钯团簇在不同衬底上的生长及性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,因为在纳米电子装置、原子尺度的磁存储装置、化学催化以及传感器等方面的潜在应用,贵金属纳米结构得到了广泛关注。尤其是金属纳米团簇和金属薄膜奇异的物理和化学性质成为科学家研究的热点。在催化、电子工业领域,贵金属团簇的应用大多离不开衬底的负载。而所选衬底的表面结构、热稳定性以及化学性质对团簇的制备、催化活性和电磁学性质可能存在影响。本文基于第一性原理利用自旋极化的密度泛函理论,研究了钯金属团簇或薄膜在不同性质的衬底上(包括NiAl(110),ZnO{0001}以及单层MoS2)的结构、稳定性、生长方式以及相关电磁学性质。
     首先,研究了吸附在NiA(110)表面的小尺寸的钯团簇的原子结构和电学特性以及一维钯原子链的共振态。结算表明单个钯原子吸附在Ni-桥位和A1-桥位时能量相差很小,与STM实验结果一致。在较低覆盖度下团簇采取一维链式生长;随覆盖度增加,团簇倾向于二维结构的生长。化学环境不同对钯原子的电子态分布存在很大影响,例如,NiAl衬底电子态的调制和与周围钯原子的相互作用。由于钯团簇与衬底的电荷转移导致Pdn(n=1-5)/NiAl(110)体系呈现磁性特征。另外,吸附在NiAl(110)表面两种无限长的钯原子链存在两种构型,其共振态的产生原因是钯原子的5sp轨道与衬底电子态杂化和相邻钯的5sp轨道的交叠。
     其次,研究了钯在不同覆盖度下吸附在ZnO{0001}极性表面结构及电磁性质,分析了Pd/ZnO的界面性质。钯在ZnO{0001}表面的吸附随着覆盖度的增加,表面形成能越大,体系能量上越稳定。在1ML覆盖度时钯原子倾向于吸附在ZnO(0001)表面的fcc位置,而钯吸附在ZnO(000-1)表面的氧原子的顶位能量最低。Pd/ZnO(0001)体系在费米能级出现带隙态,钯的电子态具有很强的局域性;Pd/ZnO(000-1)体系在费米能级附近100%的自旋极化,认为是钯与衬底的氧原子的强烈杂化引起的。钯单层与ZnO衬底之间存在电荷转移,导致体系功函数变化。此外,钯单层与ZnO{0001}界面形成肖特基接触,在光电器件方面存在潜在应用。
     最后,研究了钯等贵金属团簇在MoS2单层上的吸附性质。小尺寸的Pdn(n=1-5)团簇在MoS2单层上采取三维生长模式,吸附物与衬底之间存在电荷转移,在吸附体系表面形成偶极矩。讨论了钯等贵金属的吸附效应对单层MoS2的电磁学性质的调制,为基于MoS2的微纳米电子器件以及纳米催化的应用研究提供理论指导。比较研究了钯和金单层沉积在MoS2(0001)表面的吸附性质以及电学性质,研究发现金单层与衬底之间电荷转移区域较大,金作为MoS2纳米电子装置的候选接触电极可能具有比较好的导电性。对本论文研究工作做了总结并对今后的研究工作进行展望。
Metal nanostructures have attracted considerable attention in recent years due to the potential applications in aspects of nanoscale electronics and atomic-scale storage devices as well as chemical catalysts and sensors. Inparticular, understanding the electronic, physical and chemical properties of metal clusters and monolayer became an issue attracting wide attention of a large number of researchers. Theoretical calculations focused on the geometry, stability, electronic and magnetic properties of Pd clusters and Pd monolayer adsorbed on the substrates with different properties (including NiAl(110), ZnO{0001}, MoS2monolayer) were carried out with in the framework of spin density functional theory (DFT).
     Fristly, theoretical calculations on the geometry, stability, electronic and magnetic properties of small palladium clusters Pdn(n=1-5) adsorbed on the NiAl(110) alloy surface has been carried out. In agreement with the experimental observations, both Ni-bridge and Al-bridge sites are preferential for the adsorption of single palladium atom. Among the possible structures considered for Pdn (n=1-5) clusters adsorbed on NiAl(110) surface, Pd atoms tend to form one-dimensional (1D) chain structure at low coverage (from Pd1to Pd3) and two-dimensional (2D) structures are more stable than three-dimensional (3D) structures for Pd4and Pd5. Furthermore, metal-substrate bonding prevails over metal-metal bonding for Pd cluster adsorbed on NiAl(110) surface. The density of states for Pd atoms of Pd/NiAl(110) system are strongly affected by their chemical environment, such as the modification of NiAl and the effect of surrounding Pd. The magnetic feature emerged upon the adsorption of Pd clusters on NiAl(110) surface was due to the charge transfer between Pd atoms and the substrate. These findings may shade light on the understanding of the growth of Pd metal clusters on alloy surface and the construction of nanoscale devices. In addition, the infinite Pd chains supported by NiAl(110) exist two configurations, the interactions among the increasing number of adatom resonance states enentually give rise to a band of resonance state, wihch is caused by substrate-mediated coupling and the direct5sp orbital overlap of adjacent Pd.
     Secondly, we have systemically studied the structural and electronic properties of Pd adsorbed on ZnO{0001} polar surface with different coverage, and analyzed the effect of interface of Pd/ZnO system. When the coverage increased to1ML, Pd atoms prefer to adsorb on fcc sites of ZnO{0001} surface; while Pd located at the top of O. After Pd adsorbed on ZnO(0001) surface, new band states emerged near the Fermi energy, and the electron density of Pd remain localized. Pd/ZnO (000-1) system is magnetic, which is caused by the hybridization between Pd and the O atom of substrate. Upon adsorption of Pd, the work function of system has change, which is caused by the change transfer between Pd and ZnO. The Schottky barrier height is0.65eV and1.16eV for Pd/ZnO(0001) and Pd/ZnO(000-1), respectively.
