微结构光纤非线性特性及功能器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合国家973课题“基于微结构光纤光电子功能器件的创新与基础研究”的主要目标:(1)揭示微结构光纤中新的调谐机制及非线性机理;(2)研制出各种基于微结构光纤的通信光电子器件;(3)研制出基于微结构光纤的集成光纤器件等,对微结构光纤(micro-structure fiber, MF)的非线性特性和功能器件进行了理论与实验研究。主要研究内容和初步取得的创新性研究成果概括如下:
     (1)研究了MF的传导特性,发现掺锗MF的模式截止廓线与纯硅MF模式截止廓线相比向低d/Λ侧漂移;提出将掺镱MF进行拉锥可将非线性系数提高3个量级以上,但是对于一定结构的MF,有最佳锥腰,并且为了最大限度地提高拉锥掺镱MF的非线性系数,归一化锥长一定要大于30微米;发现小空气孔间距(Λ~λ)、大空气孔径的纯硅MF可以在短波700nm附近获得将近300nm/ps/km的大反常色散。
     (2)研究了随机不规则结构对微结构光纤特性的影响,发现理想结构MF的非线性系数越大,它的非线性特性就越容易被不规则结构所消弱;不规则结构使色散围绕理想值上下波动;随机无序的空气孔结构比随机不均匀的空气孔结构更容易使非线性系数和色散的分布弥散;大间距和小孔径MF的非线性系数对结构的不规则性不敏感,并且此结构有利于保持MF的色散特性。
     (3)研究了微结构光纤的模式特性,发现当光场从单模光纤入射到MF时,所激励的模式数量以及各模式的耦合效率都随MF的结构参数的变化而不同,只有当MF模场直径与单模光纤模场直径相等时,所激励的基模的耦合效率最大,高阶模式的耦合效率最低;发现在微结构光纤内具有全波导对称的模式同时也具有组合对称性,并且它们是非简并的,那些仅具有组合对称的模式是简并的;发现了微结构光纤内的多模相干现象,多模相干的特性取决于微结构光纤的结构参数。
     (4)研究了微结构光纤光栅的特性,发现只有当MF(1)支持高阶内包层传导,(2)高阶内包层模式满足相位匹配条件,(3)耦合系数κi>> 0,即高阶内包层模式的电场与正向传导纤芯模式在栅区有效的重叠时MF Bragg光栅(MF-FBG)才支持多谐振峰;此外光敏光纤纤芯尺寸不但会影响MF-FBG各阶谐振峰的谐振波长,还会影响MF-FBG各阶谐振峰的谐振强度。
     (5)研究了基于微结构光纤的全光开关。提出将高非线性MF(HN-MF)和双向抽运掺饵光纤放大器引入Sagnac环形镜内可以实现低开关功率的全光开关。理论推导出光开关的开关功率与放大器的增益倍数和MF非线性系数的积呈反比,因此可以通过提高放大器的增益倍数和增大HN-MF的非线性系数降低开关功率,在实验中所得开关功率约40mW,并且信号光透过率随控制脉冲光峰值功率呈余弦变化,理论分析与实验结果相吻合。
     (6)对基于高非线性MF的波长转换进行了研究,实验中发现当泵浦光的调谐范围远离高非线性微结构光纤的零色散波长且在负色散区时,相位匹配条件依然可以获得,从而克服了零色散波长对四波混频效应的限制,使基于四波混频效应的波长转换更加灵活。在实验中我们利用20m长的高非线性微结构光纤,泵浦光远离零色散波长,对相干光和非相干光分别获得-11.23dB和-11.45dB的最大转换效率,它们的3dB转换带宽可分别达到78.6nm和38.06nm。
According the aims of the national 973 project“The basic studies of photoelectron functional device based on Micro-structure fiber(MF)”: (1) opening out the mechanisms of MF tuning and high nolinearity, (2) manufacturing sots of communication photoelectron functional device based on MF, (3) manufacturing integrated photoelectron functional device based on MF, we theoretically and experimentally investigated the nonlinearity properties of the MF and the MF based functional devices. The chief contents and the innovating results are summed up as follows:
     (1) We investigated the wave guiding properties of MF and found that the modal cutoff profile of the Ge-doped MF shift to the low d/Λside in contrast to the pure silica MF. Moreover, we proposed that the nonlinear coefficient can be enhanced more than three orders when we tapered the Yb3+-doped MF, but there is a optimal tapering waist for a fixed structure MF and the normalized tapering length have to be longer than 30μm so that the nonlinear coefficient be enhanced to maximum. Finally, we found that the large anomalous dispersion(near 300nm/ps/km) down to short wavelength(700nm) can be achieved for the small air-hole pitch(Λ~λ) and large air hole MF.
     (2) We discussed the effect of the irregular structure to the properties of MF and found that the larger nonlinear coefficient of the ideal MF is, the nonlinear property is more prone to be degraded by the irregular structure, and the irregular structure make the dispersion fluctuate around the ideal value. Furthermore, random disorder air holes is more prone to make the distributions of nonlinear coefficient and dispersion dispersive than the nonuniformity. Finally, the nonlinear coefficient is more sensitive to larger pitch and smaller diameter of air holes, but the structure is benefit for holding dispersion.
     (3) We investigated the modal properties of MF and found that the mount and the coupling efficiency of each mode lie on the structure parameters of MF when the field incident from single mode fiber, the coupling efficiencies of the fundamental mode and the high order modes, respectively, reach the maximum and the minimum when the modal field diameter of the MF and SMF are matching. Furthermore, we found that the modes with full waveguiding symmetry have the combinated symmetry and they are degenerated, the modes only have combinated symmetry are nondegenerated. Finally, we found the multimode interference(MMI) phenomena in the MF, and the properties of the MMI lie on the structure parameters.
     (4) We investigated the properties of the MF grating and found the conditions for high order modes being excited in MF Bragg graging: (1) the MF supports the higher inner cladding modes guiding, (2)the higher inner cladding modes fulfill the phase matching condition. (3)coupling coefficientκi>> 0,namely, the electronic field of backward higher order inner cladding modes overlap with that of the forward fundamental mode in the grating region. And the diameter of the sensitive core of the MF not only affects the wavelength but also affects the amplitude of each resonant peak.
     (5) We investigated the MF based all optical switching and proposed that all optical switch can be realized when the high nonlinear photonic crystal fiber(HN-PCF) and the bidirectional pumped Er3+ doped fiber amplifier are inserted in a Sagnac loop. We theoretically deduced that the switching power is proportional to the product of the amplifier gain and MF nonlinear coefficient,so we can enhance the amplifier gain and MF nonlinear coefficient to decrease the switching power. In our experiment, the switching power of 40mW were obtained, and transmission of the signal is cosine proportional to the peak power of the control light. All the results of the experiment are in good agreement with that of the theory.
