多功能性聚苯胺的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为导电高分子材料中最具有发展前景的一种材料,聚苯胺(Polyaniline PANi)因其具有结构多样化、电导率较高、掺杂机制独特、环境稳定性良好、原料廉价易得、合成方法简便等优点一跃成为当今导电高分子研究最有前景的热点之一。聚苯胺微/纳米结构兼具低维材料和有机导体两者的优点,将聚苯胺与磁性材料复合,可以获得多功能复合材料,拓宽聚苯胺应用领域,并且还可以通过调节各组分的组成和结构实现对复合材料电、磁等性能的调控,有望成为一种性能优越的复合功能材料。本文对Fe304磁性纳米粒子的合成及转相改性处理、聚苯胺类流体的合成、Fe304磁性纳米粒子与聚苯胺复合材料的合成以及所制备材料的结构与性能进行了系统研究。
     采用高温裂解法合成Fe304纳米粒子,首先制备出油酸铁前驱体,然后利用前驱体在高沸点有机溶剂下的裂解制备Fe304纳米粒子。之后采用降解后的明胶溶液对Fe304纳米粒子进行改性处理,从油溶性转为水溶性。采用TEM观察两种Fe304磁性纳米粒子的形貌。通过XRD测试分析两种Fe304磁性纳米粒子的晶型。利用TG测试两种Fe304磁性纳米粒子的热稳定性和有机含量。FT-IR测试两种Fe304磁性纳米粒子的化学结构。VSM表征两种Fe304磁性纳米粒子的磁性能。
     采用壬基酚聚氧乙烯醚硫酸(NPES)在苯胺单体聚合过程中进行掺杂制备聚苯胺类流体。通过流变性能测试表征其模量及粘度随温度变化的关系。采用红外和紫外-可见光谱分析比较本征态聚苯胺和聚苯胺类流体的化学结构。XRD测试分析聚苯胺类流体的结晶形态。TEM谱图观察聚苯胺类流体的微观形貌。TG谱图说明产物的热稳定性。
     通过原位聚合制备Fe3O4/PANi复合材料。通过TEM观察Fe304纳米粒子表面PANi的包裹,即Fe3O4/PANi的微观形貌。采用红外和紫外-可见光谱分析比较Fe3O4/PANi复合材料的化学结构。TG分析Fe3O4/PANi热稳定性及有机含量。流变学测试表征其模量及粘度随温度变化的关系。电导率测试表征Fe3O4/PANi复合材料的电性能。
As one of the most promising conductive polymers, Polyaniline (PANi) has various structures, a high conductivity, a unique doping mechanism, excellent physical properties and a good environmental stability. Its monomer is low-cost and easy to get, and the synthetic way is also facile. Because of these advantages, it has become one of the most promising focuses on the research of conductive polymer materials nowadays. PANi has received great attention due to its properties as low-dimension materials and organic conductors. Compounded with magnetic components can gain functional composites and widen the use of PANi. The composites of PANi and magnetic materials can be conductive and magnet. The conductivity and magnetism can be changed through the control of the content of PANi and magnetic materials in composites. In this dissertation, we described detailedly the synthesis of Fe3O4 magnetic nanoparticles, and the approach of transferring hydrophobic nanocrystals into hydrophilic, the preparation of the self-suspended PANi, and the composites of the Fe3O4/PANi, and the structure and properties of the demonstrated materials.
     Fe3O4 nanoparticles were synthesized by a high temperature thermal decomposition method. Firstly we synthesized the iron-oleate complex, then the complex was decomposited in the organic solvents with high boiling point. Fe3O4 nanoparticles were modificated by the degraded gelatin solutions and were transferred from hydrophobic nanocrystals into hydrophilic. The morphology was characterized by TEM. And we utilized XRD to analyze the crystallion of the Fe3O4 nanoparticles.TG were used to analysiz the theamal stability and the organic content.The chemical structures were characterized by FT-IR and the saturation magnetization were indicated by VSM.
