沉水植物苦草和水环境质量相互效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用沉水植物进行水生态修复是国内外水坏境领域的研究热点。沉水植物作为水生态系统的重要初级生产力,对水生态系统起着重要的作用。为了研究沉水植物和水环境之间相互效应;本文开展了以下主要内容:
     (1)在夏季,在铺有底泥的水泥池中种植不同密度(500g/m2、200 g/m2、100g/m2、50 g/m2)的苦草,研究苦草对池塘水的净化效果。结果表明:在19天的试验期内,500g/m2、200 g/m2、100 g/m2、50 g/m2苦草对TN的除去率分别为66.67%、70.95%、66.48%、70.48%,分别显著高于对照组,但是不同密度组之间的差异不显著。500g/m2、200 g/m2、100 g/m2、50 g/m2苦草苦草对TP的除去率分别为56.11%、63.75%、61.13%、57.54%,和对照组比差异不显著,不同密度组之间的差异不显著。500g/m2、200 g/m2、100 g/m2、50 g/m2苦草对硝酸盐的除去率分别为83.33%、76.83%、70.87%、72.88%,和对照组比差异不显著,500g/m2苦草的除去率同100 g/m2和50g/m2比较差异显著。500g/m2、200 g/m2、100 g/m2、50 g/m2苦草对亚硝酸的除去率分别为97.39%、97.62%、98.54%、97.89%,和对照组比差异不显著,不同密度组之间的差异不显著。500g/m2、200 g/m2、100 g/m2、50 g/m2苦草对COD的除去率分别为47.92%、57.92%、60.98%、71.93%,和对照组比差异不显著,不同密度组之间的差异不显著。同时,水体中溶氧(DO)和pH值日变化显著,溶解氧对照组在13:30达到最大,而种植有苦草的在15:30后达到最大,且pH值的变化同溶解氧。
     (2)在冬季利用分解网袋法,分别在塑料桶和野外沟渠设置不同的处理,研究苦草腐败对水环境的影响和氮、磷的损失规律。结果表明:苦草在冬季腐败中,释放的磷大部分会被底泥吸附掉,进入水体中的磷很少;同时苦草腐败以氨氮、亚硝态氮和硝态氮形式释放到水体也是非常有限的;故冬季苦草腐败对水体富营养影响有限。不同环境对苦草的腐败过程中苦草干重、TN. TP剩余率有显著的影响;底泥的存在减缓了干重的损失速度,而加快了植物TN和TP的损失速度;且苦草分解过程中磷的释放最快。苦草的分解具有阶段性,开始36d时分解非常迅速,从第36d至第66d分解进入缓慢期。
     (3)以沉水植物苦草作为研究对象,在塑料桶中加入池塘水培养苦草并调节其氨氮浓度和pH值,研究不同环境条件对苦草的生长的影响。结果表明:非离子氨对植物生长有影响,对植物的生物量影响是很显著的,pH值和氨氮的交互作用对苦草的叶绿素含量有极显著影响。当pH值和氨氮浓度达到一定高度的时候,使植物失去碳氮平衡,造成植物的生长受抑制。在长久高pH值和氨氮影响,苦草遭受—定的环境胁迫,使得植物体内的SOD和MDA有显著上升。
Restoring aquatic ecosystem using submerged macrophyte has become one of the focuses of aquatic environmental research. As the important primary productivity of aquatic ecosystem, submerged macrophyte plays an key role in water ecological system. The aim of this paper is to elucidate the correlation between aquatic environmental quality and biological effects of submerged macrophyte. The results are as follows:
     (1) In summer, tape grass (Vallisneria Spiralis) was cultivated in cement pond with sediment at different planting densities (500g/m2,200g/m2, 100g/m2,50g/m2).The effect of different planting densities of tape grass(Vallisneria Spiralis) on water purification was studied. The results indicated that the remove rate of TN in the different densities of 500g/m2,200g/m2, 100g/m2,50g/m2 was 66.67%,70.95%,66.48%,70.48%. The remove rate of TN in the different densities was significantly higher than that in the control group. But no significant differences in the removal rate of TN, however, were observed among the different densities. The remove rate of TP in the different densities of 500g/m2,200 g/m2,100g/m2,50g/m2 was 56.11%,63.75%,61.13%,57.54%. No significantly differences in the removal rate of TP were observed between the control group and the different densities. And no significant differences in the removal rate of TP were observed among the different densities. The remove rate of nitrate nitrogen in the different densities of 500g/m2,200g/m2,100g/m2,50g/m2 was 83.33%,76.83%,70.87%,72.88%. No significantly differences in the removal rate of nitrate nitrogen were observed between the control group and the different densities. The remove rate of nitrite nitrogen in 500g/m2 was significantly higher than that in 100g/m2 and 50g/m2. The remove rate of nitrite nitrogen in