     (6) We experimentally investigated the MF based wavelength conversion and found that the phase matching condition can be fulfilled when wavelength of signal is near to that of the pump and the zero dispersion wavelength is far away from tuning range of the pump light, which breakthrough the confine of the zero dispersion to four wave mixing(FWM) and make the FWM based wavelength conversion more flexible. In our experiment, the maximum conversion efficiencies of -11.23dB and -11.45dB, 3dB conversion bandwidths of 78.6nm and 38.06nm for coherent and incoherent signal lights are achieved in a 20m-long HN-PCF, respectively.
引文
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical Review Letters, 58, 2059-2062, 1987.
    [2] S. John, “Strong localization of photons in certain disordered dielectric superlattices”,Physical Review Letters, 58, pp. 2486-2489,1987.
    [3]M.Plihal and A.A.Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice”, Phys. Rev. B, 44(16):8565-8571,1994.
    [4]P.R.Villeneuve and M.Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices”, Phys. Rev. B, 46(8):4969-4972,1992.
    [5] F.Gadot et al., “Experimental demonstration of complete photonic band gap in graphite structure”, Appl. Phys. Lett., 71(13):1780-1782,1997.
    [6] C.M.Anderson, K.Giapis, “Larger Two-Dimensional Photonic Band Gaps”, Phys. Rev. Lett. 77(14):2949-2952, 1996.
    [7] W.C.Tan et al., “Calculation of photonic band structures of periodic multilayer grating systems by use of a curvilinear coordinate transformation”, J. Opt. Soc. Am. A, 15(9):2365-2372,1998.
    [8] Y.S.Chan, et al., “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals”, Phys. Rev. Lett., 80(5):956-959 ,1998.
    [9] C.J.Jin, et al., “Band gap and wave guiding effect in a quasiperiodic photonic crystal”, Appl. Phys. Lett., 75(13):1848-1850,1999.
    [10] K.M.Ho, et al. “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett., 65(25):3152-3155,1990.
    [11] E.Yablonovitch, et al., “Photonic band structure: The face-centered-cubic case employing nonspherical atoms”, Phys. Rev. Lett., 67(17):2295-2298 ,1991.
    [12] Yu.A.Vlasov, et al., “Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals”, Appl. Phys. Lett. 71(12):1616-1618,1997.
    [13] E.Ozba, et al., “Micromachined millimeter-wave photonic band-gap crystals”, Appl. Phys. Lett., 64(16):2059-2061,1994.
    [14] H.Miguez, et al., “Photonic crystal properties of packed submicrometric SiO2 spheres”, Appl. Phys. Lett., 71(9):1148-1150,1997.
    [15] S.Gupta, et al., “Infrared filters using metallic photonic band gap structures on flexible substrates”, Appl. Phys. Lett., 71(17):2412-2414,1997.
    [16] J.Trull et al., “Angular dependence of phase-matched second-harmonic generation in a photonic crystal”, J. Opt. Soc. Am. B, 15(10):2581-2585,1998.
    [17] H.Kosaka et al., “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering”, Appl. Phys. Lett., 74(10):1370-1372,1999.
    [18] V.I.Kopp, “Low-thresholdlasing at the edge of a photonic stop band in cholesteric liquid crystals “,Opt. Lett., 23(21):1707-1709,1998.
    [19] X.Y.Lei et al., “Novel application of a perturbed photonic crystal: High-quality filter”, Appl. Phys.Lett., 71(20):2889-2891,1997.
    [20] Philip Russell, “Photonic Crystal Fibers”,science, vol.299, 358-362,2003.
    [21] J. C. Knight, T. A. Birks, et al., "All-silica single-mode optical fiber with photonic crystal cladding," Optics Letters, vol. 21, pp. 1547-1549, 1996.
    [22] J. C. Knight, J. Broeng, et al., "Photonic band gap guidance in optical fibers," Science, vol. 282, pp. 1476-1478, 1998.
    [23] T. T. Larsen, A. Bjarklev, et al., "Optical devices based on liquid crystal photonic bandgap fibres," Optics Express, vol. 11, pp. 2589-2596, 2003.
    [24] A. Argyros, T. A. Birks, et al., "Photonic bandgap with an index step of one percent," Optics Express, vol. 13, pp. 309-314, 2005.
    [25] A. Ortigosa-Blanch, J. C. Knight, et al., "Highly birefringent photonic crystal fibers," Optics Letters, vol. 25, pp. 1325-1327, 2000.
    [26] T. P. Hansen, J. Broeng, et al., "Highly birefringent index-guiding photonic crystal fibers," IEEE Photonics Technology Letters, vol. 13, pp. 588-590, 2001.
    [27] A. Ferrando and J. J. Miret, "Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers," Applied Physics Letters, vol. 78, pp. 3184, 2001.
    [28] K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photonics Technology Letters, vol. 15, pp. 1384-1386, 2003.
    [29] Yang Yue, Guiyun Kai, Zhi Wang et al., “Broadband Single-Polarization Single-Mode Photonic Crystal Fiber Coupler”, IEEE Photonics Technology Letters,vol.18, no.19,796-798.2006
    [30] N. G. R. Broderick, T. M. Monro, et al., "Nonlinearity in holey optical fibers: measurement and future opportunities," Optics Letters, vol. 24, pp. 1395-1397, 1999.
    [31] J. C. Knight, T. A. Birks, et al., "Large mode area photonic crystal fibre," Electronics Letters, vol. 34, pp. 1347-1348, 1998.
    [32] N. A. Mortensen, M. D. Nielsen, et al., "Improved large-mode-area endlessly single-mode photonic crystal fibers," Optics Letters, vol. 28, pp. 393-395, 2003.
    [33] J. Limpert, T. Schreiber, et al., "High-power air-clad large-mode-area photonic crystal fiber laser," Optics Express, vol. 11, pp. 818-823, 2003.
    [34] W. N. MacPherson, M. J. Gander, et al., "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Optics Communications, vol. 193, pp. 97-104, 2001.
    [35] B. J. Mangan, J. C. Knight, et al., "Experimental study of dual-core photonic crystal fibre,"Electronics Letters, vol. 36, pp. 1358-1359, 2000.
    [36] Z. Wang, G. Kai, Y. Liu et al., “ Coupling and decoupling of dual-core photonic bandgap fibers”, Optics Letters, vol.30, 2542-2544,2005.
    [37] 王志, “光子晶体光纤及功能器件的研究”,南开大学博士毕业论文,2005.
