光子晶体光纤中受激布里渊散射与四波混频技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,光子晶体光纤(PCF)技术取得很大的进展。PCF设计灵活,具有无休止单模特性、奇异的色散特性和高非线性的特点,通过合理的设计,PCF的非线性比普通单模光纤的非线性高一到两个数量级。因此,人们对PCF中的非线性进行了大量的研究。受激布里渊散射(SBS)是光纤中重要的非线性效应,它具有阈值低、易发生的特点,使得SBS在光通信系统中既有积极的作用,又有消极的作用。SBS可用做光纤布里渊激光器和放大器,这是其积极的方面。相反,对于光纤中其它的非线性效应,如四波混频(FWM),SBS的发生会减弱FWM的效率,这时需要考虑抑制SBS。本论文从利用SBS和抑制SBS两个角度,分别研究了PCF中的SBS和FWM。
     论文首先分析了以PCF为增益介质的光纤布拉格光栅F-P(Fabry-Perot)腔中稳态SBS的模型。在考虑PCF损耗的条件下,具体研究了光纤布拉格光栅F-P腔的透射功率、反射功率与输入泵浦波功率的关系;仿真了光纤布拉格光栅F-P腔中的泵浦波和斯托克斯波的功率分布;模拟计算了PCF长度对光纤布拉格光栅F-P腔中SBS阈值的影响。在上述理论研究的基础上,提出了一种新型的以PCF为增益介质的基于光纤布拉格光栅F-P腔的双频布里渊激光器,利用25 m长的高非线性PCF和两个光纤布拉格光栅构成F-P腔,作为布里渊激光器的谐振腔,这种腔结构有益于提高布里渊激光器的转换效率,降低布里渊激光器的阈值。论文研究的布里渊激光器的阈值为35 mW,当输入泵浦波功率为130 mW时,激光器的转换效率为18%。与已报道的PCF布里渊激光器相比,论文利用最短的PCF实现了最低阈值的PCF双频布里渊激光器。
     在光通信系统中,信号需要通过微波调制到光信号上进行传输,所以微波信号的产生非常重要。论文提出了一种新型的基于PCF双频布里渊激光器的微波发生器,通过选择具有一定反射谱的光纤布拉格光栅,可以使PCF布里渊激光器仅产生一阶斯托克斯波,抑制高阶斯托克斯波的产生,泵浦波和一阶斯托克斯波的频率差落在微波的频率范围内,可以通过泵浦波和一阶斯托克斯波混频得到微波信号。当输入泵浦波功率为57 mW、泵浦波波长在1550 nm附近时,得到了带宽为3 MHz、频率为9.78 GHz的微波信号。与已报道的基于PCF布里渊激光器的微波信号发生器相比,本论文在更低的泵浦波功率下产生了微波信号。
     在用光纤链路传输微波的系统中,微波信号需要调制到光载波上,然后通过光纤进行传输,这需要解决光载波抑制的问题。论文在理论研究光纤环中SBS模型的基础上,设计了一种新型的基于PCF中SBS的光载波滤波器。滤波器由两个环行器和一段PCF组成的光纤环构成,这种光纤环结构有效地降低了PCF中SBS的阈值,PCF的高非线性可以减小光纤环中的光纤长度。滤波器利用25 m长的高非线性PCF作为布里渊增益介质,当输入光载波功率为70 mW时,微波光子信号获得了3.38 dB的射频增益,有效地减少了滤波后的微波光子信号的光载波功率,实现滤波器中心波长和光载波波长的自动匹配。
     光通信系统中相位调制信号研究的发展,要求合适的波长转换技术作为支撑,FWM由于对光纤中克尔非线性效应的迅速反应而满足全光系统中波长转换的要求。在色散平坦的PCF中,FWM的相位匹配条件更容易得到满足,有益于提高FWM的波长转换带宽。因此,论文提出了一种基于高非线性色散平坦PCF中FWM的波长转换器。PCF中出现SBS会降低FWM的效率,论文在研究SBS的基础上,通过选取合适的泵浦源抑制了PCF中的SBS,实现了100 nm的波长转换带宽,接近利用PCF中FWM实现波长转换的最大带宽。实验证明,这种波长转换器可以同时完成多路信号的波长转换。
In recent years, the photonic crystal fiber (PCF) technology has made great progress. Due to design flexibility of PCF, it has endlessly single-mode characteristic, peculiar dispersion characteristic and high nonlinearity characteristic. Through the rational design of PCF, its nonlinear is typically 1 or 2 orders of magnitude larger than that of a conventional single-mode fiber. Therefore, a lot of research has been carried out about the nonlinear in PCF. Stimulated Brillouin Scattering (SBS) is an important nonlinear effect in fiber, and it has a low threshold, which makes SBS have both positive role and negative role in optical communication system. SBS effect can be used in Brillouin fiber lasers and amplifiers, which is the positive side. On the contrary, for other nonlinear effects in fiber, such as four-wave mixing (FWM), the occurrence of SBS will diminish the efficiency of FWM, therefor SBS needs to be supressed. The SBS and FWM in PCF have been studied in this paper in terms of the use of SBS and suppression of SBS.