the different densities of 500g/m2,200g/m2,100g/m2,50g/m2 was 56.11%, 63.75%,61.13%,57.54%. No significantly differences in the removal rate of nitrite nitrogen were observed between the control group and the different densities. And no significant differences in the removal rate of nitrite nitrogen were observed among the different densities. The remove rate of COD in the different densities of 500g/m2, 200g/m2,100g/m2,50g/m2 was 47.92%,57.92%,60.98%,71.93%. No significantly differences in the removal rate of COD were observed between the control group and the different densities. And no significant differences in the removal rate of COD were observed among the different densities. In addition, the daily change of pH and DO varied significantly. The value of DO in the control group achieve maximum at 13:30, but the value of DO in different densities achieve maximum at 15:30. The value of pH and DO had the same change.
     (2) With the litterbag method, the influence of the decomposition of submerged macrophyte (Vallisneria Spiralis) in winter on water quality and the law of nutritional release was studied under the laboratory and ditch conditions. The results indicated that the released phosphorus from the decayed Vallisneria Spiralis in winter was mainly absorbed by the sediment. At the same time, the release of ammonia nitrogen, nitrite nitrogen and nitrate nitrogen from the decayed tape grass was very limited. Therefore, the decomposition of tape grass attributed little to the eutrophication of cultured ponds in winter. Analyses of the decomposition rate of submerged macrophytes(Vallisneria Spiralis) under the different environment showed that the decomposition rate of grass was the fastest in treatment C. Aquatic environment has highly significantly impacts on dry weight, residual TN and TP of tape grass. The existing of sediment slowed down the lost rate of dry weight, but speeded up the lost rate of TN and TP. The release of phosphorus was the fastest during the decay of Vallisneria Spiralis. The process of decay of Vallisneria Spiralis has been divided a few phase. The decomposition rate was very fast in the first 36 days, but the rate became slower from 36 d to 66 d.
     (3)The submerged macrophyte(Vallisneria Spiralis) was planted in the different plastic buckets containing pond water in which the different concentrations of ammonia nitrogen and pH were set. The influences of the different factors (ammonia and pH value) on the growth of Vallisneria Spiralis were studied. The results indicated that the nonionic ammonia had significant impact on grass growth as well as plant biomass. The co-effect of nonionic ammonia and pH resulted in the significant change in chlorophyll content of Vallisneria Spiralis. As pH value and ammonia nitrogen reached to a certain degree in water, the imbalance in the content of carbon and nitrogen in grass would occur. This eventually led to the growth depression of tape grass. The activity of SOD and the content of MDA increased significantly due to long term of the exposure to the water in which high pH value and high ammonia content were detected.
