基于功能材料填充的微结构光纤特性调控机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微结构光纤将光子晶体微结构引入到光纤截面中,实现了对光的局域化和传播特性的调控。它独特的结构和特性大大地扩展了光纤的应用领域,引起了科学界研究者的极大青睐。微结构光纤中微纳尺度的空气孔结构为实现光纤与其它材料的有机结合提供了条件。将具有特殊光、电、磁、热等特性的功能材料填充入微结构光纤中,实现了光纤优异的导光特性和填充材料特殊的物理性能有机结合,进而可以调控微结构光纤的传导机制、模式耦合、双折射、色散等光学特性,对研究微结构光纤中光与填充物质的相互作用规律以及研制高性能可调控的光纤通信和传感器件具有重要意义。而且借助微结构光纤对光优良的可控特性,又能实现对材料的精确测量和实时操控,从而在生物光子学、微流动力学等领域展现出了很好的应用前景。
     本文结合国家973计划、国家自然科学基金以及天津市自然科学基金等重点项目的研究目标和内容,针对基于高折射率功能材料填充的微结构光纤的传导机制、模式控制、可调谐特性以及其在可调谐功能器件和传感方面的应用展开了系统深入的理论和实验研究。论文的主要研究工作和创新性成果如下:
     1、通过对基于高折射率功能材料填充的光子带隙光纤的传导机制、温度和弯曲特性的理论研究,揭示了光子带隙的弯曲和温度可调谐特性以及弯曲调谐特性的温度依赖性,提出将弯曲和温度调控共同作用于功能材料填充的光子带隙光纤中,实现了较没有弯曲调谐时更宽的带隙调谐范围。
     2、通过对实施弯曲的高折射率功能材料填充的光子带隙光纤的模式分布和模式耦合特性的理论研究,揭示了功能材料填充的光子带隙光纤中弯曲导致纤芯模式与高折射率柱模式耦合的避免相交效应。利用该效应在光子带隙光纤传输窗口中间产生窄带谐振峰,实现了超高灵敏度折射率(温度)光子带隙光纤传感器,获得的传感灵敏度高达32400nm/RIU(-13.1nm/℃),据我们所知该值是当时报道的光纤传感器中的最高值。
     3、通过控制高折射率功能材料填充的光子带隙光纤和单模光纤熔接时的参数,在熔接处制作了宽度18μm,高度40μm的微型空气腔F-P干涉仪,巧妙利用光纤环路结构将材料填充的光子带隙光纤的透射谱和微型空气腔F-P干涉仪的反射谱相结合,揭示了光子带隙对F-P干涉峰损耗调控的特性。
     利用光子带隙边界对温度的高灵敏度特性,实现了F-P干涉峰的损耗随温度-1.94dB/℃的灵敏度;利用F-P干涉峰对轴向拉力的高敏感特性,实现了3.25nm/N的拉力灵敏度。结合位于带隙边界F-P干涉峰损耗对温度的高灵敏特性和对轴向拉力的低敏感特性以及带隙外的F-P干涉峰中心波长对轴向拉力的高灵敏度特性和对温度的不敏感特性,实现了对温度和轴向拉力的双参量传感。
     4、理论分析了选择性填充不同折射率的高折射率功能材料以及不同的选择性填充结构的微结构光纤的模式耦合特性及模式双折射特性,揭示了纤芯模式与高折射率柱模式的耦合特性对光纤双折射特性的调控,实现了具有独特双折射特性的微结构光纤。进一步理论分析了该类双折射光纤实现的Sagnac干涉仪的光谱和传感特性,揭示了光纤的群双折射特性和传感光纤长度对Sagnac干涉仪光谱和传感特性的调控,在零群双折射波长附近可以实现很高的传感灵敏度。
     5、利用手动选择性填充法和CO2激光器侧向曝光法,实现了不同选择性填充结构的高折射率功能材料填充的微结构光纤,实验研究了其Sagnac干涉仪传输光谱和传感特性,揭示了具有不同群双折射特性的微结构光纤Sagnac干涉仪不同的光谱和传感特性,以及传感灵敏度对波长和温度的强烈依赖性,实现了在56.5℃时高达-45.8nm/℃(112,531nm/RIU)的温度(折射率)灵敏度,以及19.6nm/N轴向拉力灵敏度。
The introduction of photonic crystal structure into the fiber cross section of microstructured optical fibers (MOFs) has turned the localization of optical field and control of optical wave propagation into reality. Owing to their distinguished structures and properties that have been exploited in various fiber-optic applications, MOFs have attracted considerable research interests in the past decade. The micro/nano-scale air holes in MOFs make it possible for the combination of optical fibers with functional materials. The outstanding guiding properties of MOFs could be well synthesized with the unique physical characteristics of the optical, electrical, magnetic, and thermal materials infiltrated into MOFs, and thus several optical properties, including guiding mechanism, mode coupling, birefringence, and dispersion, could be controlled, which would be of great significance for the research on the light-matter interaction and development of fiber-based opto-electronic devices as well as sensing components. And moreover, by exploiting the distinguished optical controllability assisted by MOFs, the real-time precise measurement and control could be realized, showing their promising application prospects in various fields such as biophotonics and microfluidic dynamics.
     Thanks to the support of the National Key Basic Research and Development Program of China, the National Natural Science Foundation of China, the Tianjin Natural Science Foundation. Based on the goal and content of the projects, in this thesis, we have performed systematic as well as in-depth theoretical and experimental investigations on the guiding mechanism, mode control, mode tunability for MOFs infiltrated with high index functional materials. The research work and acquired original outcome are as follows:
     1. The guiding mechanism, temperature and bending characteristics of the MOFs filled with high index functional materials have been theoretical studied, disclosing the temperature/bending tunability of photonics bandgap and temperature dependence of bending tuning. Simultaneous bending-temperature tuning for the photonic bandgap fiber is proposed, and a wider bandgap tunable range has been achieved compared with the case without applied bending.
