小鼠耳蜗螺旋神经节神经元GABA_A、nACh和NMDA受体表达变化和老年性耳聋机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
老年性耳聋(Presbycusis)是影响65岁以上人群的三大老年慢性疾病之一,目前超过半数以上的65岁以上老年人患有老年性听力障碍,而且有逐年上升趋势,越来越多的影响老年人生活的质量,我国现在老年性耳聋人数已超5000万人,我国已经步入老龄化社会,老年人口数量的增加必然带来老年疾患数量的增加。所有耳聋患者当中,有50%的人患有老年性耳聋。老年性耳聋以高频听力的敏感性降低,对言语分辨能力下降,背景噪声下听力障碍为特征,是基因遗传和环境因素相互做用引起的老年性退化性疾病,目前还未有有效生物医学手段来预防和治疗老年性耳聋。
     老年性听功能障碍是中枢听觉系统和外周听觉系统共同退化的结果,中枢神经系统功能下降通常是由神经元功能退化引起,在耳蜗中,螺旋神经节神经元(SGN)是听觉传导通路的第一级神经元,是耳蜗毛细胞和听觉中枢之间的重要枢纽,因此螺旋神经节神经元发生年龄相关性退化是老年性耳聋外周神经系统发生发展的主要原因。感音神经性老年性聋是以耳蜗毛细胞及螺旋神经节神经元渐行性退化为特征,但不伴有血管纹和其他耳蜗附属器的明显改变的以高频听力损害为主的耳聋,是老年性耳聋中最常见的一种类型。谷氨酸(Glutamate)是听觉传入神经系统重要的兴奋性神经递质,在耳蜗内介导神经细胞的兴奋传递,维持听觉系统的正常生理功能,NMDA受体是谷氨酸离子型受体之一,当内毛细胞接收声信号刺激兴奋后释放出神经递质到突触,并与突触后膜上的NMDA受体结合,产生产生兴奋性突触后电位(EPSP)将声信号传入听中枢。但是当谷氨酸释放过量,过度激活NMDA受体的时候会产生神经细胞兴奋毒性作用,导致细胞死亡。γ-氨基丁酸(Gamma-aminobutyric acid,GABA)和N型乙酰胆碱(Nicotinic acetylcholine,nACh)是听觉传出神经系统的抑制性神经递质,保护耳蜗受外界强声刺激损伤,GABAA受体和nACh受体是听觉系统中重要的保护性受体。抑制性神经递质和兴奋性神经递质之间的平衡是维持听觉系统正常生理功能的关键。因此,为了更好的了解老年性耳聋在听觉外周神经系统耳蜗内的发生机制,本实验采用与人类听觉系统形态学和生理学上相似的CBA/CaJ小鼠,检测并探讨老年性耳聋听力生理学特点,并运用半定量RT-PCR和免疫组织化学技术检测其耳蜗螺旋神经节神经元细胞GABAA受体,nACh受体和NMDA受体的mRNA和蛋白质在老年性耳聋中的表达情况,观察老年性耳聋小鼠的耳蜗形态学的改变并讨论其意义。
     方法:CBA/CaJ小鼠分为两组:成年组(2-6months n=22)和老年组(28-33months n=22)首先进行听觉脑干诱发电位(ABR)和畸变产物耳声发射(DPOAE)检测确定听力,然后解剖小鼠耳蜗,取一只耳蜗蜗轴提取总RNA,逆转录成cDNA,并用另一只耳蜗制备耳蜗冰冻切片,采用半定量RT-PCR和免疫组织化学检测成年组和老年组CBA小鼠耳蜗顶回,中间回,底回中的螺旋神经节神经元GABAA受体、nACh受体和NMDA受体亚单位的mRNA和蛋白质表达情况,并观察老年性耳蜗形态学上的改变。
     实验结果:
     (1)小鼠耳蜗螺旋神经节神经元有GABAARal, nAChRβ2and NMDARNR1表达。
     (2) GABAA受体α1和nACh受体β2mRNA和蛋白质在老年性耳聋的小鼠SGN中表达下降,相反的,NMDA受体NR1mRNA和蛋白质在老年性聋的小鼠SGN中表达上升。
     (3)老年小鼠较年轻大鼠的ARB3-48kHz的阈值均上升50dB以上。
     (4)老年小鼠DPOAE各频率阈值增高,12,16kHz幅值减弱,其他频率反应未引出。
     (5)老年小鼠耳蜗顶回,中间回和底回的螺旋神经节神经元密度均下降。其中底回螺旋神经元神经节密度下降程度最明显。
     (6)老年性耳聋小鼠耳蜗SGN密度与ABR12,16kHz wave I振幅(Amplitude)存在线性正向相关关系,与ABR wave I潜伏期(Latency)存在线性负向相关关系。
     结论:老年小鼠耳蜗螺旋节神经元上GABAA受体αl, nACh受体β2的下调和NMDA受体NR1表达上调是耳蜗SGN功能退化的基础,这些受体的表达变化导致耳蜗内突触传递功能的变化,受体间的相互作用和调节与老年性耳聋发生发展有密切的关系。老年CBA小鼠ABR和DPOAE各个频率阂值均有明显的升高,表明听觉传导通路第一级神经元SGNs以及上行各级神经元均有功能性的退化,外毛细胞数量减少和功能失调,SGN和听毛细胞的死亡和功能退化是老年性耳聋在外周听觉系统发生的主要原因。
Age-related hearing loss (ARHL)-Presbycusis is one of the top three most common chronic health conditions affecting individuals aged65years and older. Applying a conservative estimate of the prevalence rate of ARHL (50%) among the population65years and older in China. There are approximately50million senior citizens in China with significant hearing loss at present, and this number will be double in next20years. There are currently no biomedical treatments to prevent or reverse this condition. Age-related hearing loss is a disorder caused by mixed pathology include both genetic and environmental factors. Schuknecht classified presbycusis into four subtypes:(1) sensory (loss of hair cell), neural (loss of spiral ganglion neurons, SGNs), metabolic (atrophy of the stria vascularis) and mechanical (thickening and stiffening of the basilar membrane)."Sensorineural" presbycusis refers to the high-frequency-hearing impairment resulting from loss of hair cells and degeneration of SGNs without major changes in the function of the stra vascularis and other accessory structures of the inner ear which is a major contributor to age-related hearing loss. Neuron degeneration during age significantly contributes to functional decline of the central nervous system. In cochlea, SGNs connect the hair cells with central auditory system, it is the first neurons in auditory pathway. Thus, to study the etiologies of SGNs degeneration during aging paves a way to prevent or slow down the progression of age-related hearing loss as well as other types of hearing impairment. The N-methyl-D-aspartate receptor (NMDAR) is a glutamate-gated ion channel ubiquitously distributed throughout the brain; it is fundamental for excitatory neurotransmission and normal central nervous system functions. NMDA receptors express at the same hair cell/afferent nerve synapse of a single spiral ganglion cell play a crucial complex role in normal physiological conditions for neurotransmission as well as for synaptic plasticity. NMDAR are important for neural communication, memory functions, learning processes, and mental performance and NMDARs are also involved in excitotoxicity in auditory system.Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the central nervous system. The GAB AA receptor (GABAAR) is one of the most important inhibitory receptors, It plays a critical role in regulating neuronal excitability and information processing in the neuron system. The majority of GABAARs are widely expressed in the auditory system and it is a very important protective receptor in auditory efferent system.Acetylcholine (ACh) is the main transmitter released by the medial olivocochlear efferent fibers nAChR mainly located at the synapse between efferent fibers and outer hair cells (OHC).It is now believed that the hair cell cholinergic receptor that mediates synaptic transmission between efferent olivocohlear fibers and hair cells of the cochlea, is formed by both a9and a10subunits. The activation of the hair cell nAChR leads to an increase in intracellular Ca+-activated K+(SK2) channels thus leading to hyperpolarization of hair cells and reduction of electromotility. The auditory system of CBA/CaJ strain is very similar to human physiologically and morphologically during aging, therefore it is a good model for studying sensorineural presbycusis with high-frequency hearing loss accompanied by hair cells loss, neuronal degeneration. A better understanding of the cochlear mechanisms underlying peripheral presbycusis will help lead to future treatments. Objectives of the present study were to investigate gamma-amino butyric acid A (GABAA) receptor subunit al, nicotinic acetylcholine (nACh) receptor subunit (32, and N-methyl-D-aspartate (NMDA) receptor subunit NR1mRNA and protein expression changes in spiral ganglion neurons (SGN) of the young adult and old mouse cochlea, utilizing quantitative immunohistochemistry and RT-PCR techniques and observe the hair cells and SGNs in cochlear mophyological change with age.
     Methods:ABR RECORDING PROCEDURES Young adult (Male3, Female3), old age (Male3, Female3) were anesthetized with a mixture of ketamine/xylazine (120and10mg/kg body weight, intraperitoneal injection) prior to all experimental sessions. All recording sessions were completed in a sound proof acoustic chamber (LAC lined with Sonex) with body temperature maintained with a heating pad. ABRs were measured using Biosig (TDT Gainesville, FL) data-acquisition system in response5ms tone pips (0.5-m rise fall times) with cos2onset envelop presented at rate of29/sec. Threshold was defined as the lowest intensity which elicited a clearly replicable response. IMMUNOCYCHEMISTRY Sacrificed the mice and dissected the cochlea. Cochlea were fixed in4%paraformaldehyde in PBS overnight at4℃and decalcified in10%EDTA in PBS for three days at4℃. After using cryoprotectant for cryoprotection overnight at4℃,the cochlea were embedded into degassed OCT overnight at4℃, oriented into the cryomold with OCT, degassed for1hour, then fast frozen. Cryosectioning was performed at5μm/section. The cochlea slides were stained with DAB using antibody GABAARa1,NMDARNR1or nAChRβ2. qRT-PCR10ng of total RNA was reverse transcribed and complementary DNA was amplified,and quantitative PCR was performed using Enhanced Avian HS RT-PCR100Kit.
     Results:(1) GABAARa1, nAChRβ2and NMDARNR1were detected in spiral ganglion neurons of CBA/CaJ mouse cochlea.(2) mRNA and protein expression of GABAARal and nAChRβ2decreased with age in spiral ganglion neurons of mouse cochlea. mRNA and protein expression of NMDARNR1increased with age in spiral ganglion neurons of mouse cochlea.(3) ABR thresholds shift over50dB from3-48kHz in old mice compared to young adult mice.(4)DPOAE thresholds shift over40of6,12,16,30,44kHz in old mice compared to young adult mice.12and16kHz of DPOAE amplitude decreased and the other frequency response were absent in the old mice.(5) SGN density decreased with age in basal, middle and apical turns, and SGN density of the basal turn decreased the most.(6) Correlations were observed between SGN density and ABR wave I Amplitude/ABR wave I Latency. There is a possive correlation between SGN density and ABR wave I Amplitude and a negative correlation between SGN density and ABR wave I Latency.
     Summary and Conclusions:Age-related changes of GABAARal, nAChR(32and NMDARNR1expression in CBA mouse SGNs were observed, which may be related to functional changes in cochlear synaptic transmission as a function of age. ABR thresholds and DPOAE shift over50dB from all the prequancy in old mice indicated that auditory function delince in all the level of auditory pathway, SGNs density and OHC significantly declined with age, all these are associated with age-related peripheral auditory system impairment and fianlly lead to age-related hearing loss. This finding leads to more insights into the function of these three cochlea receptors concerning their regulation in the aging mammalian auditory system, paving the way for novel biomedical interventions to prevent or slow down the progression of age-related hearing loss as well as other types of hearing impairment.
引文
1 McFadden SL, Ding D, Reaume AG, etc. Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase.
    2 Bao J,Ohlemiller KK.Age-related loss of spiral ganglion neurons. Hear Res, 264:93-7.
    3 Hughes LF, Turner JG, Parrish JL, etc. Processing of broadband stimuli across A1 layers in young and aged rats.Hear Res.2010 Jun 1;264(1-2):79-85. doi: 10.1016/j,heares.2009.09.005.Epub 2009 Sep 20.