    [38] L.-P. Shen, W.-P. Huang, et al., "Design of photonic crystal fibers for dispersion-related applications," Journal of Lightwave Technology, vol. 21, pp. 1644-1651, 2003.
    [39] L. P. Shen, W. P. Huang, et al., "Design and optimization of photonic crystal fibers for broad-band dispersion compensation," IEEE Photonics Technology Letters, vol. 15, pp. 540-542, 2003.
    [40] J. C. Knight, J. Arriaga, et al., "Anomalous dispersion in photonic crystal fiber," IEEE Photonics Technology Letters, vol. 12, pp. 807-809, 2000.
    [41] A. Ferrando, E. Silvestre, et al., "Designing the properties of dispersion-flattened photonic crystal fibers," Optics Express, vol. 9, pp. 687-697, 2001.
    [42] K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Optics Express, vol. 11, pp. 1503-1509, 2003.
    [43] G. Renversez, B. Kuhlmey, et al., "Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses," Optics Letters, vol. 28, pp. 989-991, 2003.
    [44] A. Ferrando, E. Silvestre, et al., "Nearly zero ultraflattened dispersion in photonic crystal fibers," Optics Letters, vol. 25, pp. 790-792, 2000.
    [45] W. H. Reeves, J. C. Knight, et al., "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Optics Express, vol. 10, pp. 609-613, 2002.
    [46] M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," Journal of Lightwave Technology, vol. 19, pp. 495-503, 2001.
    [47] C. Zhang, G. Kai, Z. Wang et al., “Design of tunable bandgap guidance in high-index filled microstructure fibers”, Journal of the Optical Society of America B: Optical Physics, 2006, vol, 23, 782-786
    [48] Chunshu Zhang, Guiyun Kai, Zhi Wang et al., “Transformation of a transmission mechanism by filling the holes of normal silica-guiding microstructure fibers with nematic liquid crystal”, Optics Letters, 2005,30(18): 2372-2374.
    [49] 张春书,“光子晶体光纤填充和光子晶体光纤光栅的研究”,南开大学博士论文,2006.
    [50] Chunshu Zhang, Guiyun Kai, Zhi Wang, Yange Liu, Tingting Sun, Shuzhong Yuan, and Xiaoyi Dong, “Tunable highly birefringent photonic bandgap fibers”, Optics Letters, 30(20): 703-2705, 2005.
    [51] Zhang Chun-Shu, Kai Gui-Yun, Wang Zhi, Liu Yan-Ge, Sun Ting-Ting, Liu Jian-Guo, Yuan Shu-Zhong and Dong Xiao-Yi, “Simulations of Effect of High-Index Materials on Highly Birefringent Photonic Crystal Fibres”, Chinese Physics Letters, 22(11): 2858-2861, 2005.
    [52] S. C. Wen, W. H. Su, et al., "Influence of higher-order dispersions and Raman delayed responseon modulation instability in microstructured fibres," Chinese Physics Letters, vol. 20, pp. 852-854, 2003.
    [53] S. G. Li, L. T. Hou, et al., "Supercontinuum generation in holey microstructure fibres with random cladding distribution by femtosecond laser pulses," Chinese Physics Letters, vol. 20, pp. 1300-1302, 2003.
    [54] S. G. Li, Y. L. Ji, et al., "Supercontinuum generation in holey microstructure fibers by femtosecond laser pulses," Acta Physica Sinica, vol. 53, pp. 478-483, 2004.
    [55]Y. Zheng, Y. P. Zhang, et al., "Supercontinuum generation with 15-fs pump pulses in a microstructured fibre with random cladding and core distributions," Chinese Physics Letters, vol.21, pp. 750-753, 2004.
    [56] Y. F. Li, Q. Y. Wang, et al., "Dispersion calculation of photonic crystal fibers by the normalization technique," Acta Physica Sinica, vol. 53, pp. 1396-1400, 2004.
    [57] S. G. Li, X. D. Liu, et al., "Numerical study on dispersion compensating property in photonic crystal fibers," Acta Physica Sinica, vol. 53, pp. 1880-1886, 2004.
    [58] S. G. Li, X. D. Liu, et al., "Vector analysis of dispersion for the-fundamental cladding mode in photonic crystal fibers," Acta Physica Sinica, vol. 53, pp. 1873-1879, 2004.
    [59] M. L. Hu, Q. Y. Wang, et al., "Birefringence phenomena in a random distributed microstructure fiber," Acta Physica Sinica, vol. 53, pp. 4248-4252, 2004.
    [60] T. A. Birks, J. C. Knight, et al., "Endlessly single-mode photonic crystal fiber," Optics Letters, vol.22, pp. 961-963, 1997.
    [61] G. P. Agrawal, “Nonlinear Fiber Optics.” Third Edition,San Diego:Academic Press, 2001.
    [62] N. A. Mortensen, J. R. Folkenberg, et al., "Modal cutoff and the V parameter in photonic crystal fibers," Optics Letters, vol. 28, pp. 1879-1881, 2003.
    [63] M. D. Nielsen, N. A. Mortensen, et al., "Mode-field radius of photonic crystal fibers expressed by the V parameter," Optics Letters, vol. 28, pp. 2309-2311, 2003.
    [64] K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Exp., vol. 11, pp. 843–852, 2003.
    [65] K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Exp., vol. 12, pp. 2027–2032, 2004.
    [66] T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. S. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett., vol. 11, no. 6, pp. 674–676, Jun. 1999.
    [67] P. R. Mcisaac, “Symmetry-induced modal characteristics of uniform waveguides—1: summary of results,” IEEE Trans. Microw. Theory Tech., vol. MTT–23, no. 5, pp. 421–429, May 1975.
    [68] M. J. Steel, T. P. White, and C. M. D. Sterke et al., “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett., vol. 21, pp. 488–490, 2001.
    [69] G. Ren, Z. Wang, and S. Lou et al., “Mode classification and degeneracy in photonic crystal fibers,” Opt. Exp., vol. 11, pp. 1310–1321, 2001.
    [70]A. Peyrilloux, T. Chartier, et al., "Theoretical and experimental study of the birefringence of a photonic crystal fiber," Journal of Lightwave Technology, vol. 21, pp. 536-539, 2003.
    [71] I. K. Hwang, Y. J. Lee, et al., "Birefringence induced by irregular structure in photonic crystal fiber," Optics Express, vol. 11, pp. 2799-2806, 2003.
    [72] J. R. Folkenberg, M. D. Nielsen, et al., "Polarization maintaining large mode area photonic crystal fiber," Optics Express, vol. 12, pp. 956-960, 2004.
    [73] N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348, 2002.
    [74] T. Sorensen, J. Broeng, et al., "Macro-bending loss properties of photonic crystal fibre," Electronics Letters, vol. 37, pp. 287-289, 2001.