     2. Based on the theoretical investigation of the mode profile and mode coupling characteristics of the photonic bandgap fiber (PBGF) filled with high index functional material, the avoided-crossing effect between the core mode and high index rod modes have been presented. Owing to this effect, a narrow linewidth resonance peak turns up in the transmission window of the photonic bandgap fiber, and an ultrasensitive refractive index/temperature PBGF sensor has been achieved. Its refractive index and temperature sensitivities reach32400nm/RIU and-13.1nm/℃, respectively, which are the highest values for the fiber sensors reported in related literatures to the best of our knowledge.
     3. By controlling the splicing parameters between the PBGF filled with high index functional material and single-mode fiber (SMF), an F-P interferometer with18μm in width and40μm in height has been fabricated at the splicing joint. And by employing an optical fiber loop, the transmission spectrum of the PBGF filled with high index material and the reflection spectrum of the microcavity F-P interferometer have been combined to reveal the photonic-bandgap-controlled F-P interferometric fringe loss.
     Based on the high temperature sensitivity of the photonic bandgap edge, a temperature sensitivity of resonance peak loss as large as-1.94dB/℃has been achieved for our proposed F-P interferometer; by exploiting the highly sensitive spectral response to axial tension, a tension sensitivity of3.25nm/N has been achieved as well. And by using the high temperature sensitivity and low tension sensitivity of the bandgap-controlled interferometric resonance peak loss and the high tension sensitivity and temperature insensitivity of the resonance peak outside the photonic bandgap, simultaneous measurement of temperature and axial tension have been achieved.
     4. The mode coupling and modal birefringence characteristics of various types of the high-index-filled MOFs with different selective filling configurations and different meterials have been theoretically investigated, revealing the possibility of fiber modal birefringence control through mode coupling between the core mode and high index rod modes, and thus MOFs with unique birefringence feature have been realized. And moreover, the spectral and sensing characteristics of the Sagnac interferometer based on this type of birefringence fiber has been theoretically analyzed, revealing the group-birefringence-and fiber-length-based controllability of interferometric spectrum and sensing characteristics. Theoretical results indicate that ultrahigh sensitivity may be achieved around the resonance peaks with zero group birefringence.
     5. By using direct manual glue selective filling method and CO2-laser-based side illumination method, the high-index-filled MOFs with different selective filling configurations have been achieved. The interferometric spectrum and sensing characteristics have been experimentally investigated, and experimental results indicate the different spectral and sensing characteristics of the MOF-based Sagnac interferometers with different group birefringence. Their sensitivities show strong temperature responses. The temperature and index sensitivities of-45.8nm/℃and112,531nm/RIU have been achieved at56.5℃, and the tension sensitivity reaches19.6nm/N.
引文
[1]Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters,1987,5(20):2059-2062.
    [2]John S. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters,1987,58(23):2486-2489.
    [3]Russell P. Photonic cryatal fibers. Science,2003,299(358):358-362.
    [4]Birks T A, Roberts P J, Russell P St J J, et al. Full 2-D photonic bandgaps in silica/air structures. Electronics Letters,1995,31(22):1941-1942.
    [5]Birks T A, Roberts P J, Russell P St J J. All-silica single-mode optical fiber with photonic crystal cladding.optics Letters,1996,21(19):1547-1549.
    [6]Knight J C, Russell P St J J, and Atkin D M. All-silica single-mode optical fiber with photonic crystal cladding:errata. Optics Letters,1997,22(7):484-485.
    [7]Knight J C, Cregan R F, Russell P St J J, et al. Large mode area photonic crystal fibre. Electronics Letters,1998,34(13):1347-1348.
    [8]Mortensen N A, Nielsen M D, Folkenberg J R, et al. Improved large-mode-area endlessly single-mode photonic crystal fibers. Optics Letters,2003,28(6):393-395.
    [9]Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystal fiber laser. Optics Express,2003,11(7):818-823.
    [10]Broderick N G R, Monro T M, Bennett P J, et al. Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters,1999,24(20):1395-1397.
    [11]Ferrando A, Silvestre E, Miret J J, et al. Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters,2000,25(11):790-792.
    [12]Ferrando A, Silvestre E, Miret J J, et al. Designing a photonic crystal fibre with flattened chromatic dispersion. Electronics Letters,1999,35(4):325-326.
    [13]Knight J C, Arriage J, Birks T A, et al. Anomalous Dispersion in Photonic Crystal Fiber. IEEE Photonics Technology Letters,2000,12(7):807-809.
    [14]Jinendra K. Ranka R S W, and Andrew J S. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters,2000, 25(1):25-27.
    [15]Saitoh K, koshiba M, Hasegawa T, et al. Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion. Optics Express,2003,11(8):843-852.
    [16]Ortigosa-Blanch A, Knight J C, Wadsworth W J, etal. Highly birefringent photonic crystal f ibers. Optics Letters,2000,25(18):1325-1327.
    [17]Hansen T P, Broeng J, Libori S E B, et al. Highly Birefringent Index-Guiding Photonic Crystal Fibers. IEEE Photonics Technology Letters,2001,13(6):588-590.
    [18]Saitoh K, and Koshiba M. Single-polarization single-mode photonic crystal fibers IEEE Photonics Technology Letters,2003,15(10):1384-1386.
    [19]Mangan B J, Knight J C, Birks T A, et al. Experimental study of dual-core photonic crystal fibre. Electronics Letters,2000,36(16):1358-1358.