引文
1.包裕尉,卢少勇,金湘灿等.溶解氧和光照对狐尾藻衰亡释放氮磷碳的影响[J].环境科学与技术,2010,33(2):5-9
    2.包先明,陈开宁,范成新等.种植沉水植物对富营养化水体沉积物中磷形态的影响[J].土壤通报,2006,37(4):710-715
    3.白秀玲,谷孝鸿,何俊.太湖环棱螺及其与沉水植物的相互作用[J].生态学报,29(2):1032-1037
    4.曹特,倪乐意.金鱼藻抗氧化酶对水体无机氮升高的响应[J].水生生物学报,2004,28(3):299-303
    5.陈小峰,王庆亚,陈开宁.不同光照条件对菹草外部形态与内部结构的影响[J].武汉植物学研究,2008,26(2):163-169
    6.陈锦清.沉水植物对污染水体的水质改善效应研究.[硕士论文].南京:河海大学
    7.成小英,王国祥,濮培民等.凤眼莲腐烂分解对湖泊水质的影响[J].中国环境科学,2004,24(3):303-306
    8.常会庆,杨肖娥,方云英等.伊乐藻和固化细菌共同作用对富营养化水体中养分的影响[J].水土保持学报,2005,19(3):114-117
    9.崔心红,钟扬,李伟等.特大洪水对鄱阳湖水生植物三个优势种的影响[J].水生生物学报,2000,24(4):322-325
    10.窦艳艳,王保忠,尹大强等.碳酸氢根缓解高营养负荷下苦草胁迫的作用[J].生态环境,2008,17(4):1581-1585
    11.樊英鑫,荣冬青,陈叙光等.非离子氨对金鱼藻生长与生理特性的影响[J].河北北方学院学报(自然科学版),2009,25(2):36-41
    12.伏彩中,肖瑜,高士祥等.模拟水生态系统中沉水植物对水体营养物质消减的影响[J].环境污染与防治,2006,28(10):753-756
    13.范云爽,戴丽,蒋云东.人工湿地处理污染河水和湿地植物腐烂分解影响研究[J].环境科学导刊,2010,29(3):42-45
    14.高镜清,熊治廷,张维昊等.常见沉水植物对东湖重度富营养化水体磷的去除效果[J].长江流域资源与环境,2007,16(6):796-800
    15.顾久君,金朝晖,刘振英.乌梁素海沉水植物腐烂分解试验研究[J].干旱区资源与环境,2008,22(4):181-184
    16.国家环境保护总局.水和废水监测方法[M].第4版.北京:中国环境科学出版社,2002
    17.胡莲,万成炎,许炎生等.云龙湖水库沉水植物重建对浮游甲壳动物的影响[J].水利渔业,27(1):54-56
    18.胡雪峰,陈振楼,高效江.入冬水生高等植物的衰亡对河流水质的影响[J].上海环境科学,2001,20(4):184-187
    19.黄瑾,宋玉芝,秦伯强.磷对太湖沉水植物伊乐藻的影响[J].南京信息工程大学学报(自然科学版),2009,1(3):233-237
    20.黄蕾,翟建平,王传瑜等.4种沉水植物在冬季脱氮除磷效果的实验研究[J].农业环境科学学报,2005,24(2):366-370
    21.金湘灿,王圣瑞,赵海超等.磷形态对磷在水-沉水植物-底质中分配的影响[J].生态环境,2005,14(5):631-635
    22.敬小军,袁新华.金鱼藻改善精养池塘水质的效果试验[J].d津农业科学,2010,16(5):38-41
    23.况琪军,夏宜争,吴振斌.人工模拟生态系统中植物与藻类的相关性研究[J].水生生物学报,1997,21(1):90-93
    24.历恩华,刘贵华,李伟等.洪湖三种水生植物的分解速率及氮、磷动态[J].中国环境科学,2006,26(6):667-671
    25.李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000
    26.李宽意,刘正文,李传红等.螺类牧食损害对沉水植物群落结构的调节.海洋与湖沼,2007,38(6):576-580
    27.李宽意,文明章,杨宏伟.“螺-草”的互利关系[J].生态学报,2007(12):5427-5432
    28.李燕,王丽卿,张瑞雷.淀山湖沉水植物死亡分解过程中营养物质的释放[J].环境污染与防治,2008,30(2):45-52
    29.李文朝.东太湖茭黄水发生原因与防治对策探讨[J].湖泊科学,1997,9(4):364-368
    30.李文朝.东太湖水生植物的促淤效应与磷的沉积[J].环境科学,1997,18(3):10-12
    31.李文朝,陈开宁,吴庆龙等.东太湖水生植物生物质腐烂分解实验[J].湖泊科学,2001,13(4):331-336