    [75] J. C. Baggett, T. M. Monro, et al., "Understanding bending losses in holey optical fibers," Optics Communications, vol. 227, pp. 317-335, 2003.
    [76] M. D. Nielsen, N. A. Mortensen, et al., "Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications," Optics Letters, vol. 28, pp. 1645-1647, 2003.
    [77] D. Ferrarini, L. Vincetti, et al., "Leakage properties of photonic crystal fibers," Optics Express, vol.10, pp. 1314-1319, 2002.
    [78] V. Finazzi, T. M. Monro, et al., "The role of confinement loss in highly nonlinear silica holey fibers," IEEE Photonics Technology Letters, vol. 15, pp. 1246-1248, 2003.
    [79] L. F. Zou, X. Y. Bao, et al., "Brillouin scattering spectrum partially germ in photonic crystal fiber with a partially germanium-doped core," Optics Letters, vol. 28, pp. 2022-2024, 2003.
    [80] N. Nishizawa, Y. Ito, et al., "0.78-0.90-mu m wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber," IEEE Photonics Technology Letters, vol. 14, pp. 986-988, 2002.
    [81] J. E. Sharping, M. Fiorentino, et al., "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Optics Letters, vol. 27, pp. 1675-1677, 2002.
    [82] F. G. Omenetto, A. J. Taylor, et al., "Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber," Optics Letters, vol. 26, pp. 1158-1160, 2001.
    [83] A. Efimov, A. J. Taylor, et al., "Phase-matched third harmonic generation in microstructured fibers," Optics Express, vol. 11, pp. 2567-2576, 2003.
    [84] X. Liu, C. Xu, et al., "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Optics Letters, vol. 26, pp. 358-360, 2001.
    [85] I. G. Cormack, D. T. Reid, et al., "Observation of soliton self-frequency shift in photonic crystal fibre," Electronics Letters, vol. 38, pp. 167-169, 2002.
    [86] K. S. Abedin and F. Kubota, "Widely tunable femtosecond soliton pulse generation at a 10-GHzrepetition rate by use of the soliton self-frequency shift in photonic crystal fiber," Optics Letters, vol. 28, pp. 1760-1762, 2003.
    [87] D. V. Skryabin, F. Luan, et al., "Soliton self-frequency shift cancellation in photonic crystal fibers," Science, vol. 301, pp. 1705-1708, 2003.
    [88] M. L. Hu, C. Y. Wang, et al., "Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber," Optics Express, vol. 12, pp. 1932-1937, 2004.
    [89] J. K. Ranka, R. S. Windeler, et al., "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Optics Letters, vol. 25, pp. 25-27, 2000.
    [90] J. M. Dudley and S. Coen, "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 651-659, 2002.
    [91] I. Cristiani, R. Tediosi, et al., "Dispersive wave generation by solitons in microstructured optical fibers," Optics Express, vol. 12, pp. 124-135, 2004.
    [92] B. J. Eggleton, P. S. Westbrook, et al., "Cladding-mode-resonances in air-silica microstructure optical fibers," Journal of Lightwave Technology, vol. 18, pp. 1084-1100, 2000.
    [93] B. J. Eggleton, P. S. Westbrook, et al., "Grating resonances in air-silica microstructured optical fibers," Optics Letters, vol. 24, pp. 1460-1462, 1999.
    [94] P. S. Westbrook, B. J. Eggleton, et al., "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photonics Technology Letters, vol. 12, pp. 495-497, 2000.
    [95] G. Kakarantzas, T. A. Birks, et al., "Structural long-period gratings in photonic crystal fibers," Optics Letters, vol. 27, pp. 1013-1015, 2002.
    [96] Y. N. Zhu, P. Shum, et al., "Strong resonance and a highly compact long-period grating in a large-mode-area photonic crystal fiber," Optics Express, vol. 11, pp. 1900-1905, 2003.
    [97] Y. N. Zhu, P. Shum, et al., "Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber," Optics Letters, vol. 28, pp. 2467-2469, 2003.
    [98] Y. N. Zhu, P. Shum, et al., "Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber," Optics Letters, vol. 30, pp. 367-369, 2005.
    [99] J. H. Lim, K. S. Lee, et al., "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Optics Letters, vol. 29, pp. 331-333, 2004.
    [100] J. H. Lim, H. S. Jang, et al., "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Optics Letters, vol. 29, pp. 346-348, 2004.
    [101] P. Petropoulos, T. M. Monro, et al., "2R-regenerative all-optical switch based on a highly nonlinear holey fiber," Optics Letters, vol. 26, pp. 1233-1235, 2001.
    [102] J. E. Sharping, M. Fiorentino, et al., "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photonics Technology Letters, vol. 14, pp. 77-79, 2002.
    [103] S. M. Zheltikova D.A., Zheltikov A.M., Bloemer M.J., Shneider M.N., Aguanno G.D., Miles R.B., "Switching intense laser pulses guided by Kerr-effect-modified modes of a hollow-core photonic-crystal fiber," Physical Review E, vol. 71, pp. 026609, 2005.
    [104] T. T. Larsen, J. Broeng, et al., "Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres," Electronics Letters, vol. 39, pp. 1719-1720, 2003.
    [105] F. Du, Y. Q. Lu, et al., "Electrically tunable liquid-crystal photonic crystal fiber," Applied Physics Letters, vol. 85, pp. 2181-2183, 2004.
    [106] Z. Yusoff, J. H. Lee, et al., "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Optics Letters, vol. 27, pp. 424-426, 2002.
    [107] K. S. Abedin, T. Miyazaki, et al., "Wavelength-conversion of pseudorandom pulses at 10 Gb/s by using soliton self-frequency shift in a photonic crystal fiber," IEEE Photonics Technology Letters, vol. 16, pp. 1119-1121, 2004.
    [108] J. Hansryd, P. A. Andrekson, et al., "Fiber-based optical parametric amplifiers and their applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 506-520, 2002.
    [109] R. Tang, J. Lasri, et al., "Microstructure-fibre-based optical parametric amplifier with gain slope of similar to 200 dB/W/km in the telecom range," Electronics Letters, vol. 39, pp. 195-196, 2003.
    [110] J. H. Lee, W. Belardi, et al., "Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold," IEEE Photonics Technology Letters, vol. 15, pp.440-442, 2003.
    [111] W. J. Wadsworth, J. C. Knight, et al., "Yb3+-doped photonic crystal fibre laser," Electronics Letters, vol. 36, pp. 1452-1454, 2000.
    [112] P. Glas and D. Fischer, "Cladding pumped large-mode-area Nd-doped holey fiber laser," Optics Express, vol. 10, pp. 286-290, 2002.