     Thridly, we have investigated firstly the structural, electronic and magnetic properties of Pdn (n=1-5) clusters adsorbed on MoS2monolayer. The initial growth of Pd clusters adopt Volmer-Weber mode, the Pd-Pd bonding is stronger than adsorbate-substrate bonds with the increasing of Pd coverage.The charge transfers from Pd clusters to substrate and the catalytic activity of Pd clusters with positive charge may be affected. Then the adsorption effects of the noble metal atoms (Ni, Pd, Pt, Cu, Ag, and Au) on electronic and magnetic properties of MoS2monolayer are investigated. To be comparaed, we present total energy calculations of the adsorption of Pd and Au monolayer on MoS2(0001) surface. We find that Au is suitable to be choosed as contact electrode for MoS2-based devices becaused of the stronger charge transfer between the Au adlayer and MoS2substrate.
     At last, we summarize the whole work and make an outlook to the effect of surface defects and reconstruction on the growth of metal clusters.
引文
[1]白春礼.纳米科技及其发展前景[J].华北工学院学报,2001:25-29.
    [2]DM Eigler, EK Schweizer. Positioning single atoms with a scanning tunnelling microscope [J].Nature,1990,344(5),524-526.
    [3]N. Nilius, T. M. Wallis, W. Ho. Development of One-Dimensional Band Structure in Artificial Gold Chains [J].Science,2002,297:1853-1856.
    [4]J. Wang, M. Li, E. I. Altman. Scanning tunneling microscopy study of self-organized Au atomic chain growth on Ge (001)[J].Phys. Rev. B,2004,70:233312.
    [5]K. Bhattacharjee, A. Roy, K. Kundu, B. N. Dev. Electronic structure of Ag-adsorbed nanowire-like stripes on Si (110)-(16x2) surfaces. I. An in situ STM and STS experiment [J].Phys. Rev. B,2008,77:115430.
    [6]P. Jensen. Growth of nanostructures by cluster deposition:Experiments and simple models [J].Rev. Mod. Phys.,1999,71:1695-1735.
    [7]A. Perez, P. Melinon, V. Dupuis, P. Jensen, B. Prevel, J. Tuaillon, L. Bardotti, C. Martet, M.Treilleux, M. Broyer, M. Pellarin, J. L. Vaille, B. Palpant J. Lerme. Cluster assembled materials:a novel class of nanostructured solids with original structures and properties [J]. J. Phys. D:Appl. Phys.,1997,30:709-721.
    [8]C. Girardet, C. Toubin. Molecular atmospheric pollutant adsorption on ice:a theoretical survey [J]. Surf. Sci. Rep.,2001,44:159-238.
    [9]H. Hovel, I. Barke. Morphology and electronic structure of gold clusters on graphite: Scanning-tunneling techniques and photoemission [J]. Prog. Surf. Sci.,2006,81:53-111.
    [10]K. Schouteden, N. Vandamme, E. Janssens, P. Lievens, C. V. Haesendonck. Single-electron tunneling phenomena on preformed gold clusters deposited on dithiol self-assembled monolayers [J].Surf. Sci.,2007,602:552-558.
    [11]K. Schouteden, A. Lando, E. Janssens, P. Lievens, C. V. Haesendonck. Morphology and electron confinement properties of Co clusters deposited on Au(111) [J].New J. Phys.,2008,10: 083005.
    [12]J. Li, W-D. Schneider, R. Berndt, S. Crampin. Electron Confinement to Nanoscale Ag Islands on Ag (111):A Quantitative Study [J].Phys. Rev. Lett.,1998,80,3332-3335.
    [13]L. Diekhoner, M. A. Schneider, A. N. Baranow, V. S. Stepanyuk, P. Bruno and and K. Kern, Phys. Rev. Lett.,2003,90:236801.
    [14]O. Pietzsch, A. Kubetzka, M. Bode, R. Wiesendanger. Surface States of Cobalt Nanoislands on Cu (111)[J].Phys. Rev. Lett.,2004,92:057202.
    [15]K. Schouteden, E, Lijnen, E. Janssens, A. Ceulemans, L. F. Chibotaru, P. Lievens, C. V. Haesendonck. Confinement of surface state electrons in self-organized Co islands on Au(111) [J].New J. Phys.,2008,10:043016.
    [16]R. E. Thomas. Interference Effects in the Reflection of Low-Energy Electrons from Thin Films of Au on Ir [J].J. Appl. Phys.,1970,41:5330-5534.
    [17]J. J. Paggel, T. Miller, T.-C. Chiang. Quantum-Well States as Fabry-Perot Modes in a Thin-Film Electron Interferometer [J]. Science,1999,283:1709-1711.
    [18]Y. F. Zhang, Z. T.ang, T. Z. Han, J. F. Jia, Q. K. Xue. Growth, stability and morphology evolution of Pb films on Si(111) prepared at low temperature [J].Surf. Sci.2005,596:L331-L338
    [19]Mingsheng Xu, Tao Liang, Minmin Shi, Hongzheng Chen. Graphene-Like Two-Dimensional Materials [J]. Chem. Rev.,2013,113:3766-3798
    [20]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. C60:Buckminsterfullerene [J]. Nature,1985,318:162-163.
    [21]W. Kratschmer, Lowell D. Lamb, K. Fostiropoulos, Donald R. Huffman. Solid C60:a new form of carbon [J]. Nature,1990,347:354-358.
    [22]阎守胜.固体物理基础[M].北京:北京大学出版社,2003:225-230.
    [23]J. T. Cheung, J. Madden. Growth of HgCdTe epilayers with any predesigned compositional profile by laser molecular beam epitaxy [J]. J. Vac. Sci. Technol. B,1987,5:705.
    [24]Masaki Kanai, Tomoji Kawai, Shichio Kawai, Hitoshi Tabata. Lowtemperature formation of multilayered Bi(Pb)SrCaCuO thin films by successive deposition using laser ablation[J].Appl. Phys. Lett.,1989,54:1802-1804.