     The steady-state model of SBS in fiber Bragg grating Fabry-Perot (F-P) cavity using PCF for the gain medium is analyzed. Under the condition of considering the PCF loss, the relationship between transmission (reflection) power of fiber Bragg grating F-P cavity and input pump power is studied. Pump power and Stokes power distribution along F-P cavity are simulated. The relationship between the length of the PCF and SBS threshold of fiber Bragg grating F-P cavity is discussed. On the basis of above theory, we provide what we believe to be the first experiment demonstration of dual-frequency Brillouin laser based on fiber Bragg grating F-P cavity using PCF for the gain medium. Resonant cavity of laser consists of 25-m-long highly nonlinear PCF and two fiber Bragg gratings. Such a cavity is beneficial to increasing conversion efficiency and decreasing laser threshold. The laser reaches threshold for input power of 35 mW, and the experimental laser conversion efficiency achieves 18% for input power of 130 mW. Compared to previous PCF Brillouin laser, the PCF dual-frequency Brillouin laser proposed in the paper achieves a minimum threshold using the shortest fiber.
     In optical communication systems, useful signal is modulated to optical signal with microwave for transmission, therefore, the generation of microwave signal is very important. A novel microwave signal generator based on PCF dual-frequency Brillouin laser is forwarded in the paper. By choosing the fiber Bragg grating with a certain reflection spectrum, PCF Brillouin laser can only produce 1st-order Stokes wave, and suppresses the high-order Stokes waves. Frequency difference between pump and 1st-Stokes wave falls in microwave frequency range, so we may obtain microwave signal through mixing the pump with the lst-order Stokes wave. When pump power is 57 mW and pump wavelength is near 1550 nm, a 9.78 GHz microwave signal whose bandwidth is 3 MHz is obtained. Compared to previous microwave sinal generator based on PCF Brillouin laser, the microwave signal is generated under the condition of lower pump power in the paper.
     In the microwave transmission systems with fiber link, microwave signals need modulating to optical carrier for transmission, which requires solving the issue of optical carrier suppression. A novel carrier filter based on the SBS in the PCF is provided after a research of SBS model in fiber ring. The fiber ring consists of a section of fiber and two circulators, which serves as carrier filter. SBS threshold in PCF is effectively reduced in this fiber ring structure, and the highly nonlinear PCF can greatly reduce the fiber length in fiber ring. A 25-m-long PCF is used as Brillouin gain medium, when the carrier of 70 mW input the filter, microwave photon signal received 3.38 dB of RF gain. The filter effectively reduces carrier power and realizes automatic match of the center wavelength of the filter and optical carrier.
     The development of phase modulation signal research in optical communication system calls for a suitable wavelength conversion technology as a support, FWM meets the request of all-optical system due to its instantaneous response of Kerr nonlinearity of fiber. Phase matching condition is met more easily in dispersion flat PCF, which is beneficial to increasing the wavelength conversion range. A wavelength converter based on FWM in a highly nonlinear dispersion flat PCF is provided. SBS will decrease the efficiency of FWM in PCF, so a suitable pump source is selected to suppress SBS on the basis of the research on SBS. We obtain 100-nm wavelength conversion range, which is almost equal to the widest bandwidth of wavelength conversion realized in FWM of PCF. Experiment proved that the wavelength converter can complete the wavelength conversion of multi-channel signal at the same time.
