Ad Hoc网络TCP拥塞控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线自组网(Ad Hoc网络)是由一组带有无线收发装置的移动节点组成的、多跳、临时性自组织网络系统。Ad Hoc网络中的每个节点既可能作为发送数据流的源主机,也可能作为转发数据流的路由器。无线网络多跳、多对一的通信方式及无线链路质量,都容易引起网络的局部或全局拥塞。由于Ad Hoc网络的带宽资源非常有限,因此拥塞研究显得十分重要。
     论文分别从拥塞控制的源端算法与链路算法两个方面,重点研究了Ad Hoc网络的TCP拥塞控制机制。本文首先分析了主动队列管理(Active Queue Management, AQM)的比例积分(Proportional Integral, PI)与比例积分微分(Proportional Integral Differential, PID)算法的稳定性与鲁棒性;其次建立了Ad Hoc网络的TCP/AQM微分模型;再次设计了一种比例求和微分(PSD)的神经元PID主动队列管理控制器;最后基于拥塞控制原理,建立了Ad Hoc网络TCP性能模型。论文主要研究内容如下:
     (1)主动队列管理PID算法的稳定性是实现其拥塞控制的基础。目前的PID设计及整定大多基于经验和试凑,往往得到一些孤立的整定结果,缺乏稳定区域的理论分析。针对Ad Hoc网络的无线与时滞特点,分析了PID算法在时延Ad Hoc网络中的稳定性,在不同的微分系数下,分别给出了时延系统PID-AQM控制的稳定区域。与传统的工程整定比较,稳定区域研究提供了时滞系统的PID稳定理论依据,为整定PID参数带来便利。通过Matlab和NS (Network Simulator)仿真,验证了稳定区域的结论及优越性。
     (2)由于研究者建立的控制对象模型只能是实际物理系统不精确的表示,在模型不精确或控制对象发生变化的条件下,控制系统仍能保持原有的控制性能,这是鲁棒性控制的目标,因而鲁棒性也是Ad Hoc网络AQM控制算法的重要性能指标。目前AQM的PI算法大多基于经验和试凑来设计和整定控制器系数,而作为控制对象的Ad Hoc网络,其环境参数经常变化,控制器系数能在多大程度上保持系统稳定,还缺乏鲁棒性的理论分析。根据鲁棒控制理论,分析了PI算法在时延Ad Hoc网络中的鲁棒性,推导了PI控制器确定时的链路容量、TCP连接数量和时延之间的关系,给出了某个PI控制参数下的时延R0的变化范围。通过Matlab和NS仿真,验证了时延参数鲁棒性的范围。
     (3)主动队列管理研究通常关注队列控制器设计,而作为被控对象,传输控制协议(TCP)往往利用NS仿真实现,Ad Hoc网络的TCP机制与AQM的相互关系尚不明确,因此有必要研究Ad Hoc网络TCP及AQM特性。基于TCP窗口加性增、乘性减规则及排队原理,推导了TCP窗口及队列的微分方程,再基于比例积分的AQM控制,推导了拥塞丢弃概率的微分方程,通过联立微分方程组,提出了Ad Hoc网络TCP/AQM微分模型。与NS的对比仿真显示,新模型能较好地估计Ad Hoc网络性能,基于本模型的研究也表明,网络跳数、无线丢失和过小的队列成为AQM性能瓶颈,队列信息则有助于TCP区分Ad Hoc网络的拥塞丢弃与无线丢失。
     (4)在AQM众多控制算法中,神经元PID算法能较好地控制队列长度,但其神经元增益对被控对象的状态较为敏感,恒定的神经元增益设定往往使控制效果难以保证。基于TCP窗口加性增、乘性减规则及AQM原理,推导了TCP窗口、拥塞丢弃概率及队列长度的微分方程。对该微分方程使用小扰动线性化理论,获得Ad Hoc网络TCP/AQM拥塞控制系统模型。基于该控制系统模型,将递推计算修正功能引入神经元PID,设计了一种神经元自适应PSD (Proportional Summation Differential)的AQM,该算法可以根据网络对象状况在线调整神经元增益。NS仿真表明,在无线分组丢失、突发流及链路容量变化的Ad Hoc网络中,PSD队列管理性能优于神经元PID。
     (5)由于Ad Hoc网络的多跳和无线信道特性,Padhye提出的有线TCP Reno模型不能准确反映Ad Hoc网络的吞吐量,而目前的Ad Hoc网络TCP性能建模往往利用马尔科夫链。基于802.11协议DCF (Distributed Coordination Function)的RTS/CTS (Request To Send/Clear To Send)通信机制,推导了多跳拓扑的可用链路容量,根据TCP的Tahoe版本及Reno版本拥塞窗口规则,分别建立了TCP窗口、可用链路容量及分组丢弃概率的数学关系,由此获得Ad Hoc网络TCP Tahoe与Reno的性能模型。仿真研究表明,新模型较好地估计了Ad Hoc网络TCP窗口及网络吞吐量,平均误差低于7%,另外,Reno的快速恢复算法无法更正关联丢失的所有分组,最终触发超时重传,因此在Ad Hoc网络中性能劣于Tahoe。
Ad Hoc network is a multi-hop, temporary and self-configuring network of mobile devices with wireless receive-send equipment. Each node acts either as a host generating flows, being the destination of flows from other mobile nodes, or as a router forwarding flows directed to other nodes. Its features of multi-hop, one against many communication method and wireless link quality will lead to network local and global congestion. Ad Hoc network bandwidth resource is very limited, so congestion control research is very important.