    [25]E. A. Rohlfing, D. M. Cox, A. Kaldor. Photoionization of Isolated Nickel Atom Clusters [J].J Phys Chem,1984,88:4497-4502.
    [26]王广厚.团簇物理的新进展(Ⅰ)[J].物理学进展,1994,14(2):121-172.
    [27]闫宏,赵福庭.光学薄膜领域反应磁控溅射技术的进展[J].光学仪器,2004,26(2):109-114.
    [28]贾嘉.溅射法制备纳米薄膜材料及进展[J].半导体技术,2004,29(7):70-73.
    [29]C. Angeles-Chavez, J.A. Toledo-Antonio, M.A. Cortes-Jacome, C. Encarnacion-Gomez. Structural characterization of Pt-Ir bimetallic clusters on TiO2 nanotubes prepared by simultaneous reduction [J]. Powder Technology,2014,258:78-84.
    [30]赵嘉学,童洪辉.磁控溅射原理的深入探讨[J].真空,2004,41(4):74-79.
    [31]JoseRogan, Griselda Garcia, Max Ramirez, Victor Munoz, Juan Alejandro Valdivial, Xavier Andradel, RicardoRamirezMiguel Kiwi.The structure and properties of small Pd clusters [J]. Nanotechnology,2008,19:205701.
    [32]Bulumoni Kalita, Ramesh C. Deka.Stability of small Pdn (n=1-7) clusters on the basis of structural and electronic properties:A density functional approach [J]. J. Chem. Phys.,2007,127: 244306.
    [33]N. Nilius, T. M. Wallis, W. Ho. Realization of a Particle-in-a-Box:Electron in an Atomic Pd Chain [J]. J. Phys. Chem. B,2005,109:20657-20660.
    [34]Christopher J. Heard, Stefan Vajda, Roy L. Johnston. Support and Oxidation Effects on Subnanometer Palladium Nanoparticles [J]. J. Phys. Chem. C,2014,118:3581-3589.
    [35]D. Duca, F. Ferrante, G. La Manna. Theoretical Study of Palladium Cluster Structures on Carbonaceous Supports [J]. J. Phys. Chem. C,2007,111:5402-5408.
    [36]B. Wang, B. Yoon, M. Konig, Y. Fukamori, F. Esch, U. Heiz, U. Landman. Size-Selected Monodisperse Nanoclusters on Supported Graphene:Bonding, Isomerism, and Mobility [J].Nano Lett.,2012,12:5907-5912.
    [37]D. Sen, R. Thapa, K.K. Chattopadhyay, Small Pd cluster adsorbed double vacancy defect graphene sheet for hydrogen storage:A first principles study [J]. International journal of hydrogen energy,2013,38:3041-3049.
    [38]B. V. Reddy, S. N. Khanna, B. I. Dunlap. Giant magnetic moments in 4d clusters [J]. Phys. Rev. Lett.,1993,70:3323.
    [39]M. Moseler, H. Hakkinen, R. N. Barnett, U. Landman. CO Oxidation on a Single Pd Atom Supported on Magnesia [J].Phys. Rev. Lett.,2001,86:2545.
    [40]T. Futschek, M. Marsman, J. Hafner. Structural and magnetic isomers of small Pd and Rh clusters:an ab initio density functional study [J]. J. Phys.:Condens. Matter,2005,17:5927-5963.
    [41]C. M. Chang, M.Y. Chou. Alternative Low-Symmetry Structure for 13-Atom Metal Clusters [J]. Phys. Rev. Lett.,2004,93:133401.
    [42]H. L. Zhang, D. X. Tian, J. J. Zhao. Structural evolution of medium-sized Pdn (n= 15-25) clusters from density functional theory [J]. J. Chem. Phys.,2008,129,114302.
    [43]L. Fernandez-Seivane, J. Ferrer. Magnetic anisotropies of late transition metal atomic clusters [J]. Phys. Rev. Lett.,2007,99:183401.
    [44]I. Stara, V. Nehasil, V. Matohn. The influence of particle size on CO oxidation on Pdalumina model catalyst [J]. Surf. Sci.,1995,331:173-177.
    [45]M. Valden, J. Aaltonen, E. Kuusisto, M. Pessa, C. J. Barnes. Molecular beam studies of CO oxidation and CO-NO reactions on a supported Pd [J]. Surf. Sci.,1994,307:193-198.
    [46]A. S. Worz, K. Judai, S. Abbet, U. Heiz, Cluster Size-Dependent Mechanisms of the CO+ NO Reaction on Small Pd,, (n≤30) Clusters on Oxide Surfaces [J].J. Am. Chem. Soc.,2003,125: 7964-7970.
    [47]W. T. Tysoe, G L. Nyberg, R. M. Lambert. Selective Hydrogenation of Acetylene over Palladium in Ultra High Vacuum [J]. J. Phys. Chem.,1986,90:3188-3192.
    [48]H. Greenberg, J.-E. Backvall. Mechanism of Palladium-Catalyzed Allylic Acetoxylation of Cyclohexene [J]. Chem. Eur. J.,1998,4(6):1083-1089.
    [49]V. L. Kirillov, Yu. A. Ryndin. Methanol synthesis on palladium nanoparticles:size effect [J].Reaction Kinetics and Catalysis Letters,1996,59:351-357.
    [50]R. V. Gulyaev, A. I. Stadnichenko, E. M. Slavinskaya, A. S. Ivanova, S. V. Koscheev, A. I. Boronin. In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO [J].Appl. Catal. A:General,2012,439-440:41-50.
    [51]S. Abbet, A.M. Ferrari, L. Giordano, G. Pacchioni, H. Hakkinen, U. Landman, U. Heiz.Pdl/MgO(100):a model system in nanocatalysis [J]. Surf. Sci.,2002,514:249-255.
    [52]F Aguilera-Granja, Avega, J Rogan, G Garcia. Metallic behavior of Pd atomic clusters [J]. Nanotechnology,2007,18:365706.