     We applied long-chain nonylphenol ethoxylates (10) sulfuric acid (NPES) as dopants to make polyaniline effectively doped and got a novel slef-suspended polyaniline. Rheological analysis shows the modulus and viscosity vs temperature trace of self-suspended PANi. FT-IR and UV-vis were used to comfirm the chemical structures of eigenstate PANi and self-suspended PANi. XRD demonstrated the crystallion of the self-suspended PANi. TEM specctra revealed the morphology of the self-suspended PANi.TG spectra displayed the thermal stability of the self-suspended PANi.
     Fe3O4/PANi composites were synthesized by an in situ polymeration. TEM spectra were used to confirm the Fe3O4 nanoparticles have been embedded in the polyaniline matrix. The chemical structures were characterized by FT-IR and UV-vis.TG exhibit the organic content and thermal stability. Rheological analysis shows the modulus and viscosity vs temperature trace of Fe3O4/PANi composites. The electrical properties were tested by the conductivity of the Fe3O4/PANi composites.
引文
[1]王东周,李光,江建明.导电高分子研究概述.合成技术及应用,2001.16(3):36-39.
    [2]于黄中,陈明光,贝承训等.导电聚苯胺的特性应用及进展.高分子材料科学与工程,2003.19(4):18-21.
    [3]李永舫.导电聚吡咯的研究.高分子通报,2005,8(4):51-57.
    [4]钟传健,田中群,田昭武.吡咯电化学聚合的现声ESR波谱和Raman光谱研究.中国科学B辑,1989,9(12):1233-1238.
    [5]江建明,戚慰先,仲蕾兰.化学氧化吡咯的结构及导电性的研究.高分子材料科学与工程,1991.7(5):94-98.
    [6]Trivedi D C, Dhawan S K. Synthesis and properties of polyaniline obtained using sulphamic acid. J.Appl.Electro.chem.,1992.22(6):563-570.
    [7]Li S L, Macosko C W, H.S.White. Electrochemical Processing of Electrically Conductive Polymer Fibers. Advanced Materials,1993.5(7-8):575-576.
    [8]Macdiarmid A G, Chiang J C, Halpern M. et al. "Polyaniline":Interconversion of metallic and insulated forms. Mol.Cryst. Liq.Cryst.,1985.121:173-180.
    [9]Macdiarmid A G, Mu S L, Wu W Q, et al. Electrochemical characteristics of "Polyaniline" cathodes and anodes in aqueous electrolytes. Mol.Cryst.Liq.Cryst.,1985.121:187-190.
    [10]Macdiarmid A G, Chiang J C, Huang W S, et al. Protonic acid doping to the metallic regime. Mol.Cryst. Liq.Cryst.,1985.125:309-318.
    [11]Chiang J C, Macdiarmid A G. "Polyaniline":Protonic acid doping of the emeraldine form to the metall is regime. Synth. Met.,1986.13:192-205.
    [12]Macdiarmid A Q, Chiang J C, Richter A F. "Polyaniline":A new concept in conducting polymers. Synth. Met.,1987.18:285-290.
    [13]王杨勇,强军锋,井新利等.导电高分子聚苯胺及其应用.化工新型材料,2003.31(3):1-3.
    [14]范俊华,万梅香,朱道本.可溶性导电聚苯胺的研究进展.高分子通报,1997,1:22-28.
    [15]陈国华,陈琳.纳米磁性材料及器件的发展与应用.电子元器件应用,2002,4(1-2):1-3.
    [16]Vladimir S Z, Dmitry S F, Igor A P, et al. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. Journal of Colloid and Interface Science,1999,212(1):49-57.
    [17]Park S J, Kim S, Lee S, et al. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc,2000,122:8581-8582.
    [18]Chen Y, Liew K Y, Li J L. Size controlled synthesis of Co nanoparticles by combination of organic solvent and surfactant. Applied Surface Science,2009,255(7):4039-4044.
    [19]Neveu S, Bee A, Robineau M, et al. Size-selective chemical synthesis of tartrate stabilized cobalt ferrite ionic magnetic fluid. J. Colloid Interface Sci,2002,255:293-298.
    [20]曹茂盛,关长斌,徐甲强.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [21]Jeong U, Teng X, Xia Y. Superparamagnetic solloids:controlled synthesis and niche applications. Ady. Mater,2007,19:33-60.
    [22]Sung M M, Sung K, Kim C G. Self-assembled monolayer of alkanethiols on oxidized copper surfaces. J. Phys. Chem. B,2000,104(10):2273-2277.