     In this dissertation, an emphasis research has been made on the Ad Hoc network TCP congestion control from congestion control source algorithm and link algorithm. This paper first analyzes the stability and robustness of PI (Proportional Integral) AQM (Active Queue Management) and PID (Proportional Integral Differential) AQM in Ad Hoc network. Secondly, it deduces the TCP/AQM differential model. Thirdly, it designs an adaptive neuron PID AQM controller based on proportional summation differential (PSD). Finally, it models the TCP performance in Ad Hoc network based on congestion control principle. The main research content is as follows:
     (1) Stability of PID AQM algorithm is base of congestion control. Now PID design and tuning often use experience and experimentation. These methods lack theoretic analysis of stability region and often get some isolated tuning results. Stability characterization of PID scheme is analyzed in wireless and delay Ad Hoc network. Finally, it gives stability regions of PID-AQM control under different differential coefficients in delay networks. Comparing with tradition engineering tuning ways, the research also gives stability theory of PID in delay system and helps to determinate controller coefficients. Matlab and NS (Network Simulator) simulations indicate that stability regions and its advantage are proved.
     (2) The object model which researchers deduce is not accurate expression of the real physical system. Robust control goal is to maintain system stability and performance when a controlled object changes its parameters or modeling is inaccurate. Robustness of the PI AQM algorithm is important performance target. Now PI AQM often uses experience and experimentation to design controller and its algorithm. As controlled object, Ad Hoc network parameters often change. So how far can the controller coefficients maintain system stability? This research lacks theoretic analysis of robustness. According to robustness control theory, it analyzes robustness characterization of PI algorithm in delay Ad Hoc network. It deduces the relation of link capacity, number of TCP connection and delay for certain PI controller. Finally, it gives range of the delay under the PI controller's parameters. By Matlab and NS simulations, the range of delay parameter robustness is proved.
     (3) The research on AQM is usually concerned about queue controller design. As a controlled object, transmission control protocol (TCP) is often realized by Network Simulator (NS) simulation. So it is necessary to study the character of TCP and AQM in Ad Hoc network because the relation between TCP and AQM in Ad Hoc network is not clear. TCP windows size and queue length differential equations are deduced based on TCP window additive-increase multiplicative-decrease rule and queuing principle. Then, congestion loss probability differential equation is deduced based on proportional integral AQM control. So the Ad Hoc network TCP/AQM differential model is proposed through building the simultaneous differential equations. The comparison simulations show that the new model can estimate Ad Hoc network performance well. The model research also shows that the number of hops, wireless loss and very small queue become AQM performance bottlenecks. Furthermore, the queue information can help TCP discriminate between congestion loss and wireless loss in Ad Hoc network.
     (4) Neuron PID algorithm can control queue length successfully in many AQM scheme, but its neuron gain is sensitive for controlled object state. So it is difficult to guarantee the control performance because of the fixed neuron gain in neuron PID algorithm. Congestion window size, loss probability and queue length differential equations are deduced based on TCP window additive-increase and multiplicative-decrease (AIMD) principle and AQM mechanism. TCP/AQM control system model is obtained in Ad Hoc network through the small perturbations and equations linearization. Then it introduces recursion and modification gain to neuron PID based on the model. Finally, a neuron adaptive proportional summation differential (PSD) AQM scheme is proposed. PSD algorithm can modify neuron gain dynamically according to the network situation. NS simulations demonstrate that PSD queue management performance is better than neuron PID under conditions of wireless packet loss, sudden flow and different link capacity.
     (5) The Reno wired throughput model proposed by Padhye can not estimate accurately Ad Hoc network throughput because Ad Hoc network has characteristics of multi-hop and wireless channel. But Ad Hoc network TCP performance modeling use Markov chain usually. Based on 802.11 protocol DCF (Distributed Coordination Function) RTS/CTS (Request To Send/ Clear To Send) communication mechanism, multi-hop topology available link capacity is deduced. Then TCP windows size, available link capacity and wireless packet loss probability mathematical relation is deduced based on congestion window principle of TCP-Reno version and TCP-Tahoe version. Therefore Ad Hoc network TCP-Tahoe model and TCP-Reno model were proposed. The simulation research shows that the new TCP models can estimate Ad Hoc network TCP window size and throughput. The models average error is below 7%. Reno's fast-recovery can not correct all packets in correlated loss and leads to time-out retransmit at last. So Reno performance is worse than Tahoe in Ad Hoc network.