    [20]Saitoh K, Koshiba Y S, and Koshiba M. Polarization splitter in three-core photonic crystal fibers. Optics Express,2004,12(17):3940-3946.
    [21]Fang X h, Hu M L, Huang L L, et al. Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber. Opt Lett,2012,37(12):2292-2294.
    [22]Issa N A. High numerical aperture in multimode microstructured optical fibers. Applied Optics,2004,43(33):6191-6196.
    [23]Westbrook P S, Eggleton B J, Windeler R S. et al. Cladding-mode-resonances in air-silica microstructure optical fibers. Journal of Lightwave Technology,2000,18(8):1084-1100.
    [24]Knight J C, Broeng J, Birks T A, et al. Photonic Band Gap Guidance in Optical Fibers. Science,1998,282:1476-1478.
    [25]Cregan R F, Mangan B J, Knight J C, et al. Single-Mode Photonic Band Gap Guidance of Light in Air. Science,1999,285(1537-1539):1537.
    [26]Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber. Science,2002,298(399-402).
    [27]Couny F, Benabid F, Light P S. Large-pitch kagome-structured hollow-core photonic crystal fiber. Opt Lett,2006,31(24):3574-3576.
    [28]Yiou S, Delaye P, Rouvie A, et al. Stimulated Raman scattering in an ethanol core microstructured optical fiber Optics Express,2005,13(12):4787-4792.
    [29]Herrera O D, Schneebeli L, Kieu K, et al. Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS2. Opt Express,2013,21(7):8821-8830.
    [30]Saleh M F, Chang W, Holzer P, et al. Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers. Physical Review Letters,2011,107(20):203902.
    [31]Skryabin D V, Biancalana F, Bird D M, et al. Effective Kerr Nonlinearity and Two-Color Solitons in Photonic Band-Gap Fibers Filled with a Raman Active Gas. Physical Review Letters,2004,93(14):143907.
    [32]Travers J C, Chang W, Nold J, et al. Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]. J Opt Soc Am b,2011,28(12):A11-A26.
    [33]Bise R T, Windeler R S, Kram K S, et al. Tunable phdonlc band gap fiber Proc Opt Fiber Commun Conf (OFC)2002:466-468.
    [34]Larsen T, Bjarklev A, Hermann D, et al. Optical devices based on liquid crystal photonic bandgap fibres. Opt Express,2003,11(20):2589-2596.
    [35]Du F, Lu Y Q, Wu S T. Electrically tunable liquid-crystal photonic crystal fiber. Applied Physics Letters,2004,85(12):2181-2183.
    [36]Luan F, George A K, Hedley T D, et al. All-solid photonic bandgap fiber. Optics Letters, 2004,29(20):2369-2371.
    [37]Argyros A, Birks T A, Leon-Saval S G, et al. Photonic bandgap with an index step of one percent. Optics Express,2005,13(1):309-314.
    [38]Argyros A., Birks T A, Leon-Saval S G, et al. Guidance properties of low-contrast photonic bandgap fibres Optics Express,2005,13(7):2503-2511.
    [39]Ren G B, Shum P, Zhang L R, et al. Low-loss all-solid photonic bandgap fiber. Optics Letters, 2007,32(9):1023-1025.
    [40]Olausson C B, Falk C I, Lyngs(?) J K, et al. Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre. Opt Express, 2008,16(18):13657-13662.
    [41]Shirakawa A, Maruyama H, Ueda K, et al. High-power Yb-doped photonic bandgap fiberamplifier at 1150-1200 nm. Opt Express,2009,17(2):447-454.
    [42]Wang A, George A K, Knight J C. Three-level neodymium fiber laser incorporating photonic bandgap fiber. Opt Lett,2006,31(10):1388-1390.
    [43]Pureur V, Bigot L, Bouwmans G, et al. Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm Applied Physics Letters,2008,92(6):0611113.
    [44]Taru T, Hou J, Knight J C. Raman Gain Suppression in All-solid Photonic Bandgap Fiber. Optical Communication (ECOC),2007 33rd European Conference and Ehxibition of,2007 16-20 Sept.2007,2007. p.1-2.
    [45]Jr. A C S, Luan F, Cordeiro C M B, et al. Hybrid photonic crystal fiber. Optics Express,2006, 14(2):926-931.
    [46]Xiao L M, J W, Demokan M S. Photonic crystal fibers confining light by both index-guiding and bandgap-guiding:hybrid PCFs Optics Express,2007,15(24):15637-15647.
    [47]Feng X, Mairaj A K, Hewak D W, et al. Nonsilica Glasses for Holey Fibers. Journal of Lightwave Technology,2005,23(6):2046-2054.
    [48]Kumar V V R K, George A K, Knight J C, et al. Tellurite photonic crystal fiber. Optics Express,2003,11(20):2641-2645.
    [49]Monro T M, West Y D, Hewak D W, et al. Chalcogenide holey fibres Electronics Letters, 2000,36(24):1998-1999.
    [50]Troles J, Brilland L, Smektala F, et al. Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization. Fiber and Integrated Optics,2009, 28:11-26.
    [51]Jin A, Wang Z F, Hou J,et al. Experimental Measurement and Numerical Calculation of Dispersion of ZBLAN Fiber. ICEOE,2011.
    [52]Swiderski J, Michalska M, Maze G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system. Optics Express,2013,21(7):7851-7857.
    [53]Zhu X, Peyghambarian N. High-Power ZBLAN Glass Fiber Lasers:Review and Prospect. Advances in OptoElectronics,2010,2010(501956):1-23.
    [54]Large M C J, Argyros A, Cox F, et al. Microstructured Polymer Optical Fibres:New Opportunities and Challenges. Molecular Crystals and Liquid Crystals,2006,466(1): 219-231.