    32.黎慧娟,倪乐意.浮游绿藻对沉水植物苦草生长的抑制作用[J].湖泊科学,2007,19(2):111-117
    33.黎慧娟,倪乐意,曹特等.弱光照和富营养对苦草生长的影响[J].水生生 物学报,2008,32(2):225-230
    34.刘从玉,刘平平,刘正文等.沉水植物在生态修复和水质改善中的作用[J].安徽农业科学,2008,36(7):2908-2910
    35.刘佳,刘永立,叶庆富等.水生植物对水体中氮、磷的吸收与抑藻效应的研究[J].核农学报,2007,21(4):393-396
    36.刘燕,王圣瑞,金相灿等.水体营养水平对3种沉水植物生长及其抗氧化酶活性的影响[J].生态环境学报,2009,18(1):57-63
    37.马剑敏,靳萍,吴振斌.沉水植物对重金属的吸收净化和受害积累研究进展[J].植物学通报,2007,24(2):232-239
    38.南京农业大学.土壤农化分析[M].第2版.北京:农业出版社,1992
    39.倪乐意.富营养水体中肥沃底质对沉水植物生长的胁迫[J].水生生物学报,2001,25(4):399-405
    40.彭克俭,刘益贵,沈振国等.铅、镉在沉水植物龙须眼子菜叶片中的分布[J].中国环境科学,2010,26(Suppl.):69-74
    41.潘慧云,徐小花,高士祥.沉水植物衰亡过程中营养盐的释放过程及规律[J].环境科学研究,2008,21(1):64-68
    42.钱志萍,冯燕,孙莉等.金鱼藻对铜绿微囊藻生长的抑制作用研究[J].植物研究,2006,26(1):79-83
    43.强蓉蓉,王国祥,张利民等.凤眼莲死亡对湖泊水质的持续影响分析[J].中国环境监测,2005,21(1):
    44.邱东茹,吴振斌.富营养化浅水湖泊沉水植被的衰退与恢复[J].湖泊科学,1997,9(1):82-88
    45.沈显生,胡颖.沉水植物苦草的生物学特性的研究[J].安徽教育学院学报,2006,24(6):86-88
    46.司静,刑奕,卢少勇等.沉水植物衰亡过程中氮磷释放规律及温度影响研究[J].中国农业通报,2009,25(01):217-223
    47.宋碧玉,曹明,谢平.沉水植物的重建与消失对原生动物群落结构和生物多样性的影响[J].生态学报,2000,20(2):270-276
    48.宋玉芝,秦伯强,高光等.附着生物对沉水植物伊乐藻生长的研究[J].生态环境,2007,16(6):1643-1647
    49.苏胜齐,姚维志.沉水植物与环境关系评述[J].农业环境保护,2002,21(16):570-573
    50.苏睿丽,李伟.沉水植物光合作用的特点与研究进展[J].植物学通报,2005,22(增刊):128-138
    51.田琦,王沛芳,欧阳萍等.5种沉水植物对富营养化水体的净化能力研究[J].水资源保护,2009,25(1):14-17
    52.王传海,李宽意,文明章等.苦草对水中环境因子影响的日变化特征[J].农业环境科学学报,2007,26(2):798-800
    53.王沛芳,王超,王晓蓉等.苦草对不同浓度氮净化效果及其形态转化规律[J].环境科学,2008,29(4):890-895
    54.王素梅,潘伟斌,黄华.富营养化水体中光照对黑藻生长的影响[J].水资源保护,2010,26(2):53-55
    55.王华,逢勇,刘申宝等.沉水植物生长影响因子研究进展[J].生态学报,2008,28(8):3958-3968
    56.王丽卿,李燕,张瑞雷.6种沉水植物系统对淀山湖水质净化效果的研究[J].农业环境科学学报,2008,27(3):1134-1139
    57.王小冬,秦伯强,高光等.伊乐藻对高浓度氮磷营养盐的耐受性[J].生态学杂志,2009,28(12):2561-2566
    58.王斌,周莉苹,李伟.不同水质条件下菹草的净化作用及其生理反应初步研究[J].武汉植物学研究,2002,20(2):150-152
    59.王珺,顾飞宇,纪东成等.富营养条件下不同形态氮对轮叶黑藻的生理影响[J].环境科学研究,2006,19(1):71-74
    60.王博,叶春,杨劭等.腐解黑藻生物量对高硝氮水体氮素的影响[J].环境科学研究,2009,22(10):1198-1203
    61.吴振斌,邱东茹,贺锋等.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1351-1353