    4 Ison JR, Allen PD, O'Neill WE. Age-related hearing loss in C57BL/6J mice has both frequency-specific and non-frequency-specific components that produce a hyperacusis-like exaggeration of the acoustic startle reflex. J Assoc Res Otolaryngol.2007 Dec;8(4):539-50. Epub 2007 Oct 19.
    5 Keithley EM, Canto C, Zheng QY, etc. Cu/Zn superoxide dismutase and age-related hearing loss. Hear Res.2005 Nov;209(1-2):76-85. Epub 2005 Aug 1.
    6 Keithley EM, Canto C, Zheng QY, etc. Age-related hearing loss and ahl locus in mice. Hear Res.188:21-8.
    7 Raza A, Milbrandt JC, Arneric SP, etc. Age-related changes in brainstem auditory neurotransmitters:measures of GABA and acetylcholine function. Hear Res.1994 Jun 15;77(1-2):221-30.
    8 Nakagawa H, Sato K, Shiraishi Y, et al. NMDARl isoforms in the rat superior olivary complex and changes after unilateral cochlear ablation. Brain Res Mol Brain Res,2000,77:246-57.
    9 Watanabe M, Inoue Y, Sakimura K, etc. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport.1992 Dec;3(12):1138-40.
    10 Wada K, Sakaguchi H, Jarvis ED, etc. Differential expression of glutamate receptors in avian neural pathways for learned vocalization. J Comp Neurol. 2004 Aug 9;476(1):44-64.
    11 Nakanishi S,Nakajima Y,Masu M,et al. Glutamate receptors,brain function and signal transduction[J],Brain Res Bev,1998,26; 230-235.
    12 Ma J,Zhang GY. Lithium reduced N-methyl-D-aspartate receptor subunit 2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 in rat hippocampus following cerebral ischemia. Neurosci Lett, 2003,348:185-189.
    13 Puel JL,Pujol R,Tribillac F,et al Excitatory amino acid antagonists protect cocholear auditory neurons from excitotoxicity J Comp Neuro,1994,341(2):241-256.
    14 Osumi Y, Shibata SB, Kanda S, etc. Downregulation of N-methyl-D-aspartate receptor ζ1 subunit (GluNl) gene in inferior colliculus with aging Brain Res. 2012 May 15;1454:23-32.
    15 Utsugisawa K, Nagane Y, Tohgi H, etc. Changes with aging and ischemia in nicotinic acetylcholine receptor subunit alpha7 mRNA expression in postmortem human frontal cortex and putamen. Neurosci Lett.1999 Aug 6;270(3):145-8.
    16 Hellstrom-Lindahl E, Court JA. Nicotinic acetylcholine receptors during prenatal development and brain pathology in human aging. Behav Brain Res. 2000 Aug;113(1-2):159-68.
    17 Berger F, Gage FH, Vijayaraghavan S. Nicotinic receptor-induced apoptotic cell death of hippocampal progenitor cells. J Neurosci.1998 Sep 1;18(17):6871-81.
    18 Fuchs PA, Murrow BW. Cholinergic inhibition of short (outer) hair cells of the chick's cochlea. J Neruosci 1992;12:800-9.
    19 Dulon D, Luo L, Zhang C, etc. Expression of small-conductance calcium activated potassium channels (SK) in outer hair cells of the rat cochlea. Eur J Neurosci 1998; 10:907-15.
    20 Oliver D, Klocker N, Schuck J, etc. Gating of Ca+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 2000;26:595-601.
    21 Housley, G.D., Ashmore, J.F. Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc. Roy. Soc. Lond. Ser. B 1991;244,161-167.
    22 Bao J, Lei D, Du Y, etc. Requirement of nicotinic acetylcholine receptor subunit beta2 in the maintenance of spiral ganglion neurons during aging. J Neurosci.2005 Mar 23;25(12):3041-5.
    23 Zoli M, Picciotto MR, Ferrari R, etc. Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. EMBO J.1999 Mar 1;18(5):1235-44.
    24 Wiederhold, M. L.Physiology of the olivocochlear system. In:Neruobiology of Hearing:The cochlea. pp.1986 349-370. Eds R. A. Altschuler. R. P. Bobbin and D. W. Hoffman. Raven Press:New York.
    25 Felix D, Ehrenberger K The efferent modulation of mammalian inner hair cell afferents. Hear Res.1992 Dec;64(1):1-5.
    26 Tang YZ, Yan K, Carr CE.. Changes in NMDA receptor subunit 2A and 2B expression in chick cochlear nucleus during embryonic development.Society for Neuroscience.2004.304.3.
    27 Akazawa C, Shigemoto R, Bessho Y, etc. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol.1994 sepl;347(1):150-60.
    28 Osumi Y, Shibata SB, Kanda S, etc. Downregulation of N-methyl-D-aspartate receptor ζ1 subunit (GluN1) gene in inferior colliculus with aging. Brain Res. 2012 May 15;1454:23-32.
    29 Tadros SF, D'Souza M, Zettel ML, etc. Glutamate-related gene expression changes with age in the mouse auditory midbrain. Brain Res.2007 Jan 5;1127(1):1-9. Epub 2006 Nov 17.
    30 Holt AG, Asako M, Lomax CA, etc. Deafness-related plasticity in the inferior colliculus:gene expression profiling following removal of peripheral activity. J Neurochem.2005 Jun;93(5):1069-86.
    31 Hasegawa T, Doi K, Fuse Y, etc. Deafness induced up-regulation of GluR2/3 and NR1 in the spiral ganglion cells of the rat cochlea. Neuroreport.2000 Aug 3;11(11):2515-9.
    32 Drescher DG, Green GE, Khan KM, etc. Analysis of gamma-aminobutyric acidA receptor subunits in the mouse cochlea by means of the polymerase chain reaction[J]. Journal of neurochemistry,1993,61(3):67-70.
    33 Youhei Yomamoto, Atsushi matsubara Kenji Ishii etc. Localization of g-Aminobutyric Acid A Receptor Subunits in the Rat Spiral Ganglion and Organ of Corti[J]. Acta Otolaryngol,2002,122(7):709-714.