    [23]Lin X M, Samia A C S. Synthesis, assembly and physical properties of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials,2006,305(1):100-109.
    [24]Sonti S V, Bose A. DNA isolation using avidin-coated magnetic nanoclusters. Colloids and Surfaces B:Biointerfaces,1997,8(4-5):199-204.
    [25]何晓晓,王柯敏,谭蔚泓等.超顺磁性DNA纳米富集器应用于痕量寡核苷酸的富集.高等学校化学学报,2003,24(1):40-42.
    [26]朱以华,王强斌,古宏晨等.表面功能化磁性微球的制备及在核酸分离与固定化酶中的应用.中国医学科学院学报,2002,24(2):118-123.
    [27]Chen X, Zhang X E, Chai Y Q, et al. DNA optical sensor a rapid method for the detection of DNA hybridization. Biosensors&Bioelectronics,1998,13(3-4):451-458.
    [28]Levison P R, Badger S E, Dennis J, et al. Recent developments of magnetic beads foruse in nucleic acid purification. Journal of Chromatography A,1998,816(1):107-111.
    [29]李玲,向航.功能材料与纳米材料[M].北京:化学化工出版社,2002:66-67.
    [30]李德才.磁性液体理论及应用[M].北京:科学出版社,2003.
    [31]Zhang S X, Zhao X L, Niu H Y, et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J.Hazard.Mater,2009, 167:560-566.
    [32]施卫贤,杨俊,王亭杰等.磁性Fe304微粒表面有机改性.物理化学学报,2001,17(6):507-510.
    [33]赵紫来,卞征云,陈朗星等.氧化铁磁性纳米粒子的制备、表面修饰及在分离和分析中的应用.化学进展,2006,18(10):1288-1297.
    [34]柯诗剑,计剑.万古霉素修饰磁性纳米粒子的制备及其细菌分离功能.高等学校化学学报,2007,28(1):26-28.
    [35]吕大鹏,李力军,柳学全.纳米技术与肿瘤防治.中国实用外科杂志,2002,22(2):126-128.
    [36]Bourlinos A B, Herrera R, Chalkias N, et al. Surface-functionalized nanoparticles with liquid-like behavior. Adv. Mater.,2005.17 (2):234-237
    [37]Rodriguez R, Herrera R, Archer L A, et al. Nanoscale ionic materials. Adv. Mater.,2008,20: 4353-4358
    [38]Bourlinos A B, Chowdhury S R, Herrera R et al. Functionalized nanostructures with liquid-like behavior:Expanding the gallery of available nanostructures. Advanced Functional Materials.,2005,15(8):1285-1290.
    [39]Bourlinos A B, Stassinopoulos A, Anglos D et al. Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Small,2006,2(4):513-516.
    [40]Liu Da Peng, Li Guo Dong, Su Yan et al. Highly Luminescent ZnO Nanocrystals stabilized by ionic-Liquid components. Angewandte Chemie International Edition.,2006,45: 7370-7373.
    [41]Zheng Yaping, Zhang Jiaoxia, Lan Lan, et al. Preparation of solvent-free gold nanofluids with facile self-assembly technique. Chem Phys Chem,2010,11:61-64.
    [42]Bourlinos A B, Georgakilas V, Tzitzios V, et al. Functionalized carbon nanotubes:synthesis of meltable and amphiphilic derivatives. Small,2006,2(10):1188-1191.
    [43]Sun Liangfeng, Fang Jason, Reed J C, et al. Lead-Salt Quantum-Dot ionic liquids. Small, 2010,6(5):638-641.
    [44]Nakashima Takuya, Kawai Tsuyoshi. Quantum dots-ionic liquid hybrids:efficient extraction of cationic CdTe nanocrystals into an ionic liquid. Chem. Commun.,2005,1643-1645.
    [45]Warren S C, Banholzer M J, Slaughter L S, et al. Generalized route to metal nanoparticles with liquid behavior. Journal of the American Chemical Society,2006,128(37): 12074-12075.
    [46]Rodriguez R, Herrera R, Archer L A, et al. Nanoscale ionic materials. Advanced Materials, 2008,20,4353-4358.