引文
[1]P.Russell.Photonic-crystal fibers.Journal of Lightwave Technology,2006,24(12):4729-4749
    [2]P.Russell,J.Knight,T.Birks,et al.Recent progress in photonic crystal fiber.Optical Fiber Communication Conference,2000,3:98-100
    [3]池灏,曾庆济,姜淳.光子晶体光纤的原理、应用和研究进展.光电子·激光,2002,13(5):534-537
    [4]施伟华,陈鹤鸣.光子晶体光纤及其在光通信中的应用.光学与光电技术,2005,3(1):35-37
    [5]王清月,胡明列,柴路.光子晶体光纤非线性光学研究新进展.中国激光,2006,33(1):57-66
    [6]P.Russell.Photonic crystal fibers.Science,2003,299(5605):358-362
    [7]J.Knight,T.Birks,P.Russell,et al.All-silica single-mode optical fiber with photonic crystal cladding.Optics Letters,1996,21(19):1547-1549
    [8]A.Ortigosa-Blanch,J.Knight,W.Wadsworth,et al.Highly birefringent photonic crystal fibers.Optics Letters,2000,25(18):1325-1327
    [9]J.Knight,J.Arriaga,T.Birks,et al.Anomalous dispersion in photonic crystal fiber.IEEE Photonics Technology Letters,2000,12(7):807-809
    [10]J.Knight,J.Broeng and T.Birks.Photonic band gap guidance in optical fibers.Science,1998,282(5393):1476-1478
    [11]J.Knight,T.Birks and P.Russell.Single-mode photonic band gap guidance of light in air.Science,1999,285(5433):1537-1539
    [12]V.Kumar,A.George,W.H.Reeves,et al.Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation.Optics Express,2002,10(25):1520-1525
    [13]M.Eijkelenborg,M.Large,A.Argyros,et al.Microstructured polymer optical fibre.Optics Express,2001,9(7):319-327
    [14]J.Chandalia,B.Eggleton,R.Windeler,et al.Adiabatic coupling in tapered air-silica microstructured optical fiber.IEEE Photonics Technology Letters,2001,13(1):52-54
    [15]G.Agrawal.Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics.Elsevier Science,2001,Third Edition,1-444(贾东方,余震虹等译.非线性光纤光学原理及应用.电子工业出版社,2002年12月,第一版,4-272)
    [16]T.Birks,J.Knight and P.Russell.Endlessly single-mode photonic crystal fiber.Optics Letters,1997,22(13):961-963.
    [17]N.Broderick,Y.Monro and P.Bennett.Nonlinearity in holey optical fibers:measurement and future opportunities.Optics Letters,1999,24(20):1395-1397.
    [18]A.Ferrando,E.Sylvestre and J.Miret.Nearly zero ultra-flattened dispersion in photonic crystal fibers.Optics Letters,2000,25(11):790-792.
    [19]A.Michie,J.Canning,K.Lyytikainen,et al.Temperature independent highly birefringent photonic crystal fibre. Optics Express, 2004, 12(21) : 5160-5165
    [20] J. Ju, W. Jin and M. Demokan. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm. Journal of Lightwave Technology, 2006, 24(2): 825-830
    [21] S. Yang, Y. Zhang, X. Peng et al, Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Optics Express, 2006, 14(7): 3015-3023
    [22] H. Subbaraman, T. Ling, Y. Jiang, et al. Design of a broadband highly dispersive pure silica photonic crystal fiber. Applied Optics, 2007, 46(16): 3263-3268
    [23]T. Matsui, K. Nakajima and I. Sankawa. Dispersion compensation over all the telecommunication bands with double-cladding photonic-crystal fiber. Journal of Lightwave Technology, 2007, 25(3): 757-762
    [24] J. Ranka, R. Windeler and A. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25-27
    [25] H. Paulsen, K. Hilligs(?)e, J. Th(?)gersen, et al. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source. Optics Letters, 2003, 28(13): 1123-1125
    [26] T. Kee and M. Cicerone. Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy. Optics Letters, 2004, 29(23) : 2701-2703
    [27] B. Vacano, W. Wohlleben and M. Motzkus. Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy. Optics Letters, 2006, 31(3) : 413-415
    [28] H. Kano and H. Hamaguchi. In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber. Optics Express, 2006, 14(7) : 2798-2804
    [29] M. Hu, C. Wang, Y. Li, et al. Tunable supercontinuum generation in a high-index-step photonic-crystal fiber with a comma-shaped core. Optics Express, 2006, 14(5): 1942-1950
    [30] R. Zhang, J. Teipel and Harald Giessen. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Optics Express, 2006, 14(15): 6800-6812
    [31] L. He, B. Yang, X. Zhang, et al. Supercontinuum generation from dispersion-flattened photonic crystal fiber using picosecond pulses. Chinese optics letters, 2006, 4(12): 715-717
    [32]J. Lin, K. Lin, C. Hsu, et al. Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser. Laser Physics Letters, 2007, 4(6): 413-417