    34 Campos ML, de Cabo C, Wisden W, etc. Expression of GABA(A) receptor subunits in rat brainstem auditory pathways:cochlear nuclei, superior olivary complex and nucleus of the lateral lemniscus[J]. Neuroscience, 2001,102(3):625-638.
    35 Palombi PS, Caspary DM. GAB A inputs control discharge rate primarily within frequency receptive fields of inferior colliculus neurons. Journal of Neurophysiology.1996 Jun;75(6):2211-9.
    36 Erlander MG, Tobin AJ. The structural and functional heterogeneity of glutamic acid decarboxylase:a review. Neurochemistry Research.1991 Mar;16(3):215-26.
    37 Burianova J, Ouda L, Profant O, etc. Age-related changes in GAD levels in the central auditory system of the rat. Experimental Gerontology.2009 Mar;44(3):161-9.
    38 Ling LL, Hughes LF, Caspary DM. Age-related loss of the GAB A synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex Neuroscience.2005;132(4):1103-13.
    39 Raza A, Milbrandt JC, Arneric SP, etc. Age-related changes in brainstem auditory neurotransmitters:measures of GABA and acetylcholine function. Hear Research.1994 Jun 15;77(1-2):221-30.
    40 Helfert RH, Sommer TJ, Meeks J, etc. Age-related synaptic changes in the central nucleus of the inferior colliculus of Fischer-344 rats. Journal of Comparative Neurology.1999 Apr 12;406(3):285-98.
    41 Caspary DM, Raza A, Lawhorn Armour BA, etc. Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. Journal of Neuroscience.1990 Jul;10(7):2363-72.
    42 Gutierrez A, Khan ZU, Morris SJ, etc. Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus. Journal of Neuroscience.1994 Dec;14(12):7469-77.
    43 Murashita H, Tabuchi K, Sakai S, etc. The effect of a GABAA agonist muscimol on acoustic injury of the mouse cochlea. Neuroscience Letter.2007 May 11;418(1):18-21.
    44 Caspary DM, Holder TM, Hughes LF, etc. Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Neuroscience. 1999;93(1):307-12.
    45 Milbrandt JC, Hunter C, Caspary DM. Alterations of GABAA receptor subunit mRNA levels in the aging Fischer 344 rat inferior colliculus. J Comp Neurol. 1997 Mar 17;379(3):455-65.
    46 Mckernan RM,Whiting PJ,Which GABA-A receptor subtypes really occur in the brain? Trends in Neuroscienses.1996 Apr; 19(4):139-43.
    47 Milbrandt JC, Albin RL, Turgeon SM, etc. GABAA receptor binding in the aging rat inferior colliculus. Neuroscience.1996 Jul;73(2):449-58.
    48 Xu, J., Yu, L., Cai, R., Zhang, J. etc. Early continuous white noise exposure alters auditory spatial sensitivity and expression of GAD65 and GABAA receptor subunits in rat auditory cortex. Cereb Cortex.2010 Apr;20(4):804-12.
    49 Cui Y, Lu J, Sun X. Age-related changes in GABAA receptor subunits mRNA expression in rat auditory cortex. J Comp Neurol.1997 Mar 17;379(3):455-65.
    50 Moeller CK, Kurt S, Happel MF, etc. Long-range effects of GABAergic inhibition in gerbil primary auditory cortex. Eur J Neurosci.2010;31(1):49-59.
    51 Bodarky CL, Halene TB, Ehrlichman RS, et al. Novel environment and GABA agonists alter event-related potentials in N-methyl-D-aspartate NR1 hypomorphic and wild-type mice. J Pharmacol Exp Ther.2009;331(1):308-318.
    52 Murashita H, Tabuchi K, Sakai S, etc. The effect of a GABAA agonist muscimol on acoustic injury of the mouse cochlea. Neurosci Lett. 2007;418(1):18-21.
    53 Stephane F. Maison,Thomas W, etc. Functional Role of GABAergic Innervation of the Cochlea:Phenotypic Analysis of Mice Lacking GABAA Receptor Subunits al,α2,a5,a6,β2,β3 orδ
    54 Maison SF, Liberman MC. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci.2000 Jun 15;20(12):4701-7.
    55 Gutierrez A, Khan ZU, Miralles CP, etc. GABAA receptor subunit expression changes in the rat cerebellum and cerebral cortex during aging. Brain Res Mol Brain Res.1997 Apr;45(1):59-70.
    56 Kotak VC, Sanes DH. Deafferentation weakens excitatory synapses in the developing central auditory system. Eur J Neurosci.1997 Nov;9(11):2340-7.
    57 Mossop JE, Wilson MJ, Caspary DM, etc. Down-regulation of inhibition following unilateral deafening. Hear Res.2000 Sep; 147(1-2):183-7.
    58 Arnold T, Oestreicher E, Ehrenberger K, etc. GABA(A) receptor modulates the activity of inner hair cell afferents in guinea pig cochlea. Hear Res JT Hearing research,1998,125(3):147-53.
    59 Raju Metherate,John H.Ashe. Synaptic interactions involving acetylcholine,glutamate and GABAin rat auditory cortex.Exp Brain Res 1995 107:59-72.
    60 Kujawa SG, Liberman MC. Acceleration of age-related hearing loss by early noise exposure:evidence of a misspent youth. J Neurosci.2006 Feb 15;26(7):2115-23.
    61 Kujawa SG, Liberman MC. Adding insult to injury:cochlear nerve degeneration after "temporary" noise-induced hearing loss. J Neurosci.2009 Nov 11;29(45):14077-85.
    62 Sun JC, Bohne BA, Harding GW. Is the older ear more susceptible to noise damage? Laryngoscope.1994 Oct;104(10):1251-8.
    63 Miller JM, Dolan DF, Raphael Y, etc. Interactive effects of aging with noise induced hearing loss. Scand Audiol Suppl.1998;48:53-61.
    64 Ohlemiller KK. Age-related hearing loss:the status of Schuknecht's typology. Curr Opin Otolaryngol Head Neck Surg.2004 Oct;12(5):439-43
    65 Bielefeld EC, Tanaka C, Chen GD, etc. Age-related hearing loss:is it a preventable condition.Hear Res.2010 Jun 1;264(1-2):98-107. doi: 10.1016/j.heares.2009.09.001. Epub 2009 Sep 6.