    [113] K. Furusawa, A. Malinowski, et al., "Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding," Optics Express, vol. 9, pp. 714-720, 2001.
    [114] W. J. Wadsworth, R. M. Percival, et al., "High power air-clad photonic crystal fibre laser," Optics Express, vol. 11, pp. 48-53, 2003.
    [115] J. Limpert, T. Schreiber, et al., "Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation," Optics Express, vol. 11, pp. 2982-2990, 2003.
    [116] T. Sondergaard and B. Tromborg, "General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier," Physical Review A, vol. 6403, pp., 2001.
    [117] R. F. Cregan, J. C. Knight, et al., "Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber," Journal of Lightwave Technology, vol. 17, pp. 2138-2141, 1999.
    [118] 李燕 刘艳格 王超等,“输出功率大于10W的掺镱双包层微结构光纤激光器”,光学精密工程,14(2),151-154,2006.
    [119] Liu YG, Wang C, Sun TT et al., “Distributed hybrid-fiber Raman amplifier with a section ofnonlinear microstructured optical fiber”, Microwave and Optical Technology Letters, 48 (11), 2267-2271,2006.
    [120] Djafar K. Mynbaev, Lowell L. Scheiner, “Fiber-Optic Communications Technology”, 徐公权等译, 北京, 机械工业出版社, 2008.2
    [121] K. Saitoh, Y. Sato, et al., "Polarization splitter in three-core photonic crystal fibers," Optics Express, vol. 12, pp. 3940-3946, 2004.
    [122] K. Sakoda, Optical Properties of Photonic Crystals, Springer, 2001.
    [123] Z. Wang, S. Fu, et al., "Analysis of the guided modes in triangular photonic crystal fibers using a full-vectorial numerical method," presented,at,APOC 2003: Asia-Pacific Optical and Wireless Communications: Optical Fibers and Passive Components, Nov 4-6 2003,,Wuhan, China,,2004.
    [124] J. Broeng, S. E. Barkou, et al., "Analysis of air-guiding photonic bandgap fibers," Optics Letters, vol. 25, pp. 96-98, 2000.
    [125] K. Saitoh, Y. Sato, et al., "Coupling characteristics of dual-core photonic crystal fiber couplers," Optics Express, vol. 11, pp. 3188-3195, 2003.
    [126] L. Zhang and C. X. Yang, "Polarization splitter based on photonic crystal fibers," Optics Express,vol. 11, pp. 1015-1020, 2003.
    [127] L. Zhang and C. X. Yang, "Nonreciprocal coupling in asymmetric dual-core photonic crystal fibres," Chinese Physics Letters, vol. 21, pp. 1542-1544, 2004.
    [128] L. Zhang and C. X. Yang, "A novel polarization sputter based on the photonic crystal fiber with nonidentical dual cores," IEEE Photonics Technology Letters, vol. 16, pp. 1670-1672, 2004.
    [129] L. Zhang and C. X. Yang, "Polarization-dependent coupling in twin-core photonic crystal fibers," Journal of Lightwave Technology, vol. 22, pp. 1367-1373, 2004.
    [130] J. Laesgaard, O. Bang, et al., "Photonic crystal fiber design for broadband directional coupling," Optics Letters, vol. 29, pp. 2473-2475, 2004.
    [131] M. Skorobogatiy, K. Saitoh, et al., "Coupling between two collinear air-core Bragg fibers," Journal of the Optical Society of America B-Optical Physics, vol. 21, pp. 2095-2101, 2004.
    [132] M. Skorobogatiy, "Hollow Bragg fiber bundles: when coupling helps and when it hurts," Optics Letters, vol. 29, pp. 1479-1481, 2004.
    [133] M. Skorobogatiy, K. Saitoh, et al., "Resonant directional coupling of hollow Bragg fibers,"Optics Letters, vol. 29, pp. 2112-2114, 2004.
    [134] W. N. MacPherson, J. D. C. Jones, et al., "Two-core photonic crystal fibre for Doppler difference velocimetry," Optics Communications, vol. 223, pp. 375-380, 2003.
    [135] Y. L. Hoo, W. Jin, et al., "Design and modeling of a photonic crystal fiber gas sensor," Applied Optics, vol. 42, pp. 3509-3515, 2003.
    [136] Y. L. Hoo, W. Jin, et al., "Evanescent-wave gas sensing using microstructure fiber," Optical Engineering, vol. 41, pp. 8-9, 2002.
    [137] L. F. Zou, X. Y. Bao, et al., "Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber," Optics Letters, vol. 29, pp. 1485-1487, 2004.
    [138] S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Optics Express, vol. 8, pp. 173-190, 2001.
    [139] T. M. Monro, D. J. Richardson, et al., "Holey optical fibers: An efficient modal model," Journal of Lightwave Technology, vol. 17, pp. 1093-1102, 1999.
    [140] E. Knudsen and A. Bjarklev, "Modelling photonic crystal fibres with Hermite-Gaussian functions," Optics Communications, vol. 222, pp. 155-160, 2003.
    [141]S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Optics Express, vol. 8, pp. 173-190, 2001.
    [142] T. M. Monro, D. J. Richardson, et al., "Holey optical fibers: An efficient modal model," Journal of Lightwave Technology, vol. 17, pp. 1093-1102, 1999.
    [143] E. Knudsen and A. Bjarklev, "Modelling photonic crystal fibres with Hermite-Gaussian functions," Optics Communications, vol. 222, pp. 155-160, 2003.
    [144] T. P. White, B. T. Kuhlmey, et al., "Multipole method for microstructured optical fibers. I. Formulation," Journal of the Optical Society of America B-Optical Physics, vol. 19, pp. 2322-2330, 2002.
    [145] B. T. Kuhlmey, T. P. White, et al., "Multipole method for microstructured optical fibers. II. Implementation and results," Journal of the Optical Society of America B-Optical Physics, vol. 19, pp. 2331-2340, 2002.
    [146] Z. M. Zhu and T. G. Brown, "Multipole analysis of hole-assisted optical fibers," Optics Communications, vol. 206, pp. 333-339, 2002.
    [147] T. P. White, B. T. Kuhlmey, et al., "Multipole method for microstructured optical fibers. Iota. Formulation (vol 19, pg 2322, 2002)," Journal of the Optical Society of America B-Optical Physics,vol. 20, pp. 1581-1581, 2003.
    [148] Z. Wang, G. B. Ren, et al., "Supercell lattice method for photonic crystal fibers," Optics Express, vol. 11, pp. 980-991, 2003.
    [149] Z. M. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Optics Express, vol. 10, pp. 853-864, 2002.
    [150] C. P. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Optics Express, vol. 12, pp. 6165-6177, 2004.