引文
[1]官骏鸣Ad Hoc网络MAC协议模型分析及路由协议问题研究.学位论文,2009,1-2
    [2]Chadha. Managing mobile Ad Hoc networks. Network Operations and Management Symposium (NOMS 2004),2004:922.
    [3]Leiner, Ruther, Sastry. Goals and challenges of the DARPA GloMo program global mobileinformation systems]. Personal Communications, IEEE,1996 (6):34-43.
    [4]Beyer D A, SRI Int, Menlo Park, CA. Accomplishments of the DARPA SURAN Program.Military Communications Conference,1990. MILCOM '90, Conference Record, A New Era.1990 IEEE, Monterey, CA, USA,1990:855-862.
    [5]Basagni S, Conti M, Giordano S,et al. Mobile Ad Hoc networking. USA:Wiley IEEE, A john wiles&sons, inc., publication,2004.
    [6]Zhijun Cai, Mi Lu, Xiaodong Wang. Channel Access-Based Self-Organized Clustering in Ad Hoc Networks. IEEE Transactions on Mobile Computing,2003,2(2):102-113.
    [7]Anuradha Banerjee, Paramartha Dutta.Fuzzy-controlled route discovery for mobile ad hoc networks.international journal of engineering science and technology,2010,2(6):2347-2353
    [8]Krishna Paul, Romit RoyChoudhuri, Bandyopadhyay. SURVIVABILITY ANALYSIS OF AD HOC WIRELESS NETWORK ARCHITECTURE. Proceeding NETWORKING 2000 Proceedings of the IFIP-TC6/European Commission International Workshop on Mobile and Wireless Communication Networks,2000:31-46
    [9]Chakrabarti, Mishra. QoS issues in ad hoc wireless networks. IEEE Communications Magazine,2001,39(2):142-148
    [10]Xiaoyan Cheng, Jianhua Sun, Manki Min, et al. Energy-efficient broadcast and multicast routing in multihop ad hoc wireless networks. Wireless Communications & Mobile Computing-Special Issue on Ad Hoc Wireless Networks,2006,6(2):213-223
    [11]Karan Singh, Rama Shankar Yadav, Ranvijay. A review paper on Ad Hoc network security. International Journal of Computer Science and Security,2007,1(1):52-69
    [12]Zhai, H., Chen, X., Fang, Y. Improving Transport Layer Performance in Multihop Ad Hoc Networks by Exploiting MAC Layer Information. Wireless Communications, IEEE Transactions on,2007,6(5):1692-1701
    [13]Robert Brannstrom.Network-layer mobility in wireless ad hoc access networks, Lulea University of Technology degree,2005,68:1-112.
    [14]Bulent Tavli, Wendi Heinzelman. Energy and Spatial Reuse Efficient Network Wide Real-Time Data Broadcasting in Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing,2006,5(10):1297-1312
    [15]Ahmed M. Mahdy, Jitender S. Deogun and Jun Wang. Achieving Stability and Fairness in Mobile Ad Hoc Networks. Lecture Notes in Computer Science,2005, Volume 3462, 1449-1452
    [16]Jacobson V. Congestion avoidance and control. ACM SIGCOMM Computer Communication Review,1988,18(4):314-329.
    [17]Richard Stevens W. TCP/IP illustrated volume 1:the protocols. Beijing:China machine Press,2006:226-240.
    [18]Jain. Congestion control in computer network:issues and trends. IEEE network magazine,1990,4(3):24-30.
    [19]罗万民,林闯,阎保平TCP/IP拥塞控制研究.计算机学报,2001,24(1):1-18.
    [20]任丰原,林闯,刘卫东IP网络中的拥塞控制.计算机学报,2003,26(9):1025-1034
    [21]Balakrishnan, H. M.I.T.6.899 Computer Networks (Fall 2000). Tutorial Slides,2000. http://nms.lcs.mit.edu/6.899/.
    [22]Barden. RFC1379:Extending TCP for transactions-concepts, RFC Editor, United States, 1992.
    [23]Low. TCP congestion controls:algorithms and models. Tutorial Slides,2000. http://netlab. caltech. edu.
    [24]Thompson, Miller, Wilder. Wide-area internet traffic patterns and characteristics. IEEE network 1997,11 (6):10-23
    [25]Stevens. TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms. RFC 2001,1997.
    [26]Floyd, Henderson. The NewReno modification to tcp fast recovery algorithm. RFC 2582, 1999.
    [27]Floyd, Fall. Promoting the use of end-to-end congestion control in the internet. IEEE/ACM Transaction on networking,1999,7(4):458-472.
    [28]Jacobson. Modified TCP congestion control and avoidance alogrithms. Technical Report.30 Apr.1990.
    [29]徐昌彪,鲜永菊.计算机网络中的拥塞控制与流量控制.人民邮电出版社,2007,28-29.