    [55]Eijkelenborg M A, Large M C J, Argyros A, et al. Microstructured polymer optical fibre. Optics Express,2001,9(7):320-327.
    [56]Roberts P, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express,2005,13(1):236-244.
    [57]Sprrensen T, Broeng J, Bjarklev A, et al. Macro-bending loss properties of photonic crystal fibre. Electronics Letters,2001,37(5):287-289.
    [58]Baggett J C, Monro T M, Furusawa K, et al. Understanding bending losses in holey optical fibers. Optics Communications,2003,227:317-335.
    [59]Hansen T P, Broeng J, Jakobsen C, et al. Air-guiding photonic bandgap fibers:spectral properties, macrobending loss, and practical handling Journal of Lightwave Technology,2004, 22(1):11-15.
    [60]Birks T A, Luan F, Pearce G J, et al. Bend loss in all-solid bandgap fibres. Optics Express, 2006,14(12):5688-5698.
    [61]Murao T, Saitoh K, Koshiba M. Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers. Optics Express,2009,17(9):7615-7629.
    [62]Nielsen M D, Mortensen N A, Folkenberg J R. Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications. Optics Letters,2003,28(8): 1645-1647.
    [63]Ferrarini D, Vincetti L, Zoboli M, et al. Leakage properties of photonic crystal fibers. Opt Express,2002,10(23):1314-1319.
    [64]Saitoh K, Koshiba M. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt Express,2003,11(23):3100-3109.
    [65]Saitoh K, Koshiba M. Confinement losses in air-guiding photonic bandgap fibers. Photonics Technology Letters, IEEE,2003,15(2):236-238.
    [66]Xu Y, Yariv A. Loss analysis of air-core photonic crystal fibers. Opt Lett,2003,28(20): 1885-1887.
    [67]Saitoh K, Mortensen N, Koshiba M. Air-core photonic band-gap fibers:the impact of surface modes. Opt Express,2004,12(3):394-400.
    [68]West J, Smith C, Borrelli N, et al. Surface modes in air-core photonic band-gap fibers. Opt Express,2004,12(8):1485-1496.
    [69]Digonnet M, Kim H, Shin J, et al. Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers. Opt Express,2004,12(9):1864-1872.
    [70]Hwang I K, Lee Y J, Lee Y H. Birefringence induced by irregular structure in photonic crystal fiber. Opt Express,2003,11(22):2799-2806.
    [71]Saitoh K, Koshiba M. Photonic Bandgap Fibers With High Birefringence. IEEE Photonics Technology Letters,2002,14(9):1291-1293.
    [72]Alam M S, Saitoh K, Koshiba M. High group birefringence in air-core photonic bandgap fibers. Optics Letters,2005,30(8):824-826.
    [73]Yu X, Yan M, Luo L W, et al. Theoretical Investigation of Highly Birefringent All-Solid Photonic Bandgap Fiber With Elliptical Cladding Rods. IEEE Photonics Technology Letters, 2006,18(11):1243-1245.
    [74]Folkenberg J, Nielsen M, Mortensen N, et al. Polarization maintaining large mode area photonic crystal fiber. Opt Express,2004,12(5):956-960.
    [75]Kerbage C, Eggleton B J. Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber Optics Express,2002,10(5):246-255.
    [76]Kerbage C, Steinvurzel P, Reyes P, et al. Highly tunable birefringent microstructured optical fiber. Optics Letters,2002,27(10):842-844.
    [77]Pureur V, Bouwmans G, Delplace K, et al. Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes. Applied Physics Letters,2009,94(13):131102-131103.
    [78]Roberts P J, Williams D P, Sabert H, et al. Design of low-loss and highly birefringent hollow-core photonic crystal fiber.7329-7341,2006.
    [79]Ferrandoa A Miret a J J. Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers. Applied Physics Letters,2001,78(21):3184-3186.
    [80]Hansen K P, Jensen J R, Jacobsen C, et al. Highly Nonlinear Photonic Crystal Fiber with Zero-Dispersion at 1.55μm. In:Sawchuk A, editor.,2002:Optical Society of America,2002. p. FA9.
    [81]Wadsworth W J, Ortigosa-Blanch A, Knight J C, et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers:a novel light source. J Opt Soc Am b,2002, 19(9):2148-2155.
    [82]Zhang Y-N. Design and optimization of high-birefringence low-loss crystal fiber with two zero-dispersion wavelengths for nonlinear effects. Appl Opt,2011,50(25):E125-E130.
    [83]Andersen T, Hilligsoe K, Nielsen C, et al. Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths. Opt Express,2004,12(17): 4113-4122.
    [84]Zhang Y-N, Ren L-Y, Gong Y-K, et al. Design and optimization of highly nonlinear low-dispersion crystal fiber with high birefringence for four-wave mixing. Appl Opt,2010, 49(16):3208-3214.
    [85]Reeves W, Knight J, Russell P, et al. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt Express,2002,10(14):609-613.
    [86]Ferrando A, Silvestre E, Andres P, et al. Designing the properties of dispersion-flattened photonic crystal fibers. Opt Express,2001,9(13):687-697.
    [87]Yu C P, Liou J H, Huang S S, et al. Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation Optics Express,2008,16(7):4443-4451.
    [88]Klimentov D, Tolstik N, Dvoyrin V V, et al. Broadband Dispersion Measurement of ZBLAN, Germanate and Silica Fibers in MidIR. Lightwave Technology, Journal of,2012,30(12): 1943-1947.
    [89]Liao M, Yan X, Gao W, et al. Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion. Opt Express,2011, 19(16):15389-15396.
    [90]Zhang W Q, Ebendorff-Heidepriem H, Monro T M, et al. Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber. Opt Express,2011, 19(22):21135-21144.