    [151] M. Koshiba, "Full-vector analysis of photonic crystal fibers using the finite element method," Ieice Transactions on Electronics, vol. E85C, pp. 881-888, 2002.
    [152] T. Fujisawa and M. Koshiba, "Finite element characterization of chromatic dispersion in nonlinear holey fibers," Optics Express, vol. 11, pp. 1481-1489, 2003.
    [153] A. Cucinotta, S. Selleri, et al., "Holey fiber analysis through the finite-element method," IEEE Photonics Technology Letters, vol. 14, pp. 1530-1532, 2002.
    [154] Y. Z. He and F. G. Shi, "Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers," Optics Communications, vol. 225, pp. 151-156, 2003.
    [155] K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE Journal of Quantum Electronics, vol. 38, pp. 927-933, 2002.
    [156] F. Fogli, L. Saccomandi, et al., "Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers," Optics Express, vol. 10, pp. 54-59, 2002.
    [157] M.D. Feit and J.A. Fleck, "Light propagation in graded-index optical fibers", Appl. Opt., vol. 17, pp. 3990-3998, 1978.
    [158] See references in D. Yevick, "A guide to electric field propagation techniques for guided-wave optics", Opt. and Quant. Elec., vol. 26, pp. S185-S197, 1994.
    [159] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical Techniques for Modeling Guided-Wave Photonic Devices," J. Selected Topics in Quantum Electronics, vol. 6, p. 150, 2000.
    [160] L. Eldada, M.N. Ruberto, R. Scarmozzino, M. Levy, and R.M. Osgood, Jr., "Laser-Fabricated Low-Loss Single-Mode Waveguiding Devices in GaAs", J. Lightwave Tech., vol. 10, p. 1610, 1992.
    [161] M. Levy, L. Eldada, R. Scarmozzino, R.M. Osgood, Jr., P.S.D. Lin, and F. Tong, "Fabrication of Narrow-Band Channel-Dropping Filters", Photon. Tech. Lett., vol. 4, p. 1378, 1992.
    [162] L. Eldada, M.N. Ruberto, M. Levy, R. Scarmozzino, and R.M. Osgood, Jr., "Rapid Direct Fabrication of Active Electro-Optic Modulators in GaAs", J. Lightwave Tech., vol. 12, p. 1588, 1994.
    [163] I. Ilic, R. Scarmozzino, R.M. Osgood, Jr., J.T. Yardley, K.W. Beeson, and M.J. McFarland, "Modeling Multimode-Input Star Couplers in Polymers", J. Lightwave Tech., vol. 12, p. 996, 1994.
    [164] I. Ilic, R. Scarmozzino, R.M. Osgood, Jr., J.T. Yardley, K.W. Beeson, and M.J. McFarland, and J. Schweyen, "Photopattermed Polymer Multimode 8x8 Star Couplers: Comparative Design Methodologies and Device Measurements", IEICE Trans. Commun., vol. E80-B, 1997.
    [165] L. Eldada, R. Scarmozzino, R.M. Osgood, Jr., D.C. Scott, Y. Chang, and H.R. Fetterman, "Laser-Fabricated Delay Lines in GaAs for Optically-Steered Phased-Array Radar", J. Lightwave Tech., vol. 13, p. 2034, 1995.
    [166] M. Hu, R. Scarmozzino, M. Levy, and R.M. Osgood, Jr., "A low-loss and compact waveguide y-branch using refractive index tapering", Photon. Tech. Lett., vol. 9, pp. 203-205, 1997.
    [167] R. Scarmozzino, R.M. Osgood, Jr., L. Eldada, J.T. Yardley, Y. Liu, J. Bristow, J. Stack, J. Rowlette, and Y.S. Liu, "Design and Fabrication of Passive Optical Components for Multimode Parallel Optical Links", SPIE Photonic West Meeting, San Jose, CA, vol. 3005, p. 257, 1997.
    [168] M. Hu, J.Z. Huang, R. Scarmozzino, M. Levy, and R.M. Osgood, Jr., "Tunable Mach-Zehnderpolarization splitter using height-tapered y-branches", Photon. Tech. Lett., vol. 9, pp. 773-775, 1997.
    [169] D.S. Levy, Y.M. Li, R. Scarmozzino, and R.M. Osgood, Jr., "A Multimode Interference-Based Variable Power Splitter in GaAs ", Photon. Tech. Lett., vol. 9, pp. 1373-1375, 1997.
    [170] D.S. Levy, R. Scarmozzino, Y.M. Li, and R.M. Osgood, Jr., "A New Design for Ultracompact Multimode Interference-Based 2x2 Couplers", Photon. Tech. Lett., vol. 10, pp. 96-98, 1998.
    [171] J. Z. Huang, M. H. Hu, J. Fujita, R. Scarmozzino, and R. M. Osgood, Jr., "High-Performance Metal-Clad Multimode Interference Devices for Low-Index-Contrast Material Systems", Photon. Tech. Lett., vol. 10, pp. 561-563, 1998.
    [172] J. Z. Huang, R. Scarmozzino, and R. M. Osgood, Jr., "A New Design Approach to Large Input/Output-Number Multimode Interference Couplers and Its Application to Low-Crosstalk WDM Routers", Photon. Tech. Lett., vol. 10, pp. 1292-1294, 1998.
    [173] D.S. Levy, K.H. Park, R. Scarmozzino, R.M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2x2 MMI power splitters", Photon. Tech. Lett., vol 11, pp. 1009-1011, 1999.
    [174] T.A. Ramadan, R. Scarmozzino, and R.M. Osgood, Jr., "Adiabatic Couplers: Design Rules and Optimization", J. Lightwave Tech., vol. 16, pp. 277-283, 1998.
    [175] J. Fujita, M. Levy, R. Scarmozzino, R.M. Osgood, Jr., L. Eldada, and J.T. Yardley, "Integrated Multistack Waveguide Polarizer", Photon. Tech. Lett., vol. 10, pp. 93-95, 1998.
    [176] J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel and R. M. Osgood, Jr., "Realization of a compact and single-mode optical passive polarization converter", Photon. Tech. Lett., vol. 12, pp. 317-319, 2000.
    [177] D. Yevick and B. Hermansson, "Efficient beam propagation techniques", J. Quantum Electron. vol. 26, pp. 109-112, 1990.
    [178] Y. Chung and N. Dagli, "An assessment of finite difference beam propagation method", J. Quantum Electron., vol. 26, pp. 1335-1339, 1990.
    [179] R.Scarmozzino and R.M.Osgood,Jr., "Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications", J. Opt. Soc. Amer. A, vol. 8, p. 724, 1991.