    [53]Yuewen Mu, Yan Han,Jinlan Wang, Jian-guo Wan, Guanghou Wang.Structures and magnetic properties of Pd,, clusters (n=3-19) doped by Mn atoms [J]. Phys. Rev. A,2011,84:053201.
    [54]Zhongfan Zhang, Long Li, and Judith C. Yang. Adhesion of Pt Nanoparticles Supported on y-Al2O3 Single Crystal [J]. J. Phys. Chem. C,2013,117:21407-21412.
    [55]Charles T. Campbell, David E. Starr. Metal Adsorption and Adhesion Energies on MgO(100) [J]. J. Am. Chem. Soc.,2002,124:9212-9218.
    [56]S. Abbet, A.M. Ferrari, L. Giordano, G. Pacchioni, H. Hakkinen,U. Landman, U. Heiz. Pd1/MgO(100):a model system in nanocatalysis [J]. Surf. Sci.,2002,514:249-255.
    [57]Ilya V. Yudanov, Alexander Genest, Notker Rosch. DFT Studies of Palladium Model Catalysts:Structure and Size Effects [J]. J. Clust. Sci.,2011,22:433-448.
    [58]Francesc Vines, Aine Desikusumastuti, Thorsten Staudt, Andreas Gorling, Jorg Libuda, Konstantin M. Neyman.A Combined Density-Functional and IRAS Study on the Interaction of NO with Pd Nanoparticles:Identifying New Adsorption Sites with Novel Properties [J]. J. Phys. Chem., C 2008,112:16539-16549.
    [59]Chih-Ming Lin, Tsu-Lien Hung,Yen-Heng Huang, Kung-Te Wu, Mau-Tsu Tang, Chih-Hao Lee, C. T. Chen,Y. Y. Chen.Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy [J]. Phys. Rev. B,2007 75:125426.
    [60]Yanjin Wang, Zexing Cao, Qianer Zhang.Density functional study of multiple H2 adsorption and activation on a Pd6 cluster [J]. Chem. Phy. Lett.,2003,376:96-102.
    [61]William E. Kaden, Tianpin Wu, William A. Kunkel, Scott L. Anderson. Electronic Structure Controls Reactivity of Size-Selected Pd Clusters Adsorbed on TiO2 Surfaces [J].Science,2009, 326:826-829.
    [62]M. Born, K. Huang. Dynamical theory of crystal lattices [M]. Oxford:Oxford University Press,1954.
    [63]L. S. Thomas. The calculation of atomic fields [J]. Proc. Camb. Phil. Soc.,1927,23:542-548.
    [64]E, Fermi. Statistical method of investigating electronic in atom [J], Z. Phys.,1928,48:73-79.
    [65]P. Hohenherg, W. Kohn. Inhomogeneous electron gas [J], Phys. Rev. B,1964,136:864-871.
    [66]W. Kohn, L.J. Sham. Self-Consistent equations including exchange and correlation effects [J]. Phys. Rev. A,1965,140:1133-1138.
    [67]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [68]R. M. Martin. Electronic structure:Basic theory and practical methods [M]. New York: Cambridge University Press,2004,624.
    [69]Barth U, Hedin L. A local exchange-correlation potential for the spin polarized case:I [J]. J. Phys C:Solid State Phys,1972,5:1629-1642.
    [70]M. C. Payne. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys.,1992,64(4):1045-1097.
    [71]E.Fermi. Nuovo Cimento[J].1934,11:157-166.
    [72]H.Hellmann.Aeta.Physiochimica URSS.1935,1:913.
    [73]D.R.Hamann, M.Sehliiter, C.Chiang. Norm-Consvering Pseudopotentials [J].Phys. Rev. Lett, 1979,43(20):1494-1497.
    [74]D.Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J].Phys. Rev. B,1990,41(11):7892-7895.
    [75]P. E. Blochl, Projector augmented-wave method [J].Phys. Rev. B,1994,50 (24): 17953-17979.
    [76]G Kresse, J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first row and transition elements [J].J. Phys.:Condens. Matter.,1994,6(40):9245-9257.
    [77]G Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals [J].Phys. Rev. B,1993, 47:558-561.
    [78]G Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].Phys. Rev. B,1996,54:11169-11185.
    [79]L. Giordano, A. Del Vitto, G Pacchioni, A. M. Ferrari.CO adsorption on Rh, Pd and Ag atoms deposited on the MgO surface:a comparative ab initio study [J].Surf. Sci.,2003,540:63-75.
    [80]E.Yu. Zarechnaya, N. V. Skorodumova, S. I. Simak, B. Johansson, E. I. Isaev. Theoretical study of linear monoatomic nanowires, dimer and bulk of Cu, Ag, Au, Ni, Pd and Pt [J]. Comp. Mater. Sci.,2008,43:522-530.
    [81]C. Lacaze-Dufaure, J. Roques, C. Mijoule, E. Sicilia, N. Russo, V. Alexiev, T. Mineva. A DFT study of the NO adsorption on Pdn (n=1-4) clusters [J]. J. Mol. Catal. A:Chem.,2011,341:28-34.
    [82]B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction [J].Science,2009, 324:1302-1305.
    [83]A. Calzolaril,M. B. Nardelli. First principles theory of artificial metal chains on NiAl(110) surface[J].Phys. Rev. B,2005,72:045416.
    [84]Y. Mokrousov, G Bihlmayer, S. Blugel, S. Heinze. Magnetic order and exchange interactions in monoatomic 3d transition-metal chains [J].Phys. Rev. B,2007,75:104413.
    [85]L. Giordano, C. Di Valentin, G Pacchioni, J. Goniakowski. Formation of Pd dimers at regular and defect sites of the MgO(100) surface:cluster model calculations [J].Chem. Phys.,2005, 309:41-47.
    [86]L. Giordano, G Pacchioni. Pd nanoclusters at the MgO(100) surface [J]. Surf. Sci.,2005,575: 197-209.
    [87]S. Sicolo, G Pacchioni. Charging and stabilization of Pd atoms and clusters on an electron-rich MgO surface [J].Surf. Sci.,2008,602:2801-2807.