    [30]University of California at Berkeley, Student Project:A Comparative Analysis of TCP Tahoe, Reno, New-Reno, SACK and Vegas.1-7
    [31]Brakmo, Peterson. TCP Vegas:end-to-end congestion avoidance on a global Internet. IEEE Journal on selected areas in communication,1995,13(8):1465-1480.
    [32]Chiu, Jain. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Computer Networks and ISDN system,1989,17(1):1-14.
    [33]Hoe. Improving the start-up behavior of a congestion control scheme for TCP. Computer communication Review,1996,26(4):270-280.
    [34]Zhang, Qiu, keshav. Optimizing TCP start-up performance. Technical Report, Cornell, 1999. http://www.cs.Cornell.edu/cnrg/papers.html.
    [35]Allman, Floyd, Partridge. Increasing TCP's initial window. RFC 2414,1998.
    [36]Wang, Xin, Reeves. A simple refinement of slow-start of TCP congestion control. In proceedings of IEEE symposium on computer and communication. California, USA:IEEE Press,2000,98-105.
    [37]Seshan, Stemm, Kats. Network measurement architecture for adaptive applications.In proceedings of IEEE INFOCOM, Tel Avlv, Israel:IEEE Press.2000,285-294.
    [38]Padmanabhan. Addressing the challenge of Web data transport Ph.D. Thesis U.C. Berkeley,1998.
    [39]Visweswaraiah, Heidemann. Improving restart of idle TCP connections. Technical Report, USC TR 97-661,1997. http://www.isi.edu/~johnh/papers.
    [40]Ke, Willianmson. Towards a rate-based TCP protocol for the Web. In proceedings of IEEE international workshop on modeling, analysis and simulation of computer and telecommunication system. San Francisco, California, USA:IEEE Press,2000,36-45.
    [41]Aggarwal, Savage, Anderson. Understanding the performance of TCP pacing. In proceedings of IEEE INFOCOM, Tel Avlv, Israel:IEEE Press.2000,1157-1165.
    [42]Floyd. Connections with multiple congested gateways in packet switched networks part 2: two way traffic, unpublished Draft,1991. http://www.aciri.org/ Floyd.
    [43]Border, Kojo, Griner, et al. Performance Enhancing Proxies intended to mitigate link related degradations. RFC 3135,2001.
    [44]Ludwig, Katz. The eifel algorithm:Making TCP robust spurious retransmissions. ACM computer communication review,2000,30(1):23-36.
    [45]Ramakrishnan, Jain. A binary feedback scheme for congestion avoidance in computer networks. ACM Transactions on computer systems,1990,8(2):158-181.
    [46]Floyd, Handley, Padhye, et al. Equation-based congestion control for unicast applications. ACM computer communication review,2000,30(4):43-56.
    [47]Widmer, Denda, Mauve. A survey on TCP-friendly congestion control. IEEE network, 2001,15(3):28-37.
    [48]James, Michel, Delfin, et al. Rate-based proportional-integral control scheme for active queue man- agement. International Journal of Network Management; 16(3),2006:203-231
    [49]Balakrishman, Padmanabhan, Seshan, et al. A comparision of mechanism for improving TCP performance over wireless links. IEEE/ACM Transactions on Network,1997, 5(6):756-769.
    [50]Partridge, Shepard. TCP/IP performance over satellite links. IEEE Network,1997,11(5): 44-49.
    [51]Kalampoukas, Varma, Ramakrishnan. Improving TCP throughput over two-way asymmetric link:analysis and solutions. Performance Evaluation Review,1998,26(1):78-89.
    [52]Al Hanbali, Altman, Nain. A survey of TCP over ad hoc networks. Communications Surveys & Tutorials, IEEE,2005,7(3):22-36.
    [53]George Xylomenos, George Polyzos. TCP Performance Issues over Wireless. Links.IEEE COMMUNICATIONS MAGAZINE, VOLUME 39, NUMBER 4,2001,52-58.
    [54]Paolo Barsocchi, Gabriele Oligeri, Francesco Potorti. Packet loss in TCP hybrid wireless networks. In:proceedings of the Advanced Satellite Mobile Systems Conference (ASMS), Herrsching (DE), May 2006.
    [55]Hari Balakrishnan, Venkata Padmanabhan, Srinivasan Seshan and Randy H. Katz. A Comparison of Mechanisms for Improving TCP Performance over Wireless Links. ACM SIGCOMM Computer Communication Review,1996,26(4):256-269
    [56]Qiang Ni, Thierry Turletti, Wei Fu. Simulation-based Analysis of TCP Behavior over Hybrid Wireless & Wired Networks. The 1st International Workshop on Wired/Wireless Internet Communications (WWIC 2002), in conjunction with Internet Computing 02, Las Vegas, Nevada, USA, June,2002.
    [57]Fabius Klemm, Zhenqiang Ye, Srikanth Krishnamurthy. Improving TCP performance in ad hoc networks using signal strength based link management. Ad Hoc Networks 3 (2005) 175-191.