    [180] C. Vassalo and F. Collino, "Highly efficient absorbing boundary condition for the beam propagation method", J. Lightwave Technol., vol. 14, pp. 1570-1577, 1996.
    [181] W.P. Huang, C.L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method", Photon. Technol. Lett., vol. 8, pp. 649-651, 1996.
    [182] Y.P. Chiou and H.C. Chang, "Complementary operators method as the absorbing boundary condition for the beam propagation method", Photon. Technol. Lett., vol. 8, pp. 976-979, 1998.
    [183] W.H. Press, B.P. Flannery, S.A. Teuklsky, and W.T. Vetterling, Numerical Recipes: The Art ofScientific Computing, Cambridge Univ., New York, 1986.
    [184] R. Clauberg and P. Von Allmen, "Vectorial beam propagation method for integrated optics", Electron. Lett., vol. 27, p. 654, 1991.
    [185] W.P. Huang and C.L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method", J. Quantum Electron., vol. 29, p. 2639, 1993.
    [186] D. Yevick and M. Glasner, "Analysis of forward wide-angle light propagation in semiconductor rib waveguides and integrated-optic structures", Electron. Lett., vol. 25, pp. 1611-1613, 1989.
    [187] H.J.W.M. Hoekstra, G.J.M. Krijnen, and P.V. Lambeck, "New formulations of the beam propagation method based on the slowly varying envelope approximation", Optics Communications, vol. 97, pp. 301-303, 1993.
    [188] I. Ilic, R. Scarmozzino, and R.M. Osgood, Jr., "Investigation of the Pade approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits", J. Lightwave Technol., vol. 14, pp. 2813-2822, 1996.
    [189] P. Kaczmarski and P.E. Lagasse, "Bidirectional beam propagation method", Electron. Lett., vol. 24, pp. 675-676, 1988.
    [190] Y. Chung and N. Dagli, "Modeling of guided-wave optical components with efficient finite-difference beam propagation methods", in Tech. Dig. IEEE AP-S Int. Symp., 1992, vol. 1, pp. 248-251,1992.
    [191] Y. Chiou and H. Chang, "Analysis of optical waveguide discontinuities using the Pade approximants", Photon. Technol. Lett., vol. 9, pp. 964-966, 1997.
    [192] H. Rao, R. Scarmozzino, and R.M. Osgood, Jr., "A bidirectional beam propagation method for multiple dielectric interfaces", Photon. Technol. Lett., vol. 11, pp. 830-832, 1999.
    [193] C.L. Xu, W.P. Huang, J. Chrostowski, and S.K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides", J. Lightwave Tech., vol. 12, p. 1926, 1994.
    [194] J. Yamauchi, J. Shibayama, and H. Nakano, "Modified finite-difference beam propagation method based on the generalized Douglas scheme for variable coefficients", Photon. Technol. Lett., vol. 7, p. 661, 1995.
    [195] G.R. Hadley, "Low-truncation-error finite difference equations for photonics simulation I: beam propagation", J. Lightwave Technol., vol. 16, pp. 134-141, 1998.
    [196] H.J.W.M. Hoekstra, G.J.M. Krijnen, and P.V. Lambeck, "Efficient interface conditions for the finite difference beam propagation method", J. Lightwave Technol., vol. 10, pp. 1352-1355, 1992.
    [197] J. Yamauchi, M. Sekiguchi, O. Uchiyama, J. Shibayama, and H. Nakano, "Modified finite-difference formula for the analysis of semivectorial modes in step-index optical waveguides", Photon. Technol. Lett., vol. 9, pp. 961-963, 1997.
    [198] M.D. Feit and J.A. Fleck, "Computation of mode properties in optical fiber waveguides by a propagating beam method", Applied Optics, vol. 19, p. 1154, 1980.
    [199] D. Yevick and B. Hermansson, "New formulations of the matrix beam propagation method: Application to rib waveguides", J. Quantum Electron., vol. 25, pp. 221-229, 1989.
    [200] S. Jungling and J.C. Chen, "A study and optimization of eigenmode calculations using the imaginary-distance beam-propagation method", J. Quantum Electron., vol. 30, p. 2098, 1994.
    [201] D. Yevick and Witold Bardyszewski, "Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis", Opt. Lett., vol. 17, pp. 329-330, 1992.
    [202] G.R. Hadley and R.E. Smith, "Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions", J Lightwave Technol, 13 ( 3 ) :465-469, 1995.
    [203] J.C. Chen and S. Jungling, "Computation of higher-order waveguide modes by the imaginary-distance beam propagation method", Optical and Quantum Electron., vol 26, pp. S199-S205, 1994.
    [204] D. Marchese, M. De Sario, A. Jha, A. K. Kar, and E. C. Smith, “Highly nonlinear GeS2-based chalcohalide glass for all-optical twin-core-fiber switching,” J. Opt. Soc. Am. B 15, 2361–2370,1998.
    [205]. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806, 1998.
    [206] Y. H. Kim, N. S. Kim, Y. Chung, U. Paek, and W. Han, “All-optical switching application based on optical nonlinearity of Yb3+-doped aluminosilicate glass fiber with a long-period fiber gratings pair,” Opt. Express 12, 651–656, 2004.
    [207] T. Sun, G. Kai, Z. Wang, et al., “Multi-wavelength erbium-doped fiber laser basedon a microstructure fiber Bragg grating,” Microwave Opt. Technol. Lett. 20, 162–164,2005.
    [208]. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt Express 9, 698–713, 2001.
    [209]. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Strain and temperature characterization of photonic crystal fiber Bragg gratings,” Opt. Lett. 30, 1785–1787 (2005).
    [210]. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27, 1684–1686, 2002.
    [211] M. D. Nielsen, N. A. Mortensen, J. R. Folkenberg, and A. Bjarklev, “Mode-field radius of photonic crystal fibers expressed by the V parameter,” Opt. Lett. 28, 2309–2311, 2003.
    [212] K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267–273, 2005.
    [213] G. E. Town and J. T. Lizier, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett. 26, 1042–1044, 2001.
    [214] S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason,“Supercontinuum generation in submicron fiber waveguides,” Opt. Express 12, 2864–2869 2004.
    [215] Y. K. Lize, E. C. Magi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12, 3209–3217, 2004.
    [216] V. Finazzi, T. M. Monro, and D. J. Richardson, “Small-core silica holey fibers: nonlinearity and confinement loss tradeoffs,” J. Opt. Soc. Am. B 20, 1427–1436, 2003.
    [217] E. C. M?gi, P. Steinvurzel, and B.J. Eggleton. “Tapered photonic crystal fibers”. Optics express, Vol.12, 776~784, 2004.