    [88]A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Halkkinen, R. N. Barnett, Uzi Landman. When Gold Is Not Noble:Nanoscale Gold Catalysts [J]. J. Phys. Chem. A,1999,103:9573-9578.
    [89]Y. F. Dong, S. J. Wang, Y. Y. Mi, Y. P. Feng, A. C. H. Huan. First-principles studies on initial growth of Ni on MgO(001) surface[J]. Surf. Sci.,2006,600:2154-2162.
    [90]Livia Giordano, Matteo Baistrocchi, Gianfranco Pacchioni. Bonding of Pd, Ag, and Au atoms on MgO(100) surfaces and MgO/Mo(100) ultra-thin films:A comparative DFT study [J].Phys. Rev. B,2005,72:115403.
    [91]S. Abbet, U. Heiz, A. M. Ferrari, L. Giordano, C. Di Valentin, G Pacchioni. Nano-assembled Pd catalysts on MgO thin films [J]. Thin Solid Films,2001,400:37-42.
    [92]S. Abbet, E. Riedo, H. Brune, U. Heiz, A. M. Ferrari, L. Giordano, G Pacchioni. Identification of Defect Sites on MgO(100) Thin Films by Decoration with Pd Atoms and Studying CO Adsorption Properties[J]. J. Am. Chem. Soc.,2001,123:6172-6178.
    [93]S. M. Yalisove, W. R. Graham. Multilayer rippled structure of the NiAl(110) surface:A medium energy ion scattering study[J]. Surf. Sci.,1987,183 (3):556-564.
    [94]N. Nilius, T. M. Wallis, W. Ho. Development of One-Dimensional Band Structure in Artificial Gold Chains [J].Science,2002,297:1853-1856.
    [95]T. M. Wallis, N. Nilius, W. Ho. Electronic Density Oscillations in Gold Atomic Chains Assembled Atom by Atom [J].Phys. Rev. Lett.,2002,89:236802.
    [96]N. Nilius, T. M. Wallis, M. Persson, W.Ho. Distance Dependence of the Interaction between Single Atoms:Gold Dimers on NiAl(110)[J]. Phys. Re. Lett.,2003,90:196103.
    [97]M. Persson. Computational study of electron states in Au chains on NiAl(110) [J]. Phys. Rev. B,2004,70:205420.
    [98]G Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].Phys. Rev. B,1996,54:11169-11186.
    [99]G Kresse, J. Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J].Comput. Mater. Sci.,1996,6:15-50.
    [100]G Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B,1993, 47:558-561.
    [101]J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett.,1996,77:3865-3868.
    [102]P. E. Blochl. Projector augmented-wave method [J].Phys. Rev. B,1994,50:17953-17979.
    [103]H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations [J]. Phys. Rev. B, 1976,13:5188-5192.
    [104]S.-C. Lui, J. W. Davenport, E. W. Plummer, D. M. Zehner, G W. Fernand. Electronic structure of NiAl [J].Phys. Rev. B,1990,42:1582-1597.
    [105]J. M. Kuznetsov, R. I. kadyrov, G E. Rudenskii. Calculation of Surface Energy of Metals and Alloys by the Electron Density Functional Method [J].J. Mater. Sci. & Tech.,1998, 14(4):320-322.
    [106]W. Monch. Electronic Properties of Semiconductor Interfaces [M]. Berlin:Springer,2004.
    [107]K. Momma, F. Izumi. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr.,2011,44,1272-1276.
    [108]S. Glasstone, K.J.Laidler, H. Eyring.The theory of rate processes [M]. New York:McGraw Hill,1941.
    [109]J. C. Johnson, H. Q.Yan, R. D. Schaller, L.H. Haber, R. J. Saykally, P. D. Yang. Single Nanowire Lasers [J]. J. Phys. Chem. B,2001,105:11387-11390.
    [110]H. Kind, H.Q. Yan, B. Messer, M. Law, P. D. Yang. Nanowire Ultraviolet Photodetectors and Optical Switches [J]. Adv. Mater.,2002,14:158-160.
    [111]Christof Woll. The chemistry and physics of zinc oxide surfaces [J]. Prog. Surf. Sci.,2007, 82:55-120.
    [112]N. Jedrecy, M. Sauvage-Simkin, R. Pinchaux.The hexagonal polar ZnO(0001)-(1x1) surfaces:structural features as stemming from X-ray diffraction[J]. Appl.Surf. Sci.,2000,162-163: 69-73.
    [113]A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, N. M. Harrison. Stability of Polar Oxide Surfaces [J]. Phys. Rev. Lett.,2001,86:3811-3814.
    [114]O. Dulub, U. Diebold, G. Kresse. Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn [J]. Phys. Rev. Lett.,2003,90:016102.
    [115]S.T. King, S.S. Parihar, K. Pradhan, H.T. Johnson-Steigelman, P.F. Lyman. Observation of a (√3 x √3)R30 ° reconstruction on O-polar ZnO surfaces[J]. Surf. Sci. Lett.,2008, 602:L131-134.
    [116]M. Valtiner, X. Torrelles, A. Pareek, S. Borodin, H. Gies, G. Grundmeier. In Situ Study of the Polar ZnO(0001)-Zn Surface in Alkaline Electrolytes[J]. J. Phys. Chem. C,2010,114: 15440-15447.
    [117]G. Kresse, O. Dulub, U.Diebold. Competing stabilization mechanism for the polar ZnO(0001)-Zn surface[J].Phys. Rev. B,2003,68:245409.
    [118]Markus Valtiner, Mira Todorova, Guido Grundmeier, J6rg Neugebauer. Temperature Stabilized Surface Reconstructions at Polar ZnO(0001)[J]. Phys. Rev. Lett.,2009,103:065502.
    [119]Markus Valtiner, Mira Todorova, Jorg Neugebauer. Hydrogen adsorption on polar ZnO(0001)-Zn:Extending equilibrium surface phase diagrams to kinetically stabilized structures[J]. Phys. Rev. B,2010,82:165418.