    66 Johnson KR, Yu H, Ding D,etc. Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice. Hear Res.2010 Sep 1;268(1-2):85-92. doi: 10.1016/j.heares.2010.05.002. Epub 2010 May 12.
    67 SCHUKNECHT HF, IGARASHI M. PATHOLOGY OF SLOWLY PROGRESSIVE SENSORI-NEURAL DEAFNESS. Trans Am Acad Ophthalmol Otolaryngol.1964 Mar-Apr;68:222-42.
    68 Trans Am Acad Ophthalmol Otolaryngol.1964 Mar-Apr;68:222-42. Prebycusis: physiological or pathological. J Laryngol Otol.1975 Oct;89(10):1011-25.
    69 Bohne BA, Gruner MM, Harding GW. Morphological correlates of aging in the chinchilla cochlea. Hear Res.1990 Sep;48(1-2):79-91.
    70 Adams JC, Schulte BA. Histopathologic observations of the aging gerbil cochlea. Hear Res.1997 Feb;104(1-2):101-11.
    71 Shimada A, Ebisu M, Morita T, etc. Age-related changes in the cochlea and cochlear nuclei of dogs. J Vet Med Sci.1998 Jan;60(1):41-8
    72 Takeno S, Wake M, Mount RJ, etc. Degeneration of spiral ganglion cells in the chinchilla after inner hair cell loss induced by carboplatin. Audiol Neurootol. 1998 Sep-Oct;3(5):281-90.
    73 Ryals BM, Westbrook EW. Ganglion cell and hair cell loss in Coturnix quail associated with aging. Hear Res.1988 Oct;36(1):1-8.
    74 White JA, Burgess BJ, Hall RD, etc. Pattern of degeneration of the spiral ganglion cell and its processes in the C57BL/6J mouse. Hear Res.2000 Mar;141(1-2):12-8.
    75 Linthicum FH Jr, Fayad JN. Spiral ganglion cell loss is unrelated to segmental cochlear sensory system degeneration in humans. Otol Neurotol.2009 Apr;30(3):418-422.
    76 Keithley EM, Feldman ML. Spiral ganglion cell counts in an age-graded series of rat cochleas/J Comp Neurol.1979 Dec 1;188(3):429-442.
    77 Ryals BM, Westbrook EW. Ganglion cell and hair cell loss in Coturnix quail associated with aging. Hear Res.1988 Oct;36(1):1-8.
    78 Suzuka Y, Schuknecht HF. Retrograde cochlear neuronal degeneration in human subjects.Acta Otolaryngol Suppl.1988;450:1-20.
    79 Bao J, Wolpowitz D, Role LW, etc. Back signaling by the Nrg-1 intracellular domain. J Cell Biol.2003 Jun 23;161(6):1133-41.
    80 Jin D, Ohlemiller KK, Lei D, etc. Age-related neuronal loss in the cochlea is not delayed by synaptic modulation. Neurobiol Aging.2011 Dec;32(12):2321.e13-23.
    81 Varghese GI, Zhu X, Frisina RD. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice. Hear Res.2005 Nov;209(1-2):60-7. Epub 2005 Aug.
    82 Kim S, Frisina DR, Frisina RD. Effects of age on contralateral suppression of distortion product otoacoustic emissions in human listeners with normal hearing. Audiol Neurootol.2002 Nov-Dec;7(6):348-57
    83 Campos Ude P, Hatzopoulos S, Kochanek K,etc Contralateral suppression of otoacoustic emissions:input-output functions in neonates. Med Sci Monit.2011 Oct;17(10):CR557-62.
    84 Fu B, Le Prell C, Simmons D, etc. Age-related synaptic loss of the medial olivocochlear efferent innervation. Mol Neurodegener.2010 Nov 26;5:53. doi: 10.1186/1750-1326-5-53.
    85 Yamasoba T, Someya S, Yamada C, etc. Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res.2007 Apr;226(1-2):185-93.
    86 Keithley EM, Canto C, Zheng QY, etc. Cu/Zn superoxide dismutase and age-related hearing loss. Hear Res.2005 Nov;209(1-2):76-85. Epub 2005 Aug 1.
    87 Someya S, Xu J, Kondo K, etc. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19432-7. doi:10.1073/pnas.0908786106. Epub 2009 Nov 9.
    88 Pickles JO. Mutation in mitochondrial DNA as a cause of presbyacusis. Audiol Neurootol.2004 Jan-Feb;9(1):23-33.
    89 Bai U, Seidman MD, Hinojosa R, etc. Mitochondrial DNA deletions associated with aging and possibly presbycusis:a human archival temporal bone study. Am J Otol.1997 Jul;18(4):449-53.
    90 Yamasoba T, Someya S, Yamada C, etc. Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res.2007 Apr;226(1-2):185-93. Epub 2006 Jul 25.
    91 Landfield PW. Aging-related increase in hippocampal calcium channels.Life Sci.1996;59(5-6):399-404
    92 Pottorf WJ, Duckles SP, Buchholz JN. Aging and calcium buffering in adrenergic neurons. Auton Neurosci.2002 Feb 28;96(1):2-7.
    93 Toescu EC, Verkhratsky A, Landfield PW. Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci.2004 Oct;27(10):614-20.
    94 Niedzielski AS, Safieddine S, Wenthold RJ. Molecular analysis of excitatory amino acid receptor expression in the cochlea. Audiol Neurootol.1997 Jan-Apr;2(1-2):79-91
    95 Parks TN.The AMPA receptors of auditory neurons.Hear Res,147:77-91
    96 Puyal J, Sage C, Dememes D, etc. Distribution of alpha-amino-3-hydroxy-5-methyl-4 isoazolepropionic acid and N-methyl-D-aspartate receptor subunits in the vestibular and spiral ganglia of the mouse during early development.Brain Res Dev Brain Res.2002 Nov 15;139(1):51-7.
    97 Morley BJ, Li HS, Hiel H, Drescher DG, Elgoyhen AB. Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization. Brain Res Mol Brain Res.1998 Jan;53(1-2):78-87.