    [91]Ouzounov D G, Ahmad F R, Muller D, et al. Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers. Science,2003,301(5640):1702-1704.
    [92]Luan F, Knight J, Russell P, et al. Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers. Opt Express,2004,12(5):835-840.
    [93]Jasapara J, Her T H, Bise R, et al. Group-velocity dispersion measurements in a photonic bandgap fiber. J Opt Soc Am b,2003,20(8):1611-1615.
    [94]Petropoulos P, Ebendorff-Heidepriem H, Finazzi V, et al. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt Express,2003,11(26):3568-3573.
    [95]Vieweg M, Gissibl T, Kartashov Y V, et al. Spatial solitons in optofluidic waveguide arrays with focusing ultrafast Kerr nonlinearity. Opt Lett,2012,37(13):2454-2456.
    [96]Kieu K, Schneebeli L, Merzlyak E, et al. All-optical switching based on inverse Raman scattering in liquid-core optical fibers. Opt Lett,2012,37(5):942-944.
    [97]Vieweg M, Pricking S, Gissibl T, et al. Tunable ultrafast nonlinear optofluidic coupler. Opt Lett,2012,37(6):1058-1060.
    [98]Kieu K, Merzlyak Y, Schneebeli L, et al. Integrated liquid-core optical fiber for nonlinear liquid photonics.2012:Optical Society of America,2012. p. NTh2A.2.
    [99]Konorov S O, Fedotov A B, Zheltikov A M. Enhanced four-wave mixing in a hollow-core photonic-crystal fiber. Opt Lett,2003,28(16):1448-1450.
    [100]Wang Y, Jin W, Ju J, et al. Long period gratings in air-core photonic bandgap fibers. Opt Express,2008,16(4):2784-2790.
    [101]Morishita K, Miyake Y. Fabrication and Resonance Wavelengths of Long-Period Gratings Written in a Pure-Silica Photonic Crystal Fiber by the Glass Structure Change. J Lightwave Technol,2004,22(2):625.
    [102]Lee H W, Chiang K S. CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension. Opt Express,2009,17(6):4533-4539.
    [103]Wu Z, Wang Z, Liu Y-g, et al. Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers. Opt Express,2011,19(18):17344-17349.
    [104]Tai B, Wang Z, Liu Y, et al. High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers. Opt Express, 2010,18(15):15361-15370.
    [105]Jin L, Wang Z, Liu Y, et al. Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers. Opt Express,2008,16(25):21119-21131.
    [106]Brambilla G, Fotiadi A A, Slattery S A, et al. Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber. Opt Lett,2006,31(18):2675-2677.
    [107]Pal P, Knox W H. End-sealing short dispersion micromanaged tapered holey fibers by hole-collapsing. Opt Express,2007,15(21):13531-13538.
    [108]Lu F, Knox W H. Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers. J Opt Soc Am b,2006, 23(6):1221-1227.
    [109]Stark S P, Podlipensky A, Russell P S J. Soliton Blueshift in Tapered Photonic Crystal Fibers. Physical Review Letters,2011,106(8):083903.
    [110]Tong L, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature,2003,426(6968):816-819.
    [111]Cordeiro C M B, Wadsworth W J, Birks T A, et al. Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser. Opt Lett,2005,30(15): 1980-1982.
    [112]Stark S P, Podlipensky A, Joly N Y, et al. Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber. J Opt Soc Am b,2010,27(3):592-598.
    [113]Haakestad M W, Alkeskjold T T, Nielsen M D, et al. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. Photonics Technology Letters, IEEE, 2005,17(4):819-821.
    [114]Kristian N, Danny N, Thorkild S, et al. Selective filling of photonic crystal fibres. Journal of Optics A:Pure and Applied Optics,2005,7(8):L13.
    [115]Hou J, Bird D, George A, et al. Metallic mode confinement in microstructured fibres. Opt Express,2008,16(9):5983-5990.
    [116]Domachuk P, Grillet C, Taeed V, et al. Microfluidic interferometer. Applied Physics Letters, 2005,86(2):024103-024103-024103.
    [117]Kuhlmey B T, Luan F, Fu L, et al. Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings. Opt Express,2008,16(18):13845-13856.
    [118]Rosberg C R, Bennet F H, Neshev D N, et al. Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers. Opt Express,2007,15(19):12145-12150.
    [119]Rasmussen P D, Bennet F H, Neshev D N, et al. Observation of two-dimensional nonlocal gap solitons. Opt Lett,2009,34(3):295-297.
    [120]Fuerbach A, Steinvurzel P, Bolger J, et al. Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers. Opt Express,2005,13(8):2977-2987.
    [121]Fuerbach A, Steinvurzel P, Bolger J A, et al. Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers. Opt Lett,2005,30(8):830-832.'
    [122]Holzer P, Chang W, Travers J C, et al. Femtosecond Nonlinear Fiber Optics in the Ionization Regime. Physical Review Letters,2011,107(20):203901.
    [123]Benabid F, Couny F, Knight J C, et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature,2005,434(7032):488-491.
    [124]Sazio P J A, Amezcua-Correa A, Finlayson C E, et al. Microstructured Optical Fibers as High-Pressure Microfluidic Reactors. Science,2006,311(5767):1583-1586.
    [125]He R, Sazio P J A, Peacock A C, et al. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nat Photon,2012,6(3):174-179.
    [126]Lee H W, Schmidt M A, Russell P S J. Excitation of a nanowire "molecuel"in gold-filled photonic crystal fiber. Opt Lett,2012,37(14):2946-2948.
    [127]Lee H W, Schmidt M A, Russell R F, et al. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt Express,2011,19(13): 12180-12189.