    [120]S J. Young, L.W. Jib, S.J. Chang, Y.K. Su. ZnO metal-semiconductor-metal ultraviolet sensors with various contact electrodes [J]. J. Cryst. Growth,2006,293:43-47.
    [121]S.J. Young, L.W. Ji, T.H. Fang, S J. Chang, Y.K. Su, X.L. Du. ZnO ultraviolet photodiodes with Pd contact electrodes[J]. Acta Mater.,2007,55:329-333.
    [122]L.J. Mandalapu, Z. Yang, J.L. Liu. Low-resistivity Au/Ni Ohmic contacts to Sb-doped p-type ZnO [J].Appl. Phys. Lett.,2007,90:252103. [123] Min-Suk Oh, Dae-Kue Hwang, Jae-Hong Lim, Yong-Seok Choi, Seong-Ju Park. Improvement of Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation [J]. Appl. Phys. Lett.,2007,91:042109.
    [124]M.W. Allen, S.M. Durbin, J.B. Metson, Silver oxide Schottky contacts on n-type ZnO[J]Appl. Phys. Lett.,2007,91:053512.
    [125]Dae-Kue Hwang, Min-Suk Oh, Jae-Hong Lim, Yong-Seok Choi, Seong-Ju Park. ZnO-based light-emitting metal-insulator-semiconductor diodes [J]. Appl. Phys. Lett.,2007,91:121113.
    [126]S. Basu, A. Dutta. Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application [J]. Sensors Actuators B,1994,22 (2):83-87.
    [127]A. Dutta, S. Basu. Modified metal-insulator-metal (M-I-M) hydrogen gas sensors based on zinc oxide [J]J. Mater. Sci.,1995,6:415-418.
    [128]Parthasarathi Bera, John M. Vohs. Reaction of CH3OH on Pd/ZnO(0001) and PdZn/ZnO(0001) Model Catalysts [J]. J. Phys. Chem. C,2007,111:7049-7057.
    [129]N. Iwasa, S. Masuda, N. Ogawa, N. Takezawa. Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction [J].Appl. Catal. A,1995,125:145-157.
    [130]J. Yoshihara, C.T. Campbell. Chemisorption of formic acid and CO on Cu particles on the Zn-terminated ZnO(O001) surface [J].Surf. Sci.,1998,407:256-267.
    [131]Fabio Raimondi, Bernhard Schnyder, Rudiger Kotz, Rolf Schelldorfer, Thomas Jung, J6rg Wambach, Alexander Wokaun. Structural changes of model Cu/ZnO catalysts during exposure to methanol reforming conditions [J].Surf. Sci.,2003,532-535:383-389.
    [132]Ya-Huei Chin, Yong Wang, Robert A. Dagle, Xiaohong Shari Li. Methanol steam reforming over Pd/ZnO:Catalyst preparation and pretreatment studies [J]. Fuel Processing Technology,2003, 83:193-201.
    [133]Xian-Qi Dai, Hui-Juan Yan, Jian-Li Wang, Ya-Ming Liu, Zongxian Yang and M H Xie.The effect of Cu on O adsorption on a ZnO(0001) surface:a first-principles study [J]. J. Phys.: Condens. Matter,2008,20:095002.
    [134]G Dehm, M. Ruhle, G. Ding, R. Raj. Growth and structure of copper thin films deposited on (0001) sapphire by molecular beam epitaxy [J]. Phil. Mag. B,1995,71:1111-1124.
    [135]C. Scheu, G Dehm, M. Ruhle, R. Brydson. Electron-energy-loss spectroscopy studies of Cu-α-Al2O3 interfaces grown by molecular beam epitaxy [J]., Phil. Mag. A,1998,78:439-465
    [136]J. R. B. Gomes, F. Illas. Interaction of Pd with α-Al2O3(0001):A case study of modeling the metal-oxide interface on complex substrates [J]. Phys. Rev. B,2002,65:125414.
    [137]P. Lu, F. Cosandey. Electron microscopy studies of metal/MgO interfaces [J]. Ultramicroscopy,1992,40:271-280.
    [138]F.R. Chen, S.K. Chiou, L. Chang, C.S. Hong. High-resolution electron microscopy of Cu/MgO and Pd/MgO interfaces [J]. Ultramicroscopy,1994,54:179-191.
    [139]W.P. Vellinga, J.Th.M. De Hosson. Atomic structure and orientation relations of interfaces between Ag and ZnO [J].Acta Mater.,1997,45:933-950.
    [140]N. Sakaguchi, Y. Suzuki, K. Watanabe, S. Iwama,S. Watanabe, H. Ichinose. A HRTEM and EELS study of Pd/ZnO polar interfaces [J]. Philosophical Magazine,2008,88(10):1493-1509.
    [141]H.B. Groen, J.T.M. De Hosson. Different Pd-ZnO Interfaces Studied with High Resolution Transmission Electron Microscopy [J].Scripta Mater.,1998,38:769-773.
    [142]Taeyoung Kim, Michiko Yoshitake, Shinjiro Yagyu, Slavomir Nemsak, Takahiro Nagata, Toyohiro Chikyow. XPS study on band alignment at Pt-O-terminated ZnO(000-1) interface [J]. Surf. Interface Anal.,2010,42:1528-1531
    [143]Parthasarathi Bera, John M. Vohsa. Growth and structure of Pd films on ZnO(0001) [J]. J. Chem. Phys.,2006,125:164713.
    [144]Z. Lin, P.D. Bristowe. Microscopic characteristics of the Ag(111)/ZnO(0001) interface present in optical coatings [J]. Phys. Rev. B,2007,75:205423.
    [145]B. Meyer, D. Marx. Density-functional study of Cu atoms, monolayers, films, and coadsorbateson polar ZnO surfaces [J]. Phys. Rev. B,2004,69:235420.