    62.谢贻发,李传红,刘正文等.基质条件对苦草生长和形态特征的影响[J].农业环境科学学报,2007,26(4):1269-1272
    63.熊飞,李文朝,潘继征.高原深水湖泊抚仙湖大型底栖动物群落结构及多样性[J].生物多样性,2008,16(3):288-297
    64.熊秉红,李伟.我国苦草属植物的生态学研究[J].武汉植物学研究,2000,18(16):500-508
    65.熊汉峰,谭启玲,李伟.不同营养状态下3种沉水植物的生理响应[J].海洋湖沼通报,2009,4:62-66
    66.徐红灯,席北斗,翟丽华.沟渠沉积物对农田排水中氨氮的截留效应研究[J].环境科学研究学,2007,26(5):1924-1928
    67.杨逸萍,王增焕,孙建等.精养虾主要水化学因子变化规律和氮的收支[J].海洋科学,1999,(1):1-17
    68.杨红军.五里湖湖滨带生态恢复和重建的基础研究.[博士学位论文].上海:上海交通大学,2008
    69.颜昌宙,曾阿妍.沉水植物对重金属Cu2+的生物吸附及其生理反应[J].农业环境科学学报,2009,28(2):336-370
    70.颜昌宙,曾阿妍,金相灿等.不同浓度氨氮对轮叶黑藻的生理影响[J].生态学报,2007,27(3):1050-1055
    71.叶春,于海婵,宋祥甫等.底泥对沉水植物生长和群落结构的影响[J].环境科学研究,2008,21(5):178-183
    72.由文辉.淀山湖周丛动物群落的初步研究[J].水生生物学报,1997,21(2):114-122
    73.俞斐,李树美,沈显生.长梗苦草雄花结构的环境扫描电镜观察[J].西北植物学报,2007,27(5):859-863
    74.于曦,刘祥福,石福臣.无机氮化合物及pH对槐叶萍生长的影响[J].天津师范大学学报(自然科学版),2007,27(4):26-29
    75.于洪贤,蒋超.放养河蟹对黑龙江东湖水库底栖动物和水生维管束植物的影响[J].水生生物学报,2005,29(4):430-434
    76.袁龙义,李守淳,李伟等.光照对沉水植物刺苦草生活史对策的影响[J].江西师范大学学报(自然科学版),2008,32(4):482-487
    77.赵安娜,冯慕华,李文朝等.沉水植物伊乐藻光合放氧对水体氮转化的影响[J].生态环境学报,2010,19(4):757-761
    78.赵联芳,朱伟,莫妙兴.沉水植物对水体pH值的影响及其脱氮作用[J].水资源保护,2008,24(6):64-67
    79.钟非,刘保元,贺峰等.水生态修复对莲花湖底栖动物群落的影响[J].应用与环境生物学报,2007,13(1):55-60
    80.张奋清,王丽敏,吴利斌等.乌梁素海氮循环转化过程的初探[J].内蒙古农业大学学报,2004,25(2):31-34
    81.张晨,陈孝军,王立义等.于桥水库菹草过度生长对水质的影响及成因分析[J].津大学学报,2011,44(1):1-6
    82.张圣照,王国祥,濮培民.太湖藻型富营养化对水生高等植物的影响及植被的恢复[J].植物资源与环境,1998,7(4):52-57
    83.张彦辉,安彦杰,朱迟等.水体无机碳条件对常见沉水植物生长和生理的影响[J].水生生物学报,2009,33(6):1020-1030
    84.朱丹婷,李铭红,乔宁宁.正交实验法分析环境因子对苦草生长的影响[J].生态学报,2010,30(23):6451-6459
    85.朱伟,张俊,赵联芳.底质中氨氮对沉水植物生长的影响[J].生态环境,2006,15(5):914-920
    86.周俊丽,吴莹,张经等.长江口潮滩植物麓草腐烂分解过程研究[J].海洋科学进展,2006,24(1):44-50
    87.种霄云,胡洪营,钱易等.无机氮化合物及pH值对紫背浮萍生长的影响[J].中国环境科学,2003,23(4):471-421
    88. Anesio AM, Abreu PC, Biddanda BA. The role of free and attached microorganisms in the decomposition of estuarine macrophyte detritus[J]. Estuarine, Coastal and Shelf Science,2003,56:197-201.