    [33] V. Mitrokhin, A. Ivanov, A. Fedotov, et al. Spectral transformation of megawatt femtosecond optical pulses in large-mode-area high-index-step photonic-crystal fibers. Laser Physics Letters, 2007, 4(7): 529-533
    [34] J. Moeser, N. Wolchover, J. Knight, et al. Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber. Optics Letters, 2007, 32(8): 952-954
    [35] C. Gross, T. Best, D. Oosten, et al. Coherent and incoherent spectral broadening in a photonic crystal fiber. Optics Letters, 2007, 32(13): 1767-1769
    [36]D.Lorenc,D.Velic,A.Markevitch,et al.Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber.Optics Communications,2007,276(2):288-292
    [37]C.Lesvigne,V..Couderc,A.Tonello,et al.Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber.Optics Letters,2007,32(15):2173-2175
    [38]P.Petropoulos,T.Monro,W.Belardi,et al.2R-regenerative all-optical switch based on a highly nonlinear holey fiber.Optics Letters,2001,26(16):1233-1235
    [39]J.Sharping,M.Fiorentino,P.Kumar,et al.All-optical switching based on cross-phase modulation in microstructure fiber.IEEE Photonics Technology Letters,2002,14(1):77-79
    [40]T.Larsen and A.Bjarklev.Optical devices based on liquid crystal photonic bandgap fibres.Optics Express,2003,11(20):2589-2596
    [41]J.Salgueiro and Y.Kivshar.Nonlinear dual-core photonic crystal fiber couplers.Optics Letters,2005,30(14):1858-1860
    [42]刘建国,开桂云,薛力芳 等.基于高非线性光子晶体光纤Sagnac环形镜的全光开关.物理学报,2007,56(2):941-945
    [43]F.Wang and C.Li.Optimization of all-optical EDFA-based Sagnac-interferometer switch.Optics Express,2007,15(21):14234-14243
    [44]J.Sharping,M.Fiorentino,A.Coker,et al.Four-wave mixing in microstructure fiber.Optics Letters,2001,26(14):1048-1050
    [45]R.Tang,J.Lasri,P.Devgan,et al.Microstructure-fibre-based optical parametric amplifier with gain slope of~200dB/W/km in the telecom range.Electronics letters,2003,39(2):195-196
    [46]J.Wang,M.Gao.C.Jiang,et al.Design and parametric amplification analysis of dispersion-flat photonic crytal fiber. Chinese Optics Letters, 2005, 3(7): 380-382
    [47]J. Chen, S. Murdoch, R. Leonhardt et al. Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers. Optics Express, 2006, 14(20): 9491-9501
    [48] D. Akimov, T. Siebert, W. Kiefer, et al. Optical parametric amplification of a blueshifted output of a photonic-crystal fiber. Journal of the Optical Society of America B, 2006, 23(9): 1988-1993
    [49] S. Wabnitz. Broadband parametric amplification in photonic crystal fibers with two zero-dispersion wavelengths. Journal of Lightwave Technology, 2006, 24(4): 1732-1738
    [50] J. Fan and A. Migdall. Phase-sensitive four-wave mixing and Raman suppression in a microstructure fiber with dual laser pumps. Optics Letters, 2006, 31(18): 2771-2773
    [51]J. Sharping, M. Fiorentino, P. Kumar, et al. Optical parametric oscillator based on four-wave mixing in microstructure fiber. Optics Letters, 2002, 27( 19): 1675-1677
    [52] J. Lasri, P. Devgan, R. Tang, et al. A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime. IEEE Photonics Technology Letters, 2003, 15(8): 1058-1060
    [53] Y. Deng, Q. Lin, F. Lu, et al. Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber. Optics Letters, 2005, 30(10): 1234-1236
    [54] K. Chow, C. Shu, C. Lin, et al. Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber, IEEE Photonics Technology Letters, 2005, 17(3): 624-626
    [55] T. Yang, C. Shu and C. Lin. Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber. Optics Express, 2005, 13(14): 5409-5415
    [56] A. Zhang and M. Demokan. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber. Optics Letters, 2005, 30(18) : 2375-2377
    [57] K. Chow, C. Shu, C. Lin, et al. All-optical wavelength multicasting with extinction ratio enhancement using pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(4): 838-842
    [58] K. Chow, K. Kikuchi, T. Nagashima, et al. Four-wave mixing based widely tunable wavelength conversion using 1-m dispersionshifted bismuth-oxide photonic crystal fiber. Optics Express, 2007, 15(23): 15418-15423
    [59] Q. Wang, B. Yang, L. Zhang, et al. Experiment study of wavelength conversion in a dispersion-flattened photonic crystal fiber. Chinese Optics Letters, 2007, 5(9): 538-539
    [60] X. Liu, C. Xu, W. Knox, et al. Soliton self-frequency shift in a short tapered air-silica microstructure fiber. Optics Letters, 2001, 26(6): 358-360.