    [47]Lei Youan, Xiong Chuanxi, Dong Lijie et al. Ionic Liquid of Ultralong Carbon Nanotubes. Small,2007,3(11):1889-1893.
    [48]Lei Youan, Xiong Chuanxi, Guo Hong et al. Controlled viscoelastic carbon nanotube fluids. J. Am. Chem. Soc.,2008,130(11):3256-3257.
    [49]Agarwal Praveen, Qi Haibo, Archer Lynden A. The ages in a self-suspended nanoparticle liquid. Nano Lett.,2010,10 (1):111-115.
    [50]Mason T G, Weitz D A. Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Physical Review Letters,1995,75,2770-2773.
    [51]Wyss H M, Miyazaki K, Mattsson J, et al. Strain-Rate Frequency Superposition:A rheological probe of structural relaxation in soft materials. Physical Review Letters,2007,98, 23830
    [52]窦永华,张玲,古宏晨.单分散Fe3O4纳米粒子的合成、表征及其自组装.功能材料,2007,1(38)119-122.
    [53]Jongnam Park, Kwangjin An, Yosun Hwang, Je-Geun Park,Han-Jin Noh,Jae-Young Kim, Jae-Hoom Park, Nong-Moon Huang and Taeghwan Hyeon. Ultra-large-scale syntheses of monodisperse nanocrystals.Nature Materials 2004,3,891-895.
    [54]Edith van den Bosch, Constant Gielens. Gelatin degradation at elevated temperature. International Journal of Biological Macromolecules 2003 (32) 129-138.
    [55]方修忠.超顺磁性Fe3O4纳米粒子的合成、修饰及其与DNA相互作用的研究[D].桂林.广西师范大学.2005.
    [56]王佛松;唐劲松;景遐斌等.可溶性聚苯胺的合成及研究.高分子学报,1987,(5):66-69.
    [57]耿延候;景遐斌;王献红等.掺杂态聚苯胺的溶解性和可加工性.高分子通报,1995,(2):86-91.
    [58]王颖.可流动性聚苯胺的制备与性能研究[D].武汉:武汉理工大学,2008.
    [59]李鹏;官建国;张清杰等.导电聚合物/磁性纳米复合材料的制备及其结构与性能.华东理工大学学报,2006(10):1246-1253.
    [60]Juan Carlos Aphesteguy, Silvia E. Jacobo. Composite of polyaniline containing iron oxides. Physica B 2004 (354) 224-227.
    [61]L. Cabrera, S. Gutierrez,M.P. Morales,et al. Magnetic conducting composites based on polypyrrol and iron oxide nanoparticles synthesized via electrochemistry. Journal of Magnetism and Magnetic Materials 2009 (321) 2115-2120.
    [62]Xiaocong Wang,Saide Tang,Jing Liu,et al. Uniform Fe3O4-PANi/PS composite spheres with conductive and magnetic properties and their hollow spheres. J Nanopart Res 2009 (11):923-929.
    [63]Juan C. Aphesteguy,Silvia E. Jacobo. Synthesis of a soluble polyaniline-ferrite composite: magnetic and electric properties. J Mater Sci,2007 (42):7062-7068.
    [64]Ji Hye Kim, Fei Fei Fang, Hyoung Jin Choi, et al. Magnetic composites of conducting polyaniline/nano-sized magnetite and their magnetorheology. Materials Letters 2008 (62) 2897-2899.
    [65]James Gass, Pankaj Poddar, James Almand, et al. Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv. Funct. Mater.2006,16, 71-75.
    [66]Shouhu Xuan, Yi-Xiang J. Wang,Ken et al. Synthesis of Fe3O4/Polyaniline core/shell microspheres with well-defined blackberry-like morphology.J. Phys. Chem. C 2008,112, 18804-18809.
    [67]Shouhu Xuan, Yi-Xiang J. Wang, Jimmy C. et al. Preparation, characterization, and catalytic activity of core/shell Fe304/Polyaniline/Au nanocomposites. Langmuir,2009,25(19),11835-11843.
    [68]Lijie Dong, Shuhua Liu, Haitao Gao, et al. Self-assembled FeCo/Gelatin nanospheres with rapid magnetic response and high biomolecule-loading capacity. Small.2009,5(10): 1153-1157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700