    89. Arunothai Jampeetong, Hans Brix. Effects of NH4+ concentration on growth, morphology and NH4+ uptake kinetics of Slavinnia[J]. Ecological Engineering, 2009,35:695-702.
    90. Cao T, Xie P, Li ZQ et al. Physiological stress of high NH4+ concentration in water column on the submersed macrophyte Vallisneria natans L.[J]. Bull Environ Cotanm Toxicol,2009,82:296-299.
    91. Cao T, Xie P, Ni LY et al. Carbon and nitrogen metabolism of an eutrophication tolerative macrophyte Potamogeton crispus,under NH4+ stress and low light avaibility[J]. Environmental and Experimental Botany,2009,66:74-78.
    92. Corstanje R, Reddy KR, Portier KM. Typha latifolia and Cladium jamaicense litter decay in response to exogenous nutrient enrichment[J]. Aquatic Botany, 2006,84:70-78.
    93. Daniel Shilla, Takshi Asaeda, Takeshi Fujino et al. Decomposition of dominant submerged macrophytes:implications for nutrient release in Myall Lake, NSW, Australia[J]. Wetland Ecology and management,2006,14:427-433.
    94. Dale AW, Henry RM, Aronod GV et al. Decomposition of emergent macrophyte roots and rhizomes in a northern prairie marsh[J]. Aquatic Botany, 1997,58:121-134.
    95. Ellen VD, Wouter JB. Impact of submerged macrophtes including charophytes on phyto-and zooplankton communities:allelopathy versus other mechanisms[J]. Aquatic Botany,2002,72:261-274.
    96. Eliska Rejmankova, Dagmara Sirova. Wetland macrophyte decomposition under different nutrient conditions Relationships between decomposition rate,enzyme activities and microbial biomass[J]. Soil Biology and Biochemistry, 2007,39:526-538.
    97. Edita Tylova, Lenka Steinbachovd, Olga Votrubova et al. Different sensitivity of Phragmites australis and Glyceria maxima to high availability of ammonium-N[J]. Aquatic Botany,2008,88:93-98.
    98. Hugo Coops, Roel WD. Submerged vegetation development in two shallow, eutrophic lakes[J]. Hydrobiologia,1996,340:115-120.
    99. Haseeb MI, Brian M. Factors influencing the return of submerged plants to a clear-water, shallow temperate lake[J]. Aquatic Botany,2004,80:177-191.