    [61] Z. Yusoff, J. Lee, W. Belardi, et al. Raman effects in a highly nonlinear holey fiber: amplification and modulation. Optics Letters, 2002, 27(6): 424-426.
    [62] S. Varshney, T. Fujisawa, K. Saitoh, et al. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. Optics Express, 2005, 13(23): 9516-9526
    [63] S. Varshney, T. Fujisawa, K. Saitoh, et al. Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band. Optics Express, 2006, 14(8): 3528-3540
    [64] D. Pristinski and H. Du. Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference. Optics Letters, 2006, 31(22): 3246-3248
    [65] S. Konorov and C. Addison. Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy. Optics Letters, 2006, 31(12) : 1911-1913
    [66] I. Fedotov, A. Fedotov and A. Zheltikov. Raman-resonance -enhanced composite nonlinearity of air-guided modes in hollow photonic-crystal fibers. Optics Letters, 2006, 31(17): 2604-2606
    [67] T. Shang, J. Chen, X. Li, et al. Numerical analysis of Raman amplification and optical signal-to-noise ratio in a photonic crystal fiber. Chinese optics letters, 2006, 4(8): 446-448
    [68] K. Sasaki, S. Varshney, K. Wada, et al. Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band. Optics Express, 2007, 15(5): 2654-2668
    [69] S. Murugkar, C. Brideau, A. Ridsdale, et al. Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths. Optics Express, 2007, 15(21): 14028-14037
    [70] S. Randoux, N. Joly, G. M'elin, et al. Grating-free Raman laser using highly nonlinear photonic crystal fiber. Optics Express, 2007, 15(24): 16035-16043
    [71] J. Lee, Z. Yusoff, W. Belardi, et al. Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering. Optics Letters, 2002, 27(11): 927-929
    [72]C. Matos, J. Taylor and K. Hansen. All-fibre Brillouin laser based on holey fibre yielding comb-like spectra. Optics Communications, 2004, 238(1-3): 185-189
    [73] B. Robert, S. Norcia-Molin, D. Dolfi, et al. Optically carried microwave signal modulation depth enhancement by stimulated Brillouin scattering in PCFs. Electronics Letters, 2006, 42(2): 108-109
    [74] L. Zou, X. Bao, A. Shahraam, et al. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber. Optics Letters, 2004, 29(13): 1485-1487
    [75] W. Zhang, Y. Wang, Y. Pi, et al. Influences of pump wavelength and environment temperature on the dual-peaked Brillouin property of a small-core microstructure fiber. Optics Letters, 2007, 32(16) : 2303-2305
    [76] J. Beugnot, T. Sylvestre, D. Alasia, et al. Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber. Optics Express, 2007, 15(23): 15517-15522
    [77] S. Randoux, V. Lecoeuche, B. Segard, et al. Dynamical analysis of Brillouin fiber lasers: an experimental approach. Physical Review A, 1995, 51(6): 4345-4348
    [1]周文,陈秀峰,杨冬晓.光子学基础.浙江大学出版社,2000年1月,第一版,243-273
    [2]G.Agrawal.Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics.USA:Elsevier Science,2002,Third Edition,1-444 (贾东方,余震虹等译.非线性光纤光学原理及应用.电子工业出版社,2002年12月,第一版,4-272)
    [3]姚建铨.非线性光学频率变换及激光调谐技术.科学出版社,1995年3月,第一版,69-88
    [4]T.Horiguchi and M.Tateda.BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction:theory.Journal of Lightwave Technology,1989,7(8):1170-1176
    [5]M.Deventer and A.Boot.Polarization properties of stimulated Brillouin scattering in single-mode fibers.Journal of Lightwave Technology,1994,12(4):585-590
    [6]N.Shibata,R.Waarts and R.Braun.Brillouin-gain spectra for single-mode fibers having pure-silica,GeO2-doped,and P205-doped cores.Optics Letters,1987,12(4):269-271