    98 Bao J, Lei D, Du Y, Ohlemiller KK.Requirement of nicotinic acetylcholine receptor subunit beta2 in the maintenance of spiral ganglion neurons during aging. J Neurosci.2005 Mar 23;25(12):3041-5.
    99 Nie L, Zhu J, Gratton MA, etc. Molecular identity and functional properties of a novel T-type Ca2+ channel cloned from the sensory epithelia of the mouse inner ear. J Neurophysiol.2008 Oct;100(4):2287-99. doi: 10.1152/jn.90707.2008. Epub 2008 Aug 27.
    100 Shen H, Zhang B, Shin JH, etc. Prophylactic and therapeutic functions of T-type calcium blockers against noise-induced hearing loss. Hear Res.2007 Apr;226(l-2):52-60. Epub 2006 Dec 31.
    101 Lei D, Gao X, Perez P, etc. Anti-epileptic drugs delay age-related loss of spiral ganglion neurons via T-type calcium channel. Hear Res.2011 Aug;278(1- 2):106-12. doi:10.1016/j.heares.2011.05.010. Epub 2011 May 26.
    102 Lang H, Schulte BA, Zhou D, etc. Nuclear factor kappaB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci.2006 Mar 29;26(13):3541-50.
    103 Bohne BA, Harding GW, Lee SC. Death pathways in noise-damaged outer hair cells. Hear Res.2007 Jan;223(1-2):61-70. Epub 2006 Dec 4.
    104 Mattson MP. Calcium and neurodegeneration. Aging Cell.2007 Jun;6(3):337-50. Epub 2007 Feb 28.
    105 Nevado J, Sanz R, Casqueiro JC, etc. Ageing evokes an intrinsic pro-apoptotic signalling pathway in rat cochlea. Acta Otolaryngol.2006 Dec; 126(11):1134-9.
    106 Pollack M, Leeuwenburgh C. Apoptosis and aging:role of the mitochondria. J Gerontol A Biol Sci Med Sci.2001 Nov;56(11):B475-82.
    107 Kressel M, Groscurth P. Distinction of apoptotic and necrotic cell death by in situ labelling of fragmented DNA。Cell Tissue Res.1994 Dec;278(3):549-56
    108 Caki K, Yoshino T, Orita Y, etc. TUNEL staining of inner ear structures may reflect autolysis, not apoptosis. Hear Res.1999 Apr;130(1-2):131-6.
    109 Takahashi K, Kamiya K, Urase K, etc. Caspase-3-deficiency induces hyperplasia of supporting cells and degeneration of sensory cells resulting in the hearing loss. Brain Res.2001 Mar 16;894(2):359-67
    110 Wang J, Menchenton T, Yin S, etc. Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice. Neurobiol Aging.2010 Jul;31(7):1238-49.doi:10.1016/j.neurobiolaging.2008.07.016. Epub 2008 Aug 27.
    111 Someya S, Xu J, Kondo K, etc. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19432-7. doi:10.1073/pnas.0908786106. Epub 2009 Nov 9.
    112 Newman DL, Fisher LM, Ohmen J, etc. GRM7 variants associated with age-related hearing loss based on auditory perception. Hear Res.2012 Dec;294(1-2):125-32
    1 Willott JF, Bross LS, McFadden SL. Morphology of the dorsal cochlear nucleus in C57BL/6J and CBA/J mice across the life span. J Comp Neurol.1992 Jul 22;321(4):666-78.
    2 Idrizbegovic E, Canlon B, Bross LS, etc. The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of CBA/CaJ mice:a quantitative study. Hear Res.2001 Aug;158(1-2):102-15.
    3 Willott JF, Jackson LM, Hunter KP. Morphometric study of the anteroventral cochlear nucleus of two mouse models of presbycusis. J Comp Neurol.1987 Jun 15;260(3):472-80.
    4 Fitzakerley JL, Star KV, Rinn JL, etc. expression of Shal potassium channel subunits in the adult and developing cochlear nucleus of the mouse. Hear Res. 2000 Sep;147(1-2):31-45.
    5 Jung DK, Lee SY, Kim D, etc. Age-related changes in the distribution of Kvl.1 and Kv3.1 in rat cochlear nuclei. Neurol Res.2005 Jun;27(4):436-40.
    6 Krenning J, Hughes LF, Caspary DM, etc. Age-related glycine receptor subunit changes in the cochlear nucleus of Fischer-344 rats. Laryngoscope.1998 Jan;108(1Pt1):26-31.
    7 Raza A, Milbrandt JC, Arneric SP, etc. Age-related changes in brainstem auditory neurotransmitters:measures of GABA and acetylcholine function. Hear Res.1994 Jun 15;77(1-2):221-30.
    8 Wang Y, Manis PB. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. J Neurophysiol.2005 Sep;94(3):1814-24. Epub 2005 May 18.
    9 Idrizbegovic E, Canlon B, Bross LS, etc. The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of CBA/CaJ mice:a quantitative study. Hear Res.2001 Aug;158(1-2):102-15.
    10 Idrizbegovic E, Bogdanovic N, Viberg A, etc. Auditory peripheral influences on calcium binding protein immunoreactivity in the cochlear nucleus during aging in the C57BL/6J mouse. Hear Res.2003 May;179(1-2):33-42.
    11 Idrizbegovic E, Salman H, Niu X, etc. Presbyacusis and calcium-binding protein immunoreactivity in the cochlear nucleus of BALB/c mice. Hear Res. 2006 Jun-Jul;216-217:198-206.
    12 Jalenques I, Albuisson E, Despres Q etc. Distribution of glial fibrillary acidic protein (GFAP) in the cochlear nucleus of adult and aged rats. Brain Res.1995 Jul 24;686(2):223-32.
    13 Jalenques I, Burette A, Albuisson E, etc. Age-related changes in GFAP-immunoreactive astrocytes in the rat ventral cochlear nucleus. Hear Res.1997 May;107(1-2):113-24.
    14 Camarero G, Villar MA, Contreras J, etc. Cochlear abnormalities in insulin-like growth factor-1 mouse mutants. Hear Res.2002 Aug;170(1-2):2-11.
