2011; 66:307-12.
    17. Cornaglia G, Akova M, Amicosante G et al. Metallo-beta-lactamases as emerging resistance determinants in Gram-negative pathogens:open issues. International journal of antimicrobial agents 2007; 29:380-8.
    18. Chu YW, Cheung TK, Ngan JY et al. EDTA susceptibility leading to false detection of metallo-beta-lactamase in Pseudomonas aeruginosa by Etest and an imipenem-EDTA disk method. International journal of antimicrobial agents 2005; 26:340-1.
    19. Kim SY, Rhee JY, Shin SY et al. Characteristics of community-onset NDM-1-producing Klebsiella pneumoniae isolates. Journal of medical microbiology 2014; 63:86-9.
    20. Yamamoto M, Nagao M, Matsumura Y et al. Regional dissemination of Acinetobacter species harbouring metallo-beta-lactamase genes in Japan. Clinical microbiology and infection:the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2013; 19:729-36.
    21. Carrer A, Poirel L, Yilmaz M et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrobial agents and chemotherapy 2010; 54: 1369-73.
    22. Cuzon G, Ouanich J, Gondret R et al. Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrobial agents and chemotherapy 2011; 55:2420-3.
    23. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrobial agents and chemotherapy 2012; 56:559-62.
    24. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. The Journal of antimicrobial chemotherapy 2012; 67:1597-606.
    25. Woodford N, Pike R, Meunier D et al. In vitro activity of temocillin against multidrug-resistant clinical isolates of Escherichia coli, Klebsiella spp. and Enterobacter spp., and evaluation of high-level temocillin resistance as a diagnostic marker for OXA-48 carbapenemase. The Journal of antimicrobial chemotherapy 2013.
    26. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae:here is the storm! Trends in molecular medicine 2012; 18:263-72.
    27. Ambler RP. The structure of beta-lactamases. Philosophical transactions of the Royal Society of London Series B, Biological sciences 1980; 289:321-31.
    28. Walsh TR, Toleman MA, Poirel L et al. Metallo-beta-lactamases:the quiet before the storm? Clinical microbiology reviews 2005; 18:306-25.
    29. Castanheira M, Toleman MA, Jones RN et al. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrobial agents and chemotherapy 2004; 48:4654-61.
    30. Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK:a molecular, biological, and epidemiological study. The Lancet infectious diseases 2010; 10:597-602.
    31. Cuzon G, Bonnin RA, Nordmann P. First identification of novel NDM carbapenemase, NDM-7, in Escherichia coli in France. PloS one 2013; 8:e61322.
    32. Williamson DA, Sidjabat HE, Freeman JT et al. Identification and molecular characterisation of New Delhi metallo-beta-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. International journal of antimicrobial agents 2012; 39:529-33.
    33. Nordmann P, Boulanger AE, Poirel L. NDM-4 metallo-beta-lactamase with increased carbapenemase activity from Escherichia coli. Antimicrobial agents and chemotherapy 2012; 56:2184-6.
    34. Tada T, Miyoshi-Akiyama T, Dahal RK et al. NDM-8 metallo-beta-lactamase in a multidrug-resistant Escherichia coli strain isolated in Nepal. Antimicrobial agents and chemotherapy 2013; 57:2394-6.
    35. Hornsey M, Phee L, Wareham DW. A novel variant, NDM-5, of the New Delhi metallo-beta-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrobial agents and chemotherapy 2011; 55:5952-4.
    36. Tiwari V, Moganty RR. Structural studies on New Delhi Metallo-beta-lactamase (NDM-2)_ suggest old beta-lactam, penicillin to be better antibiotic for NDM-2-harbouring Acinetobacter baumanni. Journal of biomolecular structure & dynamics 2013; 31:591-601.
    37. Yong D, Toleman MA, Giske CG et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial agents and chemotherapy 2009; 53:5046-54.
    38. Kaase M, Nordmann P, Wichelhaus TA et al. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. The Journal of antimicrobial chemotherapy 2011; 66:1260-2.
    39. Rogers BA, Sidjabat HE, Silvey A et al. Treatment options for New Delhi metallo-beta-lactamase-harboring enterobacteriaceae. Microbial drug resistance 2013; 19:100-3.
    40. Gottig S, Hamprecht AG, Christ S et al. Detection of NDM-7 in Germany, a new variant of the New Delhi metallo-beta-lactamase with increased carbapenemase activity. The Journal of antimicrobial chemotherapy 2013; 68:1737-40.
    41. Wilson ME, Chen LH. NDM-1 and the Role of Travel in Its Dissemination. Current infectious disease reports 2012; 14:213-26.
    42. Walsh TR. Emerging carbapenemases: a global perspective. International journal of antimicrobial agents 2010; 36 Suppl 3:S8-14.