    [7]Y.Azuma,N.Shibata,T.Horiguchi,et al.Wavelength dependence of Brillouin-gain spectra for single-mode optical fibers.Electronics letters,1988,24(5):250-252
    [8]沈一春,宋牟平,章献民.长距离光纤布里渊散射研究.光子学报,2004,33(8):931-934
    [9]R.Smith.Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering.Applied Optics,1972,11(11):2489-2494
    [10]C.Lee and S.Chi.Measurement of stimulated-Brillouin-scattering threshold for various types of fibers using Brillouin optical-time-domain reflectometer.IEEE Photonics Technology Letters,2000,12(6):672-674
    [11]K.Shiraki,M.Ohashi and M.Tateda.Suppression of stimulated Brillouin scattering in a fibre by changing the core radius. Electronics letters,1995,31(8):668-669
    [1]F.Zarinetchi,S.Smith and S.Ezekiel.Stimulated Brillouin fiber-optic laser gyroscope.Optics Letters,1991,16(4):229-231
    [2]S.Smith,F.Zarinetchi and S.Ezekiel.Narrow-linewidth stimulated Brillouin fiber laser and Applications.Optics Letters,1991,16(6):393-395
    [3]S.Huang,L.Thkvenaz,K.Toyama,et al.Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes.IEEE Photonics Technology Letters,1993,5(3):365-367
    [4]S.Randoux,V.Lecoeuche,B.Segard,et al.Dynamical behavior of a Brillouin fiber ring laser emitting two Stokes components.Physical Review A,1995,52(3):2327-2334
    [5]D.Lim,H.Lee,K.Kim,et al.Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror.Optics Letters,1998,23(21):1671-1673
    [6]S.Randoux and J.Zemmouri.Polarization dynamics of a Brillouin fiber ring laser.Physical Review A,1999,59(2):1644-1653
    [7]S.Randoux,V.Lecoeuche,B.Segard,et al.Dynamical analysis of Brillouin fiber lasers:an experimental approach.Physical Review A,1995,51(6):4345-4348
    [8]K.Ogusu.Analysis of steady-state cascaded stimulated Brillouin scattering in a fiber Fabry-Perot resonator.IEEE Photonics Technology Letters,2002,14(7):947-949
    [9]沈一春,宋牟平,章献民.长距离光纤布里渊散射研究.光子学报,2004,33(8):931-934
    [10]J.Lee,Z.Yusoff,W.Belardi,et al.Investigation of Brillouin effects in small-core holey optical fiber:lasing and scattering.Optics Letters,2002,27(11):927-929
    [11]C.Matos,J.Taylor and K.Hansen.All-fibre Brillouin laser based on holey fibre yielding comb-like spectra.Optics Communications,2004,238(1-3):185-189
    [1]X.Yao.High-quality microwave signal generation by use of Brillouin scattering in optical fibers.Optics Letters,1997,22(17):1329-1331
    [2]P.Bouyer,T.Gustavson,K.Haritos,et al.Microwave signal generation with optical injection locking.Optics Letters,1996,21(18):1502-1504
    [3]S.Chan,G.Xia and J.Liu.Optical generation of a precise microwave frequency comb by harmonic frequency locking.Optics Letters,2007,32(13):1917-1919
    [4]M.Larrode,A.Koonen,J.Olmos,et al.Microwave signal generation and transmission based on optical frequency multiplication with a polarization interferometer.Journal of Lightwave Technology,2007,25(6):1372-1378
    [5]D.Yee,Y.Leem,S.Kim,et al.Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation.Optics Letters,2004,29(19):2243-2245
    [6]O.Levinson and M.Horowitz.Generation of complex microwave and millimeter-wave pulses using dispersion and Kerr effect in optical fiber systems.Journal of Lightwave Technology,2003,21(5):1179-1187
    [7]M.Brunel,F.Bretenaker,S.Blanc,et al.High-spectral purity RF beat note generated by a two-frequency solid-stale laser in a dual thermooptic and electrooptic phase-locked loop.IEEE Photonics Technology Letters,2004,16(3):870-872