    [58]Petrovic, Aboelaze. Performance of TCP/UDP under ad hoc IEEE 802.11. Telecommunications,2003. ICT 2003.10th International Conference on Date:2003 vol.1 Page(s):700-708.
    [59]Dongkyun Kim, Hongseok Yoo. Performance improvement of TCP in ad hoc networks by mitigating channel contention. Wireless Communications and Mobile Computing,2009, 9(10):1414-1429.
    [60]Hong-Seok CHOI, Jong-Tae LIM. On Throughput Improvement of Wireless Ad Hoc Networks with Hidden Nodes. IEICE TRANSACTIONS on Communications,2008,91(7): 2397-2400
    [61]Ping Chung Ng, Soung Chang Liew. Throughput analysis of IEEE 802.11 multi-hop Ad Hoc networks. IEEE/ACM Transactions on Networking,2007,15(2):309-322.
    [62]Zhenghua Fu, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang, Mario Gerla. The impact of multihop wireless channel on TCP performance. IEEE Transactions on Mobile Computing,2005,4(2):209-221.
    [63]Taka Sakurai, Stephen Hanly. Modeling TCP flows over an 802.11 wireless LAN,11th European Wireless Conference 2005-next generation wireless and mobile communications and services. Nicosia, Cyprus 2005,10-13
    [64]K. Kathiravan, S. Thamarai Selvi, A. Selvam. TCP performance analysis for mobile Ad Hoc Network using on-demand routing protocols. Ubiquitous Computing and Communication Journal,2007,2(2):1-8
    [65]Lianghui Ding, Xinbing Wang, Youyun Xu, Wenjun Zhang. Improve throughput of TCP-Vegas in multihop ad hoc networks. Computer Communications,2008,31(10): 2581-2588
    [66]Xin Yu. Improving TCP performance over mobile ad hoc networks by exploiting cross-layer information awareness. Proceeding MobiCom 2004 Proceedings of the 10th annual international conference on Mobile computing and networking.231-244
    [67]Jian Liu, Suresh Singh. ATCP:TCP for Mobile Ad Hoc Networks. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,2001,19(7):1300-1315.
    [68]Kitae Nahm, Ahmed Helmy, Jay Kuo. TCP over multihop 802.11 networks:issues and performance enhancement. Proceeding MobiHoc 2005 Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing.277-287
    [69]Chandran, Ragbunathan, Venkatesan, Prakash. A feedback based scheme for improving TCP performance in ad-hoc wireless networks. Distributed Computing Systems 1998.18th International Conference,1998,472-479
    [70]Jitendra Padhye, Victor Firoiu, Donald Towsley. Modeling TCP Reno Performance:A Simple Model and Its Empirical Validation. IEEE/ACM Transactions on networking,2000, 8(2):133-145
    [71]A Budhiraja, F. Hernandez-Campos, V.G. Kulkarni, et al, Stochastic Differential Equation for TCP Window Size:Analysis and Experimental Validation, Probability in the Engineering and Informational Sciences 18(1) (2004):111-140.
    [72]孙伟,温涛,冯自勤,等.基于TCP NewReno的稳态吞吐量分析模型.计算机研究与发展,2010,47(3):398-406.
    [73]Hannan Xiao, Kee Chaing Chua, James A. Malcolm, Ying Zhang. Theoretical Analysis of TCP Throughput in Ad hoc Wireless Networks //Global Telecommunications Conference, 2005. GLOBECOM '05. St. Louis, MO:IEEE,2006, Volume 5:2714-2719
    [74]Gollakota, S, Ramana B V, Murthy C S R. Modeling TCP over Ad hoc Wireless Networks using Multi-dimensional Markov Chains// Broadband Communications, Networks and Systems, BROADNETS 2006.3rd International Conference on. San Jose, CA:IEEE, 2007:1-10
    [75]XU Li, ZHANG Meiping, ZHEN Zhide. Markov Chain Based TCP Performance Analysis and Simulation in Wireless Multi-hop Networks.International Journal of Systems and Control.2008,3(1):20-29
    [76]张蕾,杨寿保,王大鹏.无线Mesh网络中TCP公平性建模与分析.中国科学院研究生院学报.2007,24(03):342-350
    [77]Abouzeid, A.A. Roy, S. Azizoglu, M. Stochastic modeling of TCP over lossy links. INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE Issue Date:2000, Volume:3, page(s): 1724-1733.
    [78]Arzad Kherani, Rajeev Shorey.Throughput Analysis of TCP in Multi-Hop Wireless Networks with IEEE 802.11 MAC.Wireless Communications and Networking Conference, 2004. WCNC.2004 IEEE. Issue Date:2004 Volume 1:237-242
    [79]Hannan Xiao, Ying Zhang, James Malcolm, et al. Modelling and Analysis of TCP Performance in Wireless Multihop Networks. Wireless Sensor Network,2010, (2):493-503.