    [218] J. T. Lizier and G. E. Town. “Splice Losses in Holey Optical Fibers”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 13, 794~796. 2001
    [219] T. M. Monro, P. J. Bennett, N. G. R. Broderick and D. J. Richardson, "Holey fibers with random cladding distributions," Opt. Lett. 25, 206-208, 2000.
    [220] Annamaria Cucinotta, Stefano Selleri, Luca Vincetti, and Maurizio Zoboli, “Perturbation Analysis of Dispersion Propertiesin Photonic Crystal Fibers Through the Finite Element Method”, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, 1433~1422, 2002.
    [221] Kristen Lantz Reichenbach and Chris Xu, “The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers”, OPTICS EXPRESS, Vol. 13, 2799~2807, 2005.
    [222] N. A. Mortensen, M. D. Nielsen, and J. R. Folkenberg et al., “Smallcore photonic crystal fibres with weakly disordered air-hole claddings,” J. Opt. A: Pure Appl. Opt., vol. 6, pp. 221–223, 2004.
    [223] 李玉权, 朱勇, 王江平编著 “光通信原理与技术”, 北京 科学出版社 2006.
    [224] P. R. Mcisaac, “Symmetry-induced modal characteristics of uniform waveguides—1: summary of results,” IEEE Trans. Microw. Theory Tech., vol. MTT–23, no. 5, pp. 421–429, May 1975.
    [225] M. J. Steel, T. P. White, and C. M. D. Sterke et al., “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett., vol. 21, pp. 488–490, 2001.
    [226] G. Ren, Z. Wang, and S. Lou et al., “Mode classification and degeneracy in photonic crystal fibers,” Opt. Exp., vol. 11, pp. 1310–1321, 2001.
    [227] Georges Humbert, Abdelrafik Malki and Sébastien Février, “Characterizations at high temperatures of long-period gratings written in germanium-free air–silica microstructure fiber”, Optics Letters. Vol.29, No.1, 38-40, 2004.
    [228] Yinian Zhu, Ping Shum, Hui-Wen Bay et al, “Wide-passband, temperature-insensitive, and compact π-phase-shifted long-period gratings in endlessly single-mode photonic crystal fiber”, Optics Letters, Vol.29, No.22, 2608-2610, 2004..
    [229] G. Kakarantzas, T. E. Dimmick, T. A. Birks et al, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers”, Opt. Lett., 26:1137~1139, 2001.
    [230] A. Diez, T. A. Birks, W. H. Reeves, et al. “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves”. Optics Letters, Vol.25, No.20, 1499-1501, 2001.
    [231] M.A. van Eijkelenborg , W. Padden and J.A. Besley, Mechanically induced long-period gratings in microstructured polymer fibre, Optics Communications. 236, 75-78, 2004.
    [232] Zhang Chun-Shu, Kai Gui-Yun, Wang Zhi et al. “Temperature and strain sensing property of grapefruit microstructure fiber grating”[J]. Acta Phis.Sin. 2005 54(6),2758-2763[J].(in Chinese).[张春书,开桂云,王志等,柚子型微结构光纤Bragg光栅温度和应变传感研究,物理学报, 54(6),2758-2763, 2005.
    [233] Katsumi Morishita and Yoshihiro Miyake. “Fabrication and Resonance Wavelengths of Long-Period Gratings Written in a Pure-Silica Photonic Crystal Fiber by the Glass Structure Change”. Journal of Lightwave Technology, Vol.22, No.2, 2004,625-629.
    [234] C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Strain and temperature characterization of photonic crystal fiber Bragg gratings,” Opt. Lett. 30, 1785–1787 (2005).
    [235] Guo Y, Huang Y Q, Chen X, Ren X M and Song J, “Ultra-low-power all-optical switching device by use of ytterbium-doped fiber Bragg gratings,” Applied Optics. 41, 7405~7409, 2002.
    [236] Melloni A, Chinello M and Martinelli M, “All-Optical Switching in Phase-Shifted Fiber Bragg Grating” IEEE Photonics Technology Letters. 12, 42~44, 2000.
    [237] Eggleton B J, Slusher R E, Judkins J B, Stark J B and Vengsarkar A M, “All-optical switching in long-period fiber gratings. Optics Letters,” Optics Letters. 22, 883~885, 1997.” Optics Express. 12, 651~656, 2004.
    [238] Perlin V E, and Winful H G, “Nonliear Pulse Switching Using Long-Period Fiber Grating,” Journal of Lightwave Technology. 18, 329~333, 2000.
    [239] Jeong Y, Baek S and Lee B, “All-Optical Signal Grating in Cascaded Long-Period Fiber Gratings,” IEEE Photonics Technology Letters, 12, 1216~1218, 2000.
    [240] Asobe M, Kobayashi H, Itoh H and Kanamori T, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Optics Letters. 18, 1056~1058, 1993.
    [241] Bananej A and Li C, “Controllable All-Optical Switch Using an EdF-Ring Coupled M-Z Interferometer,” IEEE Photonics Technology Letters. 16, 2102~2104, 2004.
    [242] Salgueiro J R, Kivshar Y S, “Nonlinear Dual-Core photonic crystal fiber couplers” Optics Letters, 30, 1858~1860, 2005.
    [243] Li Jun-Qing(李俊庆), Li Li(李立),Zhao Jia-Qun(赵家群),Li Chun-Fei(李淳飞), Chin. Phys. Lett., 21, 2205~2208, 2004.
    [244] D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146-1155 , 1997.
    [245] K. Akimoto, J. Kani, M. Teshima, and K. Iwatsuki, “Super-dense WDM transmission of spectrum-sliced incoherent light for wide-area access network,” J. Lightwave Technol. 21, 2715-2722, 2003.
    [246] A. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber” Opt. Lett. 30, 2375~2377, 2005.
    [247] C.C. Lee, Y.K. Chi:n and S.K. “Tunable and selective wavelength converter using degenerate fibre four-wave mixing with pump wavelength and polarization controls,” Eelectronics Letters, 34, 205~206, 1998
    [248] S. J. Jung, J. Y. Lee, and D. Y. Kim “Novel phase-matching condition for a four wave mixing experiment in an optical fiber,” OPTICS EXPRESS, 14, 35~43. 2006.
    [249] Shiming Gao, Changxi Yang, Xiaosheng Xiao, Yu Tian, Zheng You, and Guofan Jin, “Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers”, Optics Express, 14, 2873~2879, 2006
    [250] 刘兆伦,刘建民,马 彪,倪正华,侯蓝田,刘晓东“光子晶体光纤的制备和应用进展”,大连民族学院学报,7,39~43,2005
    [251] 王清月,胡明列,柴路“光子晶体光纤非线性光学研究新进展”,中国激光,33,57~66,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700