    100.Jukka Horppila, Leena Nurminen. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi[J]. Water Research,2003,37:4468-4474.
    101.Juan AA, Eloy B. Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland[J]. Ecological Engineering,2006,28:99-105.
    102.Juliann MB, Timothy BM. Decomposition dynamics of aquatic macrophytes, in the lower Atchafaya,a large floodplain river[J]. Hydrobiologia,2000,418: 123-136.
    103.Korner Sabine, Nicklisch Andreas. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes [J]. Journal of Phycology, 2002,38:862-871.
    104.Korner Sabine, Sanjeev KD, Siemen V et al. The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba[J]. Aquatic Botany,2001,71:71-78.
    105.Kenneth AM, Richard LW. Seasonal variations in eelgrass(Zostera marina L.)responses to nutrient enrichment and reduced light availability in experimental ecosystem[J]. Joural of Experimental Marin Biology and Ecology, 2000,244:1-28.
    106.Li EH, Li W, Li GH, Yuan LY. The effect of different submerged macrophyte species and biomass on sediment resuspension in a shallow freshwater lake[J]. Aquatic Botany,2008,88:121-126.
    107.Lei ZX, Xie YF, Liu ZW et al. Effects of sediment and its re-suspension on the growth of Vallisneria asiatica Miki[J]. Journal of China University of Mining and Technology,2008,18:144-148.
    108.Lee AA, Bukaveckas PA. Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities[J]. Aquatic Botany,2002,74:273-285.
    109.Lucassen EC, Bobbink R, Smolder AJP et al. Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum(L.) Hill[J]. Plant Ecology,2002,165:45-52.
    110.Margarita Menendez, Domenica Carlucci, Maurizio Pinna et al. Effect of nutrients on decomposition of Ruppia cirrhosa in a shallow coastal[J]. Hydrobiologia,2003,506-509:729-735
    111.Michael CR, Paul CB, Paul IB. Effects of salinity on the decay of freshwater macrohyte,Triglochin procerum[J]. Aquatic Botany,2006,84:45-42.
    112.Madsen JD, Chambers PA, James WF et al. The interation between water movement,sediment dynamics and submersed macrophytes[J]. Hydrobiologia, 2001,444:71-84.
    113.Martin Sondergaard, Lise Bruun, Torben Lauridsen et al. The impact of grazing waterfowl on submerged macrophytes:In situ experiments in a shallow eutrophic lake[J]. Aquatic Botany,1996,53:73-84.
    114.Michael JC, Kathleen CP. Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida(USA)[J]. Ecological Engineering,2006, 27:301-321.
    115.Neil Rooney, Jacob Kalff. Submerged macrophyte-bed effects on water-column phosphorus, chlorophyll a,and bacterial production[J]. Ecosystem,2003,6: 797-807.
    116.Nimptsch Jorge, Pflugmacher Stephan. Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense[J]. Chemosphere,2007,66:708-714.
    117.Piboon Puriveth. Decomposition of emergent macrophytes in a Wisconsin marsh[J]. Hydrobiologia,1980,72:231-242
    118.Paula Castro, Helena Freitas. Fungal biomass and decomposition in Spartina maritime leaves in the Mondego salt marsh(Portugal). Hydrobiologia,2000, 428:171-177.
    119.Richard DB, Kemp WM, Stevenson JC. Use of a simulation model to examine effects of nutrient loading and grazing on Potamogeton perfoliatus L. communities in microcosms[J]. Ecological Modelling,2005,185:483-512.
    120.
    121. Smith Funge, Simon J, Briggs MPR. Nutrient budgets in intensive shrimp ponds:Implication for sustainability Aquaculture. Aquaculture,1998,164(1): 117-133.