    [80]Eitan Altman, Konstantin Avrachenkov and Chadi Barakat. TCP in presence of bursty losses. Performance Evaluation.Volume 42, Issues 2-3,29 September 2000, Pages 129-147.
    [81]曾彬张大方黎文伟谢高岗.基于Gilbert丢包机制的TCP吞吐量模型.电子学报.2009,37(8):1728-1732.
    [82]Eitan Altman, Konstantin Avrachenkov, Chadi Barakat. A Stochastic model of TCP/IP with stationary random losses. IEEE/ACM Transactions on Networking,2005,13(2): 356-369.
    [83]Beomjoon KIM, Yong Hoon CHOI, Jaiyong LEE. An Extended Model for TCP Loss Recovery Latency with Random Packet Losses. IEICE Transactions on Communications, VOL.E89-B, NO.12006,28-37.
    [84]Shugong Xu, Tarek Saadawi. Does the IEEE 802.11 MAC protocol work well in multihop wireless Ad hoc network. IEEE Communication Magazine 2001,39(6):130-137.
    [85]Sumathi Gopal, Sanjoy Paul, TCP Dynamics in 802.11 Wireless Local Area Networks, To appear in IEEE Computer and Communications Conference (ICC) 2007, to be held in Glasgow, Scotland, UK,2007.1905-1910
    [86]Shamimul Qamar, Kumar Manoj. Impact of Random Loss on TCP Performance in Mobile Ad-hoc Networks (IEEE 802.11):A Simulation Based Analysis. International Journal of Computer Science and Information Security,2010,7(1):228-233
    [87]Lakshman, Neidhardt, Ott. The drop from front strategy in TCP over ATM and its interworking with other control features. In Proceedings of IEEE INFOCOM. San Francisco: IEEE Press,1996,1242-1250.
    [88]Braden, Clark, Crowcroft et al. Recommendations on queue management and congeston avoidance in the Internet. RFC2309,1998, http://www.rfc.net/rfc2309.html
    [89]E Hashem Analysis of random drop for gateway congestion control. Report LCS TR-465, laboratory for computer science, MIT, Combridge, MA,1989.
    [90]Floyd Jacobson. Random Early Detection Gateways for congestion avoidance. IEEE/ACM Transactions on networking,1993,1(4):397-413.
    [91]S. Athuraliya, S. H. Low, V H. Li, Q. Yn. REM:active queue management. IEEE Network,2001,15(3):48-53
    [92]Floyd, Fall. Router mechanisms to support end-to-end congestion control. Technical report, Network Research Group at LBNL,1997.
    [93]Lin, Morris. Dynamics of random early detection. In proceedings of ACM SIGCOMM. Cannes:ACM Press,1997,127-138.
    [94]Anjum, Tassiulas. Balanced-RED:an algorithm to achieve fairness in the Internet. Technical Research Report, CSHCN T. R.99-9,1999.
    [95]Feng, Kandlur, saha, et al. A self-configuring RED gateway In proceeding of the IEEE INFOCOM. New York:IEEE Press,1999,1320-1328.
    [96]Ott, Lakshman, Wong. SRED:stabilized RED. In proceeding of the IEEE INFOCOM. New York:IEEE Press,1999,1346-1355.
    [97]窦文华,张鹤颖,郑彦兴等.计算机网络前沿技术,国防科技大学出版社,2007.4:29-30
    [98]张顺亮叶澄清李方敏.一种加强的主动队列管理算法:EBLUE通信学报,2003,24(11):109-115
    [99]Cheng-Nian Long, Jing Wu, Xin-Ping Guan. Local Stability of REM Algorithm with Time-Varying Delays. IEEE Communications Letters,2003,7(3):142-144
    [100]Hollot, Misra, Towsley, et al. On designing improved controllers for AQM routers supporting TCP flows. In proceedings of IEEE INFOCOM. Anchorage, Alaska, USA:IEEE Press,2001,1726-1734.
    [101]卢锡城,张明杰,朱培栋.自适应PI主动队列管理算法.软件学报,2005,16(5): 903-910
    [102]任丰原,王福豹,任勇,等.主动队列管理中的PID控制器.电子与信息学报,2003,25(1):94-99.
    [103]胡寿松.自动控制原理第4版.北京:科学出版社,2005.
    [104]Hyun Cho, Sami Fadali, Hyunjeong Lee. Adaptive neural queue management for TCP networks. Computers and Electrical Engineering,2008,34(6):447-469.