    [128]Lee H W, Schmidt M A, Tyagi H K, et al. Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Applied Physics Letters,2008, 93(11):111102-111103.
    [129]Csaki A, Jahn F, Latka I, et al. Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers. Small,2010,6(22):2584-2589.
    [130]Markos C, Yannopoulos S N, Vlachos K. Chalcogenide glass layers in silica photonic crystal fibers. Opt Express,2012,20(14):14814-14824.
    [131]Litchinitser N, Dunn S, Steinvurzel P, et al. Application of an ARROW model for designing tunable photonic devices. Opt Express,2004,12(8):1540-1550.
    [132]Steinvurzel P, Kuhlmey B, White T, et al. Long wavelength anti-resonant guidance in high index inclusion microstructured fibers. Opt Express,2004,12(22):5424-5433.
    [133]Zhang C, Kai G, Wang Z, et al. Transformation of a transmission mechanism by filling the holes of normal silica-guiding microstructure fibers with nematic liquid crystal. Opt Lett, 2005,30(18):2372-2374.
    [134]Du J, Liu Y, Wang Z, et al. Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid. Opt Express,2008,16(6):4263-4269.
    [135]Larsen T T, Broeng J, Hermann D S, et al. Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres. Electronics Letters,2003,39(24):1719-1720.
    [136]Scolari L, Alkeskjold T, Riishede J, et al. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Opt Express,2005, 13(19):7483-7496.
    [137]Scolari L, Tartarini G, Borelli E, et al. Tunable Bandpass Filter based on Photonic Crystal Fiber filled with Multiple Liquid Crystals. Lasers and Electro-Optics Society,2007 LEOS 2007 The 20th Annual Meeting of the IEEE,2007 21-25 Oct.2007,2007. p.319-320.
    [138]Wei L, Alkeskjold T T, Bjarklev A. Electrically tunable bandpass filter using solid-core photonic crystal fibers filled with multiple liquid crystals. Opt Lett,2010,35(10):1608-1610.
    [139]Alkeskjold T, Laegsgaard J, Bjarklev A, et al. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt Express,2004,12(24):5857-5871.
    [140]Hsiao V K, Ko C-Y. Light-controllable photoresponsive liquid-crystal photonic crystal fiber. Opt Express,2008,16(17):12670-12676.
    [141]Lee C-R, Lin J-D, Huang Y-J, et al. All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber. Opt Express,2011,19(10):9676-9689.
    [142]Scolari L, Gauza S, Xianyu H, et al. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals. Opt Express,2009,17(5):3754-3764.
    [143]Du J, Liu Y, Wang Z, et al. Liquid crystal photonic bandgap fiber:different bandgap transmissions at different temperature ranges. Appl Opt,2008,47(29):5321-5324.
    [144]Steinvurzel P, Eggleton B J, De Sterke C M, et al. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre. Electronics Letters,2005,41(8): 463-464.
    [145]Scolari L, Alkeskjold T T, Bjarklev A. Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre. Electronics Letters,2006,42(22):1270-1271.
    [146]Noordegraaf D, Scolari L, Laegsgaard J, et al. Avoided-crossing-based liquid-crystal photonic-bandgap notch filter. Opt Lett,2008,33(9):986-988.
    [147]Bise R T, Jasapara J, Steinvurzel P, et al. Temperature tuning of dispersion in a photonic band gap fiber. Quantum Electronics and Laser Science Conference,2002. p.244-245.
    [148]Kudlinski A, George A K, Knight J C, et al. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Opt Express, 2006,14(12):5715-5722.
    [149]Travers J C, Popov S V, Taylor J R. Extended blue supercontinuum generation in cascaded holey fibers. Opt Lett,2005,30(23):3132-3134.
    [150]Gundu K M, Kolesik M, Moloney J V. Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers. Optics Express,2006,14(15):6870-6878.
    [151]Hsu J-M, Ye G-S. Dispersion ultrastrong compensating fiber based on a liquid-filled hybrid structure of dual-concentric core and depressed-clad photonic crystal fiber. J Opt Soc Am b, 2012,29(8):2021-2028.
    [152]Betourne A, Quiquempois Y, Bouwmans G, et al. Design of a photonic crystal fiber forphase-matched frequency doubling ortripling. Opt Express,2008,16(18):14255-14262.
    [153]Rasmussen P D, Laegsgaard J, Bang O. Degenerate four wave mixing in solidcore photonic bandgap fibers. Opt Express,2008,16(6):4059-4068.
    [154]Cerqueira S J A, Cordeiro C M B, Biancalana F, et al. Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber. Opt Lett,2008,33(18): 2080-2082.
    [155]Zhang R, Teipel J, Giessen H. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Opt Express,2006,14(15):6800-6812.
    [156]Vieweg M, Gissibl T, Pricking S, et al. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. Opt Express,2010,18(24):25232-25240.
    [157]Vengsarkar A M, Lemaire P J, Judkins J B, et al. Long-period fiber gratings as band-rejection filters. Lightwave Technology, Journal of,1996,14(1):58-65.
    [158]Iredale T B, Steinvurzel P, Eggleton B J. Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre. Electronics Letters,2006,42(13):739-740.
    [159]Liu S J, Jin L, Jin W, et al. Fabrication of Long-Period Gratings by Femtosecond Laser-Induced Filling of Air-Holes in Photonic Crystal Fibers. Photonics Technology Letters, IEEE,2010,22(22):1635-1637.
    [160]Abramov A A, Eggleton B J, Rogers J A, et al. Electrically tunable efficient broad-band fiber filter. Photonics Technology Letters, IEEE,1999,11(4):445-447.
    [161]Westbrook P S, Eggleton B J, Windeler R S, et al. Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings. Photonics Technology Letters, IEEE, 2000,12(5):495-497.