    [8]X.Meng and J.Menders.Optical generation of microwave signals using SSB-based frequency-doubling scheme.Electronics letters,2003,39(1):103-105
    [9]Y.Shen,X.Zhang and K.Chen.All-optical generation of microwave and millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser.Journal of Lightwave Technology,2005,23(5):1860-1865
    [10]J.Lee,Z.Yusoff,W.Belardi,et al.Investigation of Brillouin effects in small-core holey optical fiber:lasing and scattering.Optics Letters,2002,27(11):927-929
    [1]李玲,黄永清.光纤通信基础.国防工业出版社,1999年2月,第一版,222-235
    [2]韦乐平,张成良.光网络—系统、器件与联网技术.人民邮电出版社,2006年10月,第一版,174-179
    [3]K.Noguchi,O.Mitomi and H.Miyazawa.Millimeter-wave Ti:LiNbO optical modulators.Jounal of Lightwave Technology,1998,16(4):615-619.
    [4]Y.Shen,X.Zhang and K.Chen.Optical carrier-suppression of microwave signal with stimulated Brillouin scattering in long fiber ring.Microwave and Optical Technology Letters,2004,43(3):258-260
    [5]R.Esman and K.Williams.Wideband efficiency improvement of fiber optic systems by carrier subtraction.IEEE Photonics Technology Letters,1995,7(2):218-221
    [6]D.Glassner,M.Frankel and R.Esman.Reduced loss microwave fiber-optic links by intracavity modulation and carrier suppression.IEEE Microwave and Guided Wave Letters,1997,7(3):57-59
    [7]A.Williams,A.Kellner and P.Yu.High frequency saturation measurements of an InGaAs/InP waveguide photodetector.Electronics letters,1993,29(14):1298-1299
    [8]M.Daming,G.Zinner,F.Mitsthcke,et al.Stimulated Brillouin scattering in fibers with and without external feedback.Physical Review A,1993,48(4):3301-3309
    [9]B.Robert,S.Norcia-Molin,D.Dolfi,et al.Optically carried microwave signal modulation depth enhancement by stimulated Brillouin scattering in PCFs.Electronics Letters,2006,42(2):108-109
    [1]G.Agrawal.Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics.USA:Elsevier Science,2002,Third Edition,389-436(贾东方,余震虹等译.非线性光纤光学原理及应用.电子工 业出版社,2002年12月,第一版,244-272)
    [2]A.Zhang and M.Demokan.Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber.Optics Letters,2005,3t1(18):2375-2377
    [3]M.Marhic,N.Kagi,T.Chiang,et al.Broadband fiber optical parametric amplifiers.Optics Letters,1996,21(8):573-575
    [4]P.Hedekvist,M.Karlsson and P.Andrekson.Fiber four-wave mixing demultiplexing with inherent parametric amplification.Journal of Lightwave Technology,1997,1:5(11):2051-2058
    [5]F.Yang,M.Marhic and L.Kazovsky.CW fiber optical parametric amplifier with net gain and wavelength conversion efficiency>1.Electronics Letters,1996,32(25):2336-2338
    [6]J.Hansryd and P.Andrekson.Broad-band continuous-wavepumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency.IEEE Photonics Technology Letters,2001,13(3):194-196
    [7]T.Torounidis,H.Sunnerud,P.Hedekvist,et al.Amplification of WDM signals in fiber-based optical parametric amplifiers,IEEE Photonics Technology Letters,2003,15(8):1061-1063
    [8]K.Chow,C.Shu,C.Lin,et al.Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,IEEE Photonics Technology Letters,2005,17(3):624-626
    [9]Q.Wang,B.Yang,L.Zhang,et al.Experiment study of wavelength conversion in a dispersion-flattened photonic crystal fiber.Chinese Optics Letters,2007,5(9):538-539
    [10]K.Abedin,J.Gopinath,E.Ippen,et al.Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber Applied Physics Letters,2002,81(8):1384-1386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700