    [105]Jae Man Kim, Jin Bae Park, and Yoon Ho Choi. Wavelet Neural Network Controller for AQM in a TCP Network:Adaptive Learning Rates Approach. International Journal of Control, Automation, and Systems,2008,6(4):526-533
    [106]Kourosh Rahnami, Payman Arabshahi, Andrew Gray. Neural Network Based Model Reference Controller for Active Queue Management of TCP Flows. Aerospace Conference, 2005 IEEE,2005:1696-1704
    [107]R. Alasem, M. A. Hossain, I. Awan. Intelligent Active Queue Management Predictive Controller using Neural Networks, The 2007 International Conference on Next Generation Mobile Applications, Services and Technologies (NGMAST 2007),2007:205-210
    [108]Wu Junxin, Liu Jianchang, Guo Zhe. A class of active queue management algorithm based on BP neural network.Proceedings of the 21st annual international conference on Chinese Control and Decision Conference Guilin, China,2009. Publisher IEEE Press Piscataway, USA, Pages:1635-1638
    [109]Aoul Y.H., Nafaa, A. Negru, D., Mehaoua A. FAFC:fast adaptive fuzzy AQM controller for TCP/IP networks. Global Telecommunications Conference,2004. GLOBECOM '04. IEEE. Vol.3,2004:1319-1323
    [110]侯萍,王执铨.基于混沌优化的大时滞网络拥塞控制算法.系统仿真学报,2009,21(17):5486-5497.
    [111]De Barros, El Koutbi. AQM applications in MAODV ad hoc network. Telecommunications,2009. ICT'09. International Conference on,2009:37-40.
    [112]Abbasov. AHRED:A robust AQM algorithm for wireless ad hoc networks. Application of Information and Communication Technologies 2009. AICT 2009 International Conference, 2009:1-4.
    [113]Kaan Bur, Cem Ersoy. Ad hoc quality of service multicast routing. Computer Communications 2005,29 (1):136-148.
    [114]Sungwon Yi, Martin Kappes, Sachin Garg. Proxy-RED:an AQM scheme for wireless local area networks. Wireless Communications & Mobile Computing.2008,8(4):421-434.
    [115]Victor H. Li, Zhi-Qiang Liu, Steven H. Low. Using AQM to improve TCP performance over wireless networks. Proc. SPIE,2002, Vol.4866:55-65
    [116]Tingting Wen, Cailian Chen, Zhengtao Ding. A Novel AQM Scheme for Wireless Networks with BER Estimation. Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea,2008,2919-2924.
    [117]Agnieszka Brachman, Lukasz Chrost. The performance study of the TCP NCR/AQM over bottlenecked links. Proc. of Fourth EuroFGI Workshop on Wireless and Mobility,2008, Barcelona,16-18
    [118]Yuan Xue, Hoang Nguyen, and Klara Nahrstedt. CA-AQM:Channel-Aware Active Queue Management for Wireless Networks. In Procceed of IEEE International Conference on Communications (ICC), Glasgow, UK,2007, Glasgow,4773-4778
    [119]Lin Guan, Irfan U. Awan, Mike E. Woodward, et al. Impact of AQM scheme on WLANs using queue thresholds. International Journal of Wireless and Mobile Computing, 2010,4(1):50-60
    [120]Kaixin Xu, Mario Gerla, Lantao Qi, et.al. TCP Unfairness in Ad Hoc Wireless Networks and a Neighborhood RED Solution. Wireless Networks 2005,11(4), Special issue: ACM MobiCom:383-399.
    [121]续欣,汤凯,马刈非.无线误码信道上的拥塞控制策略.通信学报,2004,25(12):8-13.
    [122]李千目,许满武,严悍,等.一种网络拥塞预测新方法.系统仿真学报,2006,18(8):2101-2104.
    [123]陈亮,张宏.无线自组网拥塞PID算法稳定性研究.计算机应用,2008,28(7):1841-1843.
    [124]钱艳平,李奇,刁翔.预测PI时滞网络拥塞控制算法设计及性能分析.控制理论与应用,2006,23(2):161-168
    [125]Feng Zheng, John Nelson. An H8 approach to congestion control design for AQM routers supporting TCP flows in wireless access networks. Computer Networks,2007,51 (6): 1684-1704.
    [126]Essam Natshed,Adznan B, Sabira Khatun, et al. Intelligent Reasoning Approach for Active Queue Management in Wireless Ad Hoc Networks. International Journal of Business Data Communications and Networking,2007,3(1):16-35.
    [127]Sun Jin-sheng, Chan Sammy, Ko King-Tim, Chen Guan-rong, and Zukerman Moshe, Neuron PID:A Robust AQM Scheme// Proceeding of ATNAC 2006. Melbourne, Australia, 2006.259-262.
    [128]MSRAL V, GONG WB, TOWSLEY D. Fluid-Based analysis of a network of AQM routers supporting TCP flows with an application to RED. ACM SIGCOMM Computer Communication Review,2000,30(4):151-160.
    [129]BIGDELI Nooshin, HAERI Mohammad. AQM controller design for networks supporting TCP vegas:A control theoretical approach. ISA Transactions 2008,47(1): 143-155.
    [130]李玉峰,邱菡,兰巨龙等.TCP流竞争拥塞及拥塞链路的缓存需求研究.软件学报,2008,19(6):1499-1507.