    [162]Steinvurzel P, Moore E D, Magi E C, et al. Tuning properties of long period gratings in photonic bandgap fibers. Opt Lett,2006,31(14):2103-2105.
    [163]Steinvurzel P, Moore E D, Magi E C, et al. Long period grating resonances in photonic bandgap fiber. Opt Express,2006,14(7):3007-3014.
    [164]Yeom D-I, Steinvurzel P, Eggleton B J, et al. Tunable acoustic gratings in solid-core photonic bandgap fiber. Opt Express,2007,15(6):3513-3518.
    [165]Shi Q, Kuhlmey B T. Optimization of photonic bandgap fiber long period grating refractive-index sensors. Optics Communications,2009,282(24):4723-4728.
    [166]Noordegraaf D, Scolari L, Laegsgaard J, et al. Electrically and mechanically induced long period gratings in liquid crystalphotonic bandgap fibers. Opt Express,2007,15(13): 7901-7912.
    [167]Candiani A, Konstantaki M, Margulis W, et al. A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid. Opt Express,2010,18(24): 24654-24660.
    [168]Candiani A, Margulis W, Sterner C, et al. Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids. Opt Lett,2011,36(13):2548-2550.
    [169]Liou J-h, Chang T-h, Lin T, et al. Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers. Opt Express,2011,19(7):6756-6761.
    [170]Sun X. Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism. Opt Lett,2007,32(17):2484-2486.
    [171]Wu D K C, Kuhlmey B T, Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor. Opt Lett,2009,34(3):322-324.
    [172]Wu Y, Town G E, Bang O. Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber. Sensors Journal, IEEE,2010,10(7):1192-1199.
    [173]Yang M, Wang D N, Wang Y, et al. Fiber in-line Mach-Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber. Opt Lett,2011,36(5): 636-638.
    [174]Ying W, Minwei Y, Wang D N, et al. Selectively Infiltrated Photonic Crystal Fiber With Ultrahigh Temperature Sensitivity. Photonics Technology Letters, IEEE,2011,23(20): 1520-1522.
    [175]Jie L, Yuan M, Chao L, et al. Polarization Splitting of Photonic Crystal Fiber With Hybrid Guidance Mechanisms. Photonics Technology Letters, IEEE,2011,23(18):1358-1360.
    [176]Boris T. Kuhlmey B J E, and Darran K. C. Wu. Fluid-Filled Solid-Core Photonic Bandgap Fibers. Journal of Lightwave Technology,2009,27(11):1617-1630.
    [177]Qiu S-j, Chen Y, Xu F, et al. Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt Lett, 2012,37(5):863-865.
    [178]Gissibl T, Vieweg M, Vogel M M, et al. Preparation and characterization of a large mode area liquid-filled photonic crystal fiber:transition from isolated to coupled spatial modes. Applied Physics B,2012,106(3):521-527.
    [179]Lee H W, Schmidt M A, Tyagi H K, et al. Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Applied Physics Letters,2008, 93(11):111102.
    [180]Keck D B. Fundamentals in Optical Fiber Communications. Academic Press,1976.
    [181]Gloge D. Weakly Guiding Fibers. Applied Optics,1971,10(10):2252-2258.
    [182]D.Marcuse. Theory of Dielectric Optical Waveguides. Academic Press,1974.
    [183]Johnson S, Joannopoulos J. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt Express,2001,8(3):173-190.
    [184]White T P, Kuhlmey B T, McPhedran R C, et al. Multipole method for microstructured optical fibers. I. Formulation. J Opt Soc Am b,2002,19(10):2322-2330.
    [185]Cucinotta A, Selleri S, Vincetti L, et al. Holey fiber analysis through the finite-element method. Photonics Technology Letters, IEEE,2002,14(11):1530-1532.
    [186]Duguay M A, Kokubun Y, Koch T L, et al. Antiresonant reflecting optical waveguides in SiO-Si multilayer structures. Applied Physics Letters,1986,49(1):13-15.
    [187]Litchinitser N M, Abeeluck A K, Headley C, et al. Antiresonant reflecting photonic crystal optical waveguides. Opt Lett,2002,27(18):1592-1594.
    [188]Birks T A, Pearce G J, D. M. Bird Approximate band structure calculation for photonic bandgap fibres Optics Express,2006,14(20):9483-9490.
    [189]Yeh P. Photonics Optical electronics in modern communications, six edition,2007.
    [190]Lagsgaard J. Gap formation and guided modes in photonic bandgap fibres with high-index rods. Journal of Optics A:Pure and Applied Optics,2004,6(8):798.
    [191]Renversez G, Boyer P, Sagrini A. Antiresonant reflecting optical waveguide microstructuredfibers revisited:a new analysis based on leaky mode coupling. Opt Express, 2006,14(12):5682-5687.
    [192]Steinvurzel P, Martijn de Sterke C, Steel M J, et al.'Single scatterer Fano resonances in solid core photonic band gap fibers. Opt Express,2006,14(19):8797-8811.
    [193]Marcuse D. Influence of curvature on the losses of doubly clad fibers. Applied Optics, 1982,21(23):4208-4213.
    [194]Olszewski J, Szpulak M. Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers. Optics Express,2005,13(16):6015-6022.
    [195]Love J D. Application of a low-loss criterion to optical waveguides and devices IEE Proceedings,1989,136(4):225-228.
    [196]Snyder A W, Love J. Optical Waveguide Theory.1983.
    [197]Nagano K, Kawakami S, Nishida S. Change of the refractive index in an optical fiber due to external forces. Appl Opt,1978,17(13):2080-2085.