    [146]A. Zaoui. Energetic stabilities and the bonding mechanism of ZnO{0001}/Pd(111) interfaces[J]. Phys. Rev. B,2004,69:115403.
    [147]haiquan Hu, Zengtao Lv, Shouxin Cui, Guiqing Zhang. Theoretical study of ZnO(10-10) and M/ZnO(10-10) (M=Cu, Ag and Au) surfaces with DFT approach[J]. Chem. Phys. Lett.,2011, 510:99-103.
    [148]Olga Dulub, Ulrike Diebold, G Kresse.Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn [J].Phys. Rev. Lett.,2003,90(1):016102.
    [149]Shuyi Wei, Zhiguo Wang, Zongxian Yang. First-principles studies on the Au surfactant on polar ZnO surfaces [J]. Phys. Lett. A,2007,363:327-331.
    [150]Haifeng Zhang, Shixiang Lu, Wenguo Xu, Feng Yuan. First-principles study of electronic structures and photocatalytic activity of low-Miller-index surfaces of ZnO [J]. J. Appl. Phys.,2013, 113:034903.
    [151]Chun-Wei Chen, Ming-Hsien Lee. Dependence of work function on the geometries of single-walled carbon nanotubes [J].Nanotechnology,2004,15:480-484.
    [152]Z. Yang, S. J. Xiong. Adsorption of Ag and Au atoms on wurtzite ZnO (0001) surface [J]. Surf. Sci.,2011,605:40-45.
    [153]R.V. Gulyaev, A.I. Stadnichenko, E.M. Slavinskay, A.S. Ivanova, S.V. Koscheev, A,I. Boronin. In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO [J].Applied Catalysis A:General,2012,439-440:41-50.
    [154]Igor Popov, Gotthard Seifert, and David Tomanek, Designing Electrical Contacts to MoS2 Monolayers:A Computational Study [J]. Phys. Rev. Lett.,2012,108:156802.
    [155]Saptarshi Das, Hong-Yan Chen, Ashish Verma Penumatcha, Joerg Appenzeller.High Performance Multilayer MoS2 Transistors with Scandium Contacts [J]. Nano Lett.,2013,13: 100-105.
    [156]F. Donati,Q. Dubout,G Autes, F. Patthey,F. Calleja, P. Gambardella, O.V. Yazyev, H. Brune. Magnetic Moment and Anisotropy of Individual Co Atoms on Graphene [J]. Phys. Rev. Lett.,2013, 111:236801.
    [157]William E. Kaden, Tianpin Wu, William A. Kunkel, Scott L. Anderson. Electronic Structure Controls Reactivity of Size-Selected Pd Clusters Adsorbed on TiO2 Surfaces [J]. Science,2009, 326:826-829.
    [158]F. Leonard, A. A. Talin. Size-Dependent Effects on Electrical Contacts to Nanotubes and Nanowires [J]. Phys. Rev. Lett.,2006,97,026804.
    [159]Y.-F. Lin, W.-B. Jian. The Impact of Nanocontact on Nanowire Based Nanoelectronics Nano Lett.,2008,8,3146-3150.
    [160]J. R. Lince, D. J. Carre, P. D. Fleischauer. Schottky-barrier formation on a covalent semiconductor without Fermi-level pinning:The metal-MoS2 (0001) interface [J]. Phys. Rev. B, 1987,36:1647-1987.
    [161]K. K. Kam, B. A. Parkinson. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides [J]. J. Phys. Chem.,1982,86:463-467.
    [162]R. Fivaz, E. Mooser. Mobility of Charge Carriers in Semiconducting Layer Structures [J]. Phys. Rev.,1967,163:743-755.
    [163]V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, E.Bucher. High-mobility field-effect transistors based on transition metal dichalcogenides [J]. Appl. Phys. Lett.,2004,84:3301-3303.
    [164]Wencan Jin, Po-Chun Yeh, Nader Zaki, Datong Zhang, Jerzy T. Sadowski, Abdullah Al-Mahboob, Arend M. van der Zande, Daniel A. Chenet, Jerry I. Dadap, Irving P. Herman, Peter Sutter, James Hone, and Richard M. Osgood, Jr. Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy [J]. Phys. Rev. Lett.,2013,111:106801.
    [165]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer MoS2 transistors [J]. Nat.Nanotechnology,2011,6:147-150.
    [166]H. Liu, P. D. Ye. Dual-Gate MOSFET with Atomic-Layer-Deposited as Top-Gate Dielectric [J]. IEEE Electron Device Lett.,2012,33:546.
    [167]S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller. High Performance Multilayer MoS2 Transistors with Scandium Contacts [J]. Nano Lett.,2013,13:100.
    [168]H. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation:Defect Production and Doping [J].Phys. Rev. Lett.,2012,109:035503.
    [169]H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts[J].Nano Lett.,2012,12:3788.
    [170]JCPDS Intenarnational Center for Diffraction Data, Swarthmore, PA,1992, Powder Diffraction File No.37-1492.
    [171]S. K. Mahatha, K. D. Patel, K. S. R. Menon. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies [J]. J. Phys.:Condens. Matter,2012,24:475504.
    [172]R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, R. A. de Groot, A. Wold. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy [J]. Phys. Rev. B,1987,35:6195-6202.
    [173]Yifei Yu, Chun Li, Yi Liu, Li qin Su, Yong Zhang& Linyou Cao. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films [J]. Sci. Rep.,2013,3: 1866.
    [174]Ferdows Zahid, Lei Liu, Yu Zhu, Jian Wang, Hong Guo. A generic tight-binding model for monolayer, bilayer and bulk MoS2 [J]. AIP Adv.,2013,3:052111.
    [175]G. Makov, M. C. Payne. Periodic Boundary-Conditions in ab-Initio Calculations [J]. Phys. Rev. B 1995,51:4014-4022.
    [176]J.Neugebauer, Scheffler, M. Adsorbate-Substrate, Adsorbate-Adsorbate Interactions of Na and K Adlayers on Al(111)[J]. Phys. Rev. B,1992,46:16067-16080.