    15 Bondy CA. Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J Neurosci.1991 Nov;11(11):3442-55.
    16 Hinks GL, Franklin RJ. Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol Cell Neurosci.2000 Nov;16(5):542-56.
    17 Luo L, Moore JK, Baird A, etc Expression of acidic FGF mRNA in rat auditory brainstem during postnatal maturation. Brain Res Dev Brain Res.1995 May 26;86(1-2):24-34.
    18 Ruttiger L, Panford-Walsh R, Schimmang T, etc. BDNF mRNA expression and protein localization are changed in age-related hearing loss. Neurobiol Aging. 2007 Apr;28(4):586-601. Epub 2006 Mar 31.
    19 Benowitz LI, Routtenberg A. GAP-43:an intrinsic determinant of neuronal development and plasticity. Trends Neurosci.1997 Feb;20(2):84-91.
    20 Illing RB, Horvath M, Laszig R. Plasticity of the auditory brainstem:effects of cochlear ablation on GAP-43 immunoreactivity in the rat. J Comp Neurol.1997 May 26;382(1):116-38.
    21 Oestreicher AB, Gispen WH. Comparison of the immunocytochemical distribution of the phosphoprotein B-50 in the cerebellum and hippocampus of immature and adult rat brain. Brain Res.1986 Jun 11;375(2):267-79.
    22 Benowitz LI, Apostolides PJ, Perrone-Bizzozero N, etc. Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain.J Neurosci. 1988 Jan;8(1):339-52.
    23 Masliah E, Fagan AM, Terry RD, etc. Reactive synaptogenesis assessed by synaptophysin immunoreactivity is associated with GAP-43 in the dentate gyrus of the adult rat. Exp Neurol.1991 Aug;113(2):131-42.
    24 Masliah E, Mallory M, Hansen L, etc. Patterns of aberrant sprouting in Alzheimer's disease. Neuron.1991 May;6(5):729-39.
    25 Schmoll H, Ramboiu S, Platt D, etc. Age influences the expression of GAP-43 in the rat hippocampus following seizure.Gerontology.2005 Jul-Aug;51(4):215-24.
    26 Fischel-Ghodsian N. Mitochondrial deafness. Ear Hear.2003 Aug;24(4):303-13.
    27 Pickles JO. Mutation in mitochondrial DNA as a cause of presbyacusis Audiol Neurootol.2004 Jan-Feb;9(1):23-33.
    28 Niu X, Trifunovic A, Larsson NG, etc. Somatic mtDNA mutations cause progressive hearing loss in the mouse. Exp Cell Res.2007 Nov 1;313(18):3924-34. Epub 2007 Jun 29.
    29 Yamasoba T, Someya S, Yamada C, etc. Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res.2007 Apr;226(1-2):185-93. Epub 2006 Jul 25. Hear Res.2007 Apr;226(1-2):185-93. Epub 2006 Jul 25.
    30 Oliver DL. Ascending efferent projections of the superior olivary complex. Microsc Res Tech.2000 Nov 15;51(4):355-63.
    31 Thompson AM, Schofield BR. Afferent projections of the superior olivary complex. Microsc Res Tech.2000 Nov 15;51(4):330-54.
    32 Casey MA. The effects of aging on neuron number in the rat superior olivary complex. Neurobiol Aging.1990 Jul-Aug;11(4):391-4.
    33 Ene FA, Kalmbach A, Kandler K. Metabotropic glutamate receptors in the lateral superior olive activate TRP-like channels:age-and experience-dependent regulation. J Neurophysiol.2007 May;97(5):3365-75. Epub 2007 Mar 21.
    34 Kotak VC, Korada S, Schwartz IR, etc. A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J Neurosci.1998 Jun 15;18(12):4646-55.
    35 Gleich O. The distribution of N-acetylgalactosamine in the cochlear nucleus of the gerbil revealed by lectin binding with soybean agglutinin. Hear Res.1994 Jul;78(1):49-57.
    36 Hoffpauir BK, Grimes JL, Mathers PH, etc. Synaptogenesis of the calyx of Held:rapid onset of function and one-to-one morphological innervation. J Neurosci.2006 May 17;26(20):5511-23.
    37 Casey MA, Feldman ML. Aging in the rat medial nucleus of the trapezoid body. Ⅱ. Electron microscopyJ Comp Neurol.1985 Feb 15;232(3):401-13.
    38 Casey MA, Feldman ML. Age-related loss of synaptic terminals in the rat medial nucleus of the trapezoid body. Neuroscience.1988 Jan;24(1):189-94.
    39 von Hehn CA, Bhattacharjee A, Kaczmarek LK. Loss of Kv3.1 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice.
    40 O'Neill WE, Zettel ML, Whittemore KR, etc. Calbindin D-28k immunoreactivity in the medial nucleus of the trapezoid body declines with age in C57BL/6, but not CBA/CaJ, mice.Hear Res.1997 Oct;112(1-2):158-66.
    41 Zettel ML, Frisina RD, Haider SE, etc. Age-related changes in calbindin D-28k and calretinin immunoreactivity in the inferior colliculus of CBA/CaJ and C57B1/6 mice. J Comp Neurol.1997 Sep 15;386(1):92-110.
    42 Reuss S, Schaeffer DF, Laages MH, etc. Evidence for increased nitric oxide production in the auditory brain stem of the aged dwarf hamster (Phodopus sungorus):an NADPH-diaphorase histochemical study. Mech Ageing Dev. 2000 Jan 3;112(2):125-34.
    43 Eybalin M, Altschuler RA. Immunoelectron microscopic localization of neurotransmitters in the cochlea. J Electron Microsc Tech.1990 Jul;15(3):209-24.
    44 Maison SF, Adams JC, Liberman MC. Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. J Comp Neurol.2003 Jan 13;455(3):406-16.
    45 Plinkert PK, Gitter AH, Mohler H, etc. Structure, pharmacology and function of GABA-A receptors in cochlear outer hair cells. Eur Arch Otorhinolaryngol. 1993;250(6):351-7.