    43. van der Bij AK, Pitout JD. The role of international travel in the worldwide spread of multiresistant Enterobacteriaceae. The Journal of antimicrobial chemotherapy 2012; 67:2090-100.
    44. Rogers BA, Aminzadeh Z, Hayashi Y et al. Country-to-country transfer of patients and the risk of multi-resistant bacterial infection. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 2011; 53:49-56.
    45. D'Andrea MM, Venturelli C, Giani T et al. Persistent carriage and infection by multidrug-resistant Escherichia coli ST405 producing NDM-1 carbapenemase:report on the first Italian cases. Journal of clinical microbiology 2011; 49:2755-8.
    46. Arpin C, Noury P, Boraud D et al. NDM-1-producing Klebsiella pneumoniae resistant to colistin in a French community patient without history of foreign travel. Antimicrobial agents and chemotherapy 2012; 56:3432-4.
    47. Leverstein-Van Hall MA, Stuart JC, Voets GM et al. Global spread of New Delhi metallo-beta-lactamase 1. The Lancet infectious diseases 2010; 10:830-1.
    48. Denis C, Poirel L, Carricajo A et al. Nosocomial transmission of NDM-1-producing Escherichia coli within a non-endemic area in France. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2012; 18:E128-30.
    49. Poirel L, Herve V, Hombrouck-Alet C et al. Long-term carriage of NDM-1-producing Escherichia coli. The Journal of antimicrobial chemotherapy 2011; 66:2185-6.
    50. Perry JD, Naqvi SH, Mirza IA et al. Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. The Journal of antimicrobial chemotherapy 2011; 66:2288-94.
    51. Walsh TR, Weeks J, Livermore DM et al. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health:an environmental point prevalence study. The Lancet infectious diseases 2011; 11:355-62.
    52. Johnson AP, Woodford N. Global spread of antibiotic resistance:the example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance. Journal of medical microbiology 2013; 62:499-513.
    53. Jovcic B, Lepsanovic Z, Suljagic V et al. Emergence of NDM-1 metallo-beta-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrobial agents and chemotherapy 2011; 55:3929-31.
    54. Wang X, Xu X, Li Z et al. An Outbreak of a Nosocomial NDM-1-Producing Klebsiella pneumoniae ST147 at a Teaching Hospital in Mainland China. Microbial drug resistance 2013.
    55. Yang J, Chen Y, Jia X et al. Dissemination and characterization of NDM-1-producing Acinetobacter pittii in an intensive care unit in China. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2012; 18:E506-13.
    56. Fu Y, Du X, Ji J et al. Epidemiological characteristics and genetic structure of blaNDM-1 in non-baumannii Acinetobacter spp. in China. The Journal of antimicrobial chemotherapy 2012; 67: 2114-22.
    57. Chen Y, Zhou Z, Jiang Y et al. Emergence of NDM-1-producing Acinetobacter baumannii in China. The Journal of antimicrobial chemotherapy 2011; 66: 1255-9.
    58. Du XX, Wang JF, Fu Y et al. Genetic characteristics of blaNDM-1-positive plasmid in Citrobacter freundii isolate separated from a clinical infectious patient. Journal of medical microbiology 2013; 62:1332-7.
    59. Pak-Leung Ho ZL, Wai-U Lo, Wuk-Yam Cheung. Identification and characterization of a novel incompatibility group X3 plasmid carrying blaNDM-1in Enterobacteriaceae isolates with epidemiological links to multiple geographical areas in China. Emerging infectious diseases 2012; e39.
    60. Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS microbiology reviews 2011; 35:736-55.
    61. Mushtaq S, Irfan S, Sarma JB et al. Phylogenetic diversity of Escherichia coli strains producing NDM-type carbapenemases. The Journal of antimicrobial chemotherapy 2011; 66:2002-5.
    62. Poirel L, Benouda A, Hays C et al. Emergence of NDM-1-producing Klebsiella pneumoniae in Morocco. The Journal of antimicrobial chemotherapy 2011; 66:2781-3.
    63. Yamamoto T, Takano T, Fusegawa T et al. Electron microscopic structures, serum resistance, and plasmid restructuring of New Delhi metallo-beta-lactamase-1 (NDM-1)-producing ST42 Klebsiella pneumoniae emerging in Japan. Journal of infection and chemotherapy: official journal of the Japan Society of Chemotherapy 2013; 19:118-27.
    64. Poirel L, Al Maskari Z, Al Rashdi F et al. NDM-1-producing Klebsiella pneumoniae isolated in the Sultanate of Oman. The Journal of antimicrobial chemotherapy 2011; 66:304-6.
    65. Dolejska M, Villa L, Poirel L et al. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. The Journal of antimicrobial chemotherapy 2013; 68:34-9.
    66. Nordmann P, Couard JP, Sansot D et al. Emergence of an autochthonous and community-acquired NDM-1-producing Klebsiella pneumoniae in Europe. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 2012; 54:150-1.