    [198]Fan X, White I M, Shopova S I, et al. Sensitive optical biosensors for unlabeled targets:A review. Anal Chim Acta,2008,620(1-2):8-26.
    [199]White I M, Fan X. On the performance quantification of resonant refractive index sensors. Opt Express,2008,16(2):1020-1028.
    [200]Lithinitser N M, Poliakov E. Antiresonant guiding microstructured optical fibers for sensing applications. Appl Phys B 2005,81:347-351.
    [201]Liu S, Liu N, Hou M, et al.Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber. Optics Letters,2013,38(4):449-451.
    [202]Wu Z, Liu Y, Wang Z, et al. In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber. Applied Physics Letters,2012, 101(14):141106.
    [203]Yuan L, Yang J, Liu Z, et al. In-fiber integrated Michelson interferometer. Optics Letters, 2006,31(18):2692-2694.
    [204]Kim B, Kim T H, Cui L, et al. Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications. Optics Express,2009,17(18):15502-15507.
    [205]Wang Y, Wang D N, Liao C R, et al. Temperature-insensitive refractive index sensing by use of micro Fabry-P6rot cavity based on simplified hollow-core photonic crystal fiber. Optics Letters,2013,38(3):269-271.
    [206]Choi H Y, Mudhana Q Park K S, et al. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Optics Express,2010, 18(1):141-149.
    [207]Wan X, Taylor H F. Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors. Opt Lett,2002,27(16):1388-1390.
    [208]Jiang M, Li Q S, Wang J N, et al. TiO2 nanoparticle thin film-coated optical fiber Fabry-Perot sensor. Optics Express,2013,21(3):3083-3090.
    [209]Wei T, Han Y, Li Y, et al. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement Optics Express,2008,-16(8):5764-5769.
    [210]Favero F C, Bouwmans G, Finazzi V, et al. Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing. Optics Letters,2011,36(21):4191-4193.
    [211]Deng M, Tang C P, Zhu T, et al. PCF-Based Fabry-Perot Interferometric Sensor for Strain Measurement at High Temperatures. IEEE Photonics Technology Letters,2011,23(11): 700-702.
    [212]Favero F C, Araujo L, Bouwmans G, et al. Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing. Optics Express,2012,20(7):7112-7118.
    [213]Zhao C L, Yang X, Lu C, et al. Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror. Photonics Technology Letters, IEEE,2004, 16(11):2535-2537.
    [214]Lee C E, Taylor H F. Interferometric optical fibre sensors using internal mirrors. Electronics Letters,1988,24(4):193-194.
    [215]Shi Q, Lv F, Wang Z, et al. Environmentally Stable Fabry-perot-Type Strain Sensor Based On Hollow-Core Photonic Bandgap Fiber. Photonics Technology Letters, IEEE,2008, 20(4):237-239.
    [216]Ran Z L, Rao Y J, Liu W J, et al. Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt Express, 2008,16(3):2252-2263.
    [217]Xiao L, Jin W, Demokan S, et al. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer Optics Express,2005,13(22):9014-9022.
    [218]Guan B O, Tam H Y, Tao X M, et al. Simultaneous Strain and Temperature Measurement Using a Superstructure Fiber Bragg Grating. IEEE Photonics Technology Letters,2000, 12(6):675-677.
    [219]Jung J, Nam H, Lee J H, et al. Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier. Applied Optics,1999, 38(13):2749-2751.
    [220]Vali V, Shorthill R W. Fiber ring interferometer. Appl Opt,1976,15(5):1099-1100.
    [221]Liu Y, Liu B, Feng X, et al. High-birefringence fiber loop mirrors and their applications as sensors. Appl Opt,2005,44(12):2382-2390.
    [222]Woli'nski T R, Czapla A, Ertman S, et al. Tunable highly birefringent solid-core photonic liquid crystal fibers. Opt Quant Electron,2007,39:1021-1032.
    [223]Qian W, Zhao C L, He S 1, et al. High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Optics Letters,2011,36(9):1548-1550.
    [224]Zheng X, Liu Y, Wang Z, et al. Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer. Applied Physics Letters,2012,100:141104.
    [225]Du J, Liu Y, Wang Z, et al. Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused. Opt Lett,2008,33(19):2215-2217.
    [226]Goto R, Jackson S D, Takenaga K. Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts. Optics Letters,2009, 34(20):3119-3121.
    [227]Lyngso J K, Mangan B J, Roberts P J. Polarization maintaining hybrid TIR/bandgap all-solid photonic crystal fiber. Conference on Quantum Electronics and Laser Science CLEO/QELS 2008.
    [228]Goto R, Jackson S D, Fleming S, et al. Birefringent all-solid hybrid microstructured fiber. Opt Express,2008,16(23):18752-18763.
    [229]Huang Y, Xu Y, Yariv A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Applied Physics Letters,2004,85(22):5182-5184.
    [230]Cristiano M B, Cordeiro E M, Cruz C H B. Lateral access to the holes of photonic crystal fibers-selective filling and sensing applications Optics Express,2006,14(18):8403-8412.
    [231]Brakel A, Grivas C, Petrovich M N, et al. Micro-channels machined in microstructured optical fibers by femtosecond laser Optics Express,2007,15(14):8731-8736.
    [232]Wang Y, Liu S, Tan X, et al. Selective-Fluid-Filling Technique of Microstructured Optical Fibers. Journal of Lightwave Technology,2010,28(22):3193-3196.
    [233]Wang F, Yuan SW, Hansen O, et al. Selective filling of photonic crystal fibers using focused ion beam milled microchannels. Opt Express,2011,19(18):17585-17590.
    [234]Ju J, Xuan H F, Jin W, et al. Selective opening of airholes in photonic crystal fiber. Optics Letters,2010,35(23):3886-3888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700