    122. Stephen R.Carpenter. Effect of submersed macrophytes on ecology processes[J]. Aquatic Botany,1986,26:341-370.
    123.Stephen ED, Carlos CM, Daniel LC et al. Temporally dependent C,N,and P dynamics associated with the decay of Rhizophora mangle L.leaf litter in oligotrophic mangrove wetlands of the Southern Everglades[J]. Aquatic Botany, 2003,75:199-215.
    124.SzaboSandor, Mihaly Braun, Peter Nagy et al. Decomposition of duckweed(Lemna gibba) under axenic and microbial conditions:flux of nutrients between litter water and sediment the impact of leaching and microbial degradation[J]. Hydrobiologia,2000,434:201-210.
    125.Smolder AJP, Hartog C, Gestel CBL et al. The effects of ammonium on growth, accumulation of free amino acids and nutritional status of young phosphorus deficient Stratiotes aloides palnts[J]. Aquatic Botany,1996,53:85-96.
    126.Tony OH, Froneman PW, Nicole BR, et al. The role of macrophytes as a refuge and food source for the estuarine isopod Exosphaeroma hylocoetes(Barnard, 1940) [J]. Estuarine, Coastal and Shelf Science,2009,82:285-293.
    127.Takashi Asaeda, Vu Kien Trung, Jagath Manatung et al. Modelling macrophyte-nutrient-phytoplankton interactions in shallow eutrophic lakes and the evaluation of environmental impacts [J]. Ecological Engineering,2001,16: 341-357.
    128.Takashi Asaeda, Vu Kien Trung, Jagath Manatunge. Modeling the effects of macrophyte growth and decomposition on the nutrient budget in shallow Lake[J]. Aquatic Botany,2000,68:217-237
    129.Tiffany GT, Daniel LC. Litter decomposition promotes differential feedbacks in an oligotrophic southern Everglades wetland[J]. Plant Ecol,2009,200:69-82.
    130.Takashi Asaeda, Le HN. Effects of rhizome age on the decomposition rate of Phragmites australis rhizomes[J]. Hydrobiologia,2002,485:205-208.
    131.Tracy M, Montante JM, Allenson TE et al. Longe-term responses of aquatic macrophyte diversity and community structure to variation in nitrogen loading[J]. Aquatic Botany,2003,77:43-52.
    132.Tomas LK, Lisa AH, David EC. The effects of nitrate loading on the invasive macrophyte Hydrilla verticllata and two common,native macrophytes in Florida[J]. Aquatic Botany,2009,91:253-256.
    133.Thullen JS, Nelson SM, Brian SC et al. Macrophyte decomposition in a surface-flow ammonia-dominated constructed wetland: Rates associated with envriomental and bitioc variables[J]. Ecological Engineering,2008,32: 281-290.
    134.Villar CA, Cabo L, Vaithiyanathan P, Bonetto C. Litter decomposition of emergent macrophytes in a floodplain marsh of Lower Paran a River[J]. Aquatic Botany,2001,70:105-116.
    135.Wang C, Zhang SH, Wang PF et al. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophty Vallisneria natans(Lour.)Hara[J]. Aquatiac Toxicology,2008,87:88-98.
    136.Wang C, Zhang SH, Wang PF et al. Effect of ammonium on the antioxidative response in Hydrilla verticillata(L.f.) Royle plants[J]. Ecotoxicology and Environmental Safety,2010,73:189-195.
    137.William FD, Reddy KR. Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh[J]. Biogeochenmistry,2005,75: 217-240.
    138.Xie YH, Qin HY, Yu D. Nutrient limitation to the decomposition of water hyacinth(Eichhornia crassipes)[J]. Hydrobiologia,2004,529:105-112.
    139.Xie YH, An SQ, Yao X et al. Short-time response in root morphology of Vallisneria natans to sedimemt type and water-colum nutrient[J]. Aquatic Botany,2005,81:85-96.
    140.Zhang M, Cao T, Ni LY et al. Carbon,nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses[J]. Environmental and Experimental Botany,2010,68:44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700