    [177]Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, Michael S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nat. Nanotechnology,2012,7:699-712.
    [178]C. Ataca, H. Sahin, S. Ciraci. Stable, Single-Layer MX2 Transition-Metal Oxides andDichalcogenides in a Honeycomb-Like Structure [J]. J. Phys. Chem. C,2012,116:8983-8999.
    [179]Lijun Xu, Graeme Henkelman, Charles T. Campbell, Hannes J6nssonl. Small Pd Clusters, up to the Tetramer At Least, Are Highly Mobile on the MgO(100) Surface [J].Phys. Rev. Lett., 2005,95:146103.
    [180]Xiao Huang, Zhiyuan Zeng, Shuyu Bao, Mengfei Wang, Xiaoying Qi, Zhanxi Fan, Hua Zhang. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets [J]. Nat. Commun.2013,4:1444.
    [181]Yumeng Shi, Jing-Kai Huang, Limin Jin3, Yu-Te Hsu, Siu Fung Yu, Lain-Jong Li, Hui Ying Yang. Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals [J]. Sci. Rep., 2013,3:1839.
    [182]Shao Su, Haofan Sun, Fei Xu & Lihui Yuwen,Chunhai Fan, Lianhui Wang. Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles [J]. Microchim Acta,2014, DOI 10.1007/s00604-014-1178-9.
    [183]Leonard J. Brillson, Yicheng Lu. ZnO Schottky barriers and Ohmic contacts [J]. J. Appl. Phys.,2011,109:121301.
    [184]Miguel A. San-Miguel, Edgard P. M. Amorim, and E. Z. da Silva. Adsorption of Pd, Pt, Cu, Ag, and Au Monomers on NiAl(110) Surface:A Comparative Study from DFT Calculations [J]. J. Phys.Chem.A,2013.
    [185]A. L. He, X. Q. Wang, Y. Q. Fan, Y. P. Feng. Electronic structure and magnetic properties of Mn-doped ZnO nanotubes:An ab initio study [J]. J. Appl. Phys.,2010,108:084308.
    [186]T. M. Schmidt, R. H. Miwa, A. Fazzio-Ferromagnetic coupling in a Co-doped graphenelike ZnO sheet [J]. Phys. Rev. B,2010,81:195413.
    [187]Dongwei Ma, Zhansheng Lu, Weiwei Ju, Yanan Tang. First-principles studies of BN sheets with absorbed transition metal single atoms or dimers:stabilities, electronic structures, and magnetic properties [J].J. Phys.:Condens. Matter.,24 (2012) 145501-145508
    [188]F.C. Zhang, Zhi-Yong Zhang, H.W. Zhang, Jun-Feng Yan, Jiang-Ni Yun. First-Principles Study on Magnetic Properties of V-Doped ZnO Nanotubes [J]. Chin. Phys. Lett.2009, 26(1):016105.
    [189]Y.G. Zhou, X. D. Jiang, G. Duan, F. Gao, X.T. Zu. Spin and band-gap engineering in copper-doped BN sheet [J]. Chem. Phys. Lett.2010,491:203-207
    [190]Ru-Fen Liu, Ching Cheng. Ab initio studies of possible magnetism in a BN sheet by nonmagnetic impurities and vacancies [J]. Phys. Rev. B,2007,76:014405.
    [191]Hui Fang, Mahmut Tosun, Gyungseon Seol, Ting Chia Chang, Kuniharu Takei, Jing Guo, Ali Javey. Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium [J].Nano Lett.,2013,13:1991-1995.
    [192]H. J. Chen, J. Huang, X. L. Lei, M. S. Wu, G. Liu, C. Y. Ouyang, B. Xu. Adsorption and Diffusion of Lithium on MoS2 Monolayer:The Role of Strain and Concentration [J]. Int. J. Electrochem. Sci.,2013,8:2196-2203.
    [193]H. L. Skriver, N. M. Rosengaard. Surface energy and work function of elemental metals [J]. Phys. Rev. B,1992,46:7157-7168.
    [194]A. Altibelli, C. Joachim, P. Sautet. Interpretation of STM images:the MoS2 surface. Surf. Sci.,1996,367:209-220.
    [195]M. Weimer, J. Kramar, C. Bai, J. D. Baldeschwieler. Tunneling microscopy of 2H-MoS2:A compound semiconductor surface [J]. Phys.Rev. B,1988,37:4292-4295.
    [196]S. L. Tang, R. V. Kasowski, B. A. Parkinson. Scanning tunneling microscopy of the subsurface structures of tungsten ditelluride and molybdenum ditelluride [J]. Phys. Rev. B,1989, 39:9987-9991.
    [197]J. S. Ha, H. S. Roh, S. J. Park, J. Y. Yi, E. H. Lee. Scanning tunneling microscopy investigation of the surface structures of natural MoS2. Surf. Sci.,1994,315:62-68.
    [198]K. Kobayashi, J. Yamauchi. Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces [J]. Phys. Rev. B,1995,51:17085-17095.
    [199]M. H. Whangbo, J. Ren, S. N. Maganov, H. Bengel, B. A. Parkinson, A. Suna. On the correlation between the scanning tunneling microscopy image imperfections and point defects of layered chalcogenides 2H-MX2(M=Mo, W; X=S, Se) Surf. Sci.,1995,326:311-326.
    [200]R. J. Good, L. A. Girifalco, G. Kraus. A theory for estimation of interfacial energies. II. Application to Surface Thermodynamics of Teflon and Graphite [J].J. Phys. Chem.,1958, 62:1418.
    [201]J. C. McMenamin, W. E. Spicer. Photoemission studies of layered transition-metal dichalcogenides:MoS2 [J]. Phys. Rev. B,1977,16:5474-5487.
    [202]P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH,1991), p.4912.
    [203]J. D. Fuhr, J. O. Sofo, Andres Saul. Adsorption of Pd on MoS2 (1000):Ab initio electronic-structure calculations [J].Phys. Rev. B,1999,60:8343-8347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700