    [131]KELLY Frank, RAINA Gaurav, Thomas Voice. Stability and fairness of explicit congestion control with small buffers. ACM SIGCOMM Computer Communication Review, 2008,38(3):53-62.
    [132]CHLAMTAC I, CONTI M, LIU J. Mobile Ad hoc networking:imperatives and challenges. Ad hoc Networks,2003,1(1):13-64.
    [133]吴启祥,胥布工,彭达洲.基于微分先行PI的主动队列管理算法.计算机应用,2004,24(11):16-18.
    [134]LEE C H. A Survey of PID Controller Design Based on Gain and Phase Margins. International Journal of Computational Cognition,2004,2(3):60-100.
    [135]HOLLOT C, MISRA V, TOWSLEY D, GONG WB. A control theoretic analysis of RED. Proceedings of the IEEE INFOCOM. Anchorage:IEEE Press,2001:1510-1519.
    [136]FALL K, VARADHAN K. The Ns Manual. http://www.isi.edu/nsnam/ns/doc/index.htm 1.2002-04.
    [137]Wu Wei, Ren Yong, Shan Xiuming. A Self-Configuring PI Controller for Active Queue Management. Proceedings of the 7th Asia-Pacific Communication Conference. Tokyo:IEEE Press,2001.368-371.
    [138]Ou Linlin, Zhang Weidong, Gu Danying. Nominal and robust stability regions of optimization based PID controllers. ISA Transactions,2006,45(3):361-371.
    [139]DAYIN P, OHM S. A mesh-based QoS aware multicast routing protocol //First International Conference of Network-Based Information Systems. Regensburg:Springer, 2007,4658:466-475.
    [140]陆锦军,王执铨.基于粒子群优化的网络拥塞控制新算法.电子学报.2007,35(8):1446-1451.
    [141]任丰原,林闯,任勇,等.大时滞网络中的拥塞控制算法.软件学报.2003,14(3):503-511
    [142]CHATZIMISIOS P, VITSAS V, BOUCOUVALAS A C. DIDD backoff scheme:an enhancement to IEEE 802.11 DCF under burst transmission errors //Proceedings of the IEEE Sarnoff 2006 Symposium. Princeton:IEEE,2006:1-4.
    [143]KUMAR A, MANJUNATH D, KURI J. Wireless networking. Morgan:McGraw-Hill Pub,2008:23-24.
    [144]Lindley D V. The theory of queues with a single server. Mathematical Proceedings of the Cambridge Philosophical Society,1952,48(2):277-289.
    [145]CHO Hyun, FADALI Sami, LEE Hyunjeong. Adaptive neural queue management for TCP networks. Computers and Electrical Engineering,2008,34(6):447-469.
    [146]CHEN Chang-Kuo, KUO Hang-Hong, YAN Jun-Juh, et al. GA-based PID active queue management control design for a class of TCP communication networks. Expert Systems with Applications,2009,36(2):1903-1913.
    [147]Qiuyan Xia, Xing Jin, Hamdi. AQM with Dual Virtual PI Queues for TCP Uplink/Downlink Fairness in Infrastructure WLANs. Wireless Communications and Networking Conference,2007. WCNC 2007. IEEE, Kowloon,2007:2137-2142.
    [148]Nooshin Bigdeli, Mohammad Haeri. AQM controller design for networks supporting TCP vegas:A control theoretical approach. ISA Transactions 2008,47(1):143-155.
    [149]C K Gong, D J Chen. Neuron PSD Control for Piezoelectric Micro-Displacement System//International Symposium on Instrumentation Science and Technology, Journal of Physics, China,2006,48:1107-1111
    [150]Andrei Gurtov, Sally Floyd. Modeling Wireless Links for Transport Protocols. ACM SIGCOMM Computer Communication Review,2004 Volume 34(2):85-96
    [151]B. Sikdar, S. Kalyanaraman and K. S. Vastola, Analytic models for the latency and steady-state throughput of TCP tahoe, Reno, and SACK. IEEE/ACM Trans. Netw,2003,11(6): 959-971.
    [152]Richard Haywood, Xiao-Hong Peng. On Packet Loss Performance under Varying Network Conditions with Path Diversity// Proceedings of the 2008 International Conference on Advanced Infocomm Technology, New York:ACM,2008, Article No:106
    [153]P. A. G. Van Der Geest. The binomial distribution with dependent Bernoulli trials. Journal of Statistical Computation and Simulation,2005,75(2):141-154.
    [154]Rasheed, S.A. Masnoon, K. Thanthry, N. Pendse. PCF vs DCF:a performance comparison. System Theory,2004. Proceedings of the Thirty Sixth Southeastern Symposium on,2004:215-219
    [155]雷磊,许宗泽,刘旭.适用于Ad Hoc网络的DCF协议节点自适应休眠机制.通信学报,2009,30(10):14-23
    [156]王炫Ad Hoc网络中MAC层和网络层协作问题研究.西安电子科技大学博士学位论文,2007:30-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700