    67. Villa L, Poirel L, Nordmann P et al. Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrBl genes. The Journal of antimicrobial chemotherapy 2012; 67:1645-50.
    68. Poirel L, Bonnin RA, Nordmann P. Analysis of the resistome of a multidrug-resistant NDM-1-producing Escherichia coli strain by high-throughput genome sequencing. Antimicrobial agents and chemotherapy 2011; 55:4224-9.
    69. Sekizuka T, Matsui M, Yamane K et al. Complete sequencing of the bla(NDM-1)-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens. PloS one 2011; 6:e25334.
    70. Ho PL, Lo WU, Yeung MK et al. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PloS one 2011; 6:e17989.
    71. Pasteran F, Mendez T, Rapoport M et al. Controlling false-positive results obtained with the Hodge and Masuda assays for detection of class a carbapenemase in species of enterobacteriaceae by incorporating boronic Acid. Journal of clinical microbiology 2010; 48:1323-32.
    72. Castanheira M, Deshpande LM, Mathai D et al. Early dissemination of NDM-1-and OXA-181-producing Enterobacteriaceae in Indian hospitals:report from the SENTRY Antimicrobial Surveillance Program, 2006-2007. Antimicrobial agents and chemotherapy 2011; 55:1274-8.
    73. Jean SS, Hsueh PR. High burden of antimicrobial resistance in Asia. International journal of antimicrobial agents 2011; 37:291-5.
    74. Nordmann P, Poirel L, Carrer A et al. How to detect NDM-1 producers. Journal of clinical microbiology 2011; 49:718-21.
    75. Naas T, Ergani A, Carrer A et al. Real-time PCR for detection of NDM-1 carbapenemase genes from spiked stool samples. Antimicrobial agents and chemotherapy 2011; 55:4038-43.
    76. Manchanda V, Rai S, Gupta S et al. Development of TaqMan real-time polymerase chain reaction for the detection of the newly emerging form of carbapenem resistance gene in clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Indian journal of medical microbiology 2011; 29:249-53.
    77. Nijhuis R, Samuelsen O, Savelkoul P et al. Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. Diagnostic microbiology and infectious disease 2013; 77:316-20.
    78. Liu W, Zou D, Li Y et al. Sensitive and rapid detection of the new Delhi metallo-beta-lactamase gene by loop-mediated isothermal amplification. Journal of clinical microbiology 2012; 50:1580-5.
    79. Hrabak J, Studentova V, Walkova R et al. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of clinical microbiology 2012; 50: 2441-3.
    80. Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. Journal of clinical microbiology 2011; 49:3321-4.
    81. Pillai DR, McGeer A, Low DE. New Delhi metallo-beta-lactamase-1 in Enterobacteriaceae: emerging resistance. CMAJ : Canadian Medical Association Journal = Journal de l'Association medicale canadienne 2011; 183:59-64.
    82. Bercot B, Poirel L, Dortet L et al. In vitro evaluation of antibiotic synergy for NDM-1-producing Enterobacteriaceae. The Journal of antimicrobial chemotherapy 2011; 66:2295-7.
    83. Davey MS, Tyrrell JM, Howe RA et al. A promising target for treatment of multidrug-resistant bacterial infections. Antimicrobial agents and chemotherapy 2011; 55:3635-6.
    84. Peirano G, Ahmed-Bentley J, Woodford N et al. New Delhi metallo-beta-lactamase from traveler returning to Canada. Emerging infectious diseases 2011; 17:242-4.
    85. Koo VS, O'Neill P, Elves A. Multidrug-resistant NDM-1 Klebsiella outbreak and infection control in endoscopic urology. BJU international 2012; 110:E922-6.
    86. Dortet L, Brechard L, Grenet K et al. Sri Lanka, another country from the Indian subcontinent with NDM-1-producing Enterobacteriaceae. The Journal of antimicrobial chemotherapy 2013; 68:2172-3.
    87. van Duin D, Kaye KS, Neuner EA et al. Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagnostic microbiology and infectious disease 2013; 75:115-20.
    88. Cheng CY, Sheng WH, Wang JT et al. Safety and efficacy of intravenous colistin (colistin methanesulphonate) for severe multidrug-resistant Gram-negative bacterial infections. International journal of antimicrobial agents 2010; 35:297-300.
    89. Lee HJ, Bergen PJ, Bulitta JB et al. Synergistic activity of colistin and rifampin combination against multidrug-resistant Acinetobacter baumannii in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrobial agents and chemotherapy 2013; 57:3738-45.
    90. Stone NR, Woodford N, Livermore DM et al. Breakthrough bacteraemia due to tigecycline-resistant Escherichia coli with New Delhi metallo-beta-lactamase (NDM)-1 successfully treated with colistin in a patient with calciphylaxis. The Journal of antimicrobial chemotherapy 2011; 66:2677-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700