    46 Yamamoto Y, Matsubara A, Ishii K, etc. Localization of gamma-aminobutyric acid A receptor subunits in the rat spiral ganglion and organ of Corti. Acta Otolaryngol.2002 Oct;122(7):709-14.
    47 Maison SF, Rosahl TW, Homanics GE, etc. Functional role of GABAergic innervation of the cochlea:phenotypic analysis of mice lacking GABA(A) receptor subunits alpha 1, alpha 2, alpha 5, alpha 6, beta 2, beta 3, or delta. J Neurosci.2006 Oct 4;26(40):10315-26.
    48 Zettel ML, Zhu X, O'Neill WE, etc. Age-related decline in Kv3.1b expression in the mouse auditory brainstem correlates with functional deficits in the medial olivocochlear efferent system. J Assoc Res Otolaryngol.2007 Jun;8(2):280-93. Epub 2007 Feb 15.
    49 Jenkins SA, Simmons DD. GABAergic neurons in the lateral superior olive of the hamster are distinguished by differential expression of gad isoforms during development. Brain Res.2006 Sep 21;1111(1):12-25. Epub 2006 Aug 17.
    50 Kazee AM, West NR. Preservation of synapses on principal cells of the central nucleus of the inferior colliculus with aging in the CBA mouse. Hear Res.1999 Jul;133(1-2):98-106.
    51 Kazee AM, Han LY, Spongr VP, etc. Synaptic loss in the central nucleus of the inferior colliculus correlates with sensorineural hearing loss in the C57BL/6 mouse model of presbycusis. Hear Res.1995 Sep;89(1-2):109-20.
    52 Tadros SF, D'Souza M, Zettel ML, etc. Glutamate-related gene expression changes with age in the mouse auditory midbrain. Brain Res.2007 Jan 5;1127(1):1-9. Epub 2006 Nov 17.
    53 Caspary DM, Raza A, Lawhorn Armour BA, etc. Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci.1990 Jul;10(7):2363-72.
    54 Helfert RH, Sommer TJ, Meeks J, etc. Age-related synaptic changes in the central nucleus of the inferior colliculus of Fischer-344 rats. J Comp Neurol. 1999 Apr 12;406(3):285-98.
    55 Raza A, Milbrandt JC, Arneric SP, etc. Age-related changes in brainstem auditory neurotransmitters:measures of GABA and acetylcholine function. Hear Res.1994 Jun 15;77(1-2):221-30.
    56 Gutierrez A, Khan ZU, Morris SJ, etc. Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus. J Neurosci.1994 Dec; 14(12):7469-77.
    57 Milbrandt JC, Albin RL, Caspary DM. Age-related decrease in GABAB receptor binding in the Fischer 344 rat inferior colliculus. Neurobiol Aging. 1994 Nov-Dec;15(6):699-703.
    58 Vaughan DW. Age-related deterioration of pyramidal cell basal dendrites in rat auditory cortex. J Comp Neurol.1977 Feb 15;171(4):501-15.
    59 Willott JF, Parham K, Hunter KP. Response properties of inferior colliculus neurons in young and very old CBA/J mice. Hear Res.1988 Dec;37(1):1-14.
    60 Illing RB. Maturation and plasticity of the central auditory system. Acta Otolaryngol Suppl.2004 May;(552):6-10.
    61 Cosgrove JW, Atack JR, Rapoport SI. Regional analysis of rat brain proteins during senescence. Exp Gerontol.1987;22(3):187-98.
    62 Mei Y, Gawai KR, Nie Z, Ramkumar V, etc. Age-related reductions in the activities of antioxidant enzymes in the rat inferior colliculus.Hear Res.1999 Sep; 135(1-2):169-80.
    63 Sinha UK, Hollen KM, Rodriguez R, etc. Auditory system degeneration in Alzheimer's disease. Neurology.1993 Apr;43(4):779-85.
    64 Vaughan DW, Vincent JM. Ultrastructure of neurons in the auditory cortex of ageing rats:a morphometric study. J Neurocytol.1979 Apr;8(2):215-28.
    65 Ouda L, Nwabueze-Ogbo FC, Druga R, Syka J. NADPH-diaphorase-positive neurons in the auditory cortex of young and old rats. Neuroreport.2003 Mar 3;14(3):363-6.
    66 Huh Y, Lee W, Cho J, etc. Regional changes of NADPH-diaphorase and neuropeptide Y neurons in the cerebral cortex of aged Fischer 344 rats. Neurosci Lett.1998 May 15;247(2-3):79-82.
    67 Sanchez-Zuriaga D, Marti-Gutierrez N, De La Cruz MA, etc. Age-related changes of NADPH-diaphorase-positive neurons in the rat inferior colliculus and auditory cortex. Microsc Res Tech.2007 Dec;70(12):1051-9.
    68 Ling LL, Hughes LF, Caspary DM. Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience.2005;132(4):1103-13.
    69 Green AR, Hainsworth AH, Jackson DM. GABA potentiation:a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology.2000 Jul 10;39(9):1483-94.
    70 Kujawa SQ Liberman MC. Acceleration of age-related hearing loss by early noise exposure:evidence of a misspent youth. J Neurosci.2006 Feb 15;26(7):2115-23
    71 Willott JF.Neurogerontology:Aging and the Nervous system.New york:Springer 2009
    72 McFadden SL, Ding D, Reaume AG, etc. Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging. 1999 Jan-Feb;20(1):1-8.
    73 Bai U, Seidman MD, Hinojosa R, Quirk WS.Mitochondrial DNA deletions associated with aging and possibly presbycusis:a human archival temporal bone study. Am J Otol.1997 Jul;18(4):449-53.
    74 Fischel-Ghodsian N, Bykhovskaya Y, Taylor K,etc. Temporal bone analysis of patients with presbycusis reveals high frequency of mitochondrial mutations. Hear Res.1997 Aug; 110(1-2):147-54.
    75 Seidman MD, Bai U, Khan MJ, etc. Association of mitochondrial DNA deletions and cochlear pathology:a molecular biologic tool.Laryngoscope. 1996 Jun;106(6):777-83.
    76 Pickles JO. Mutation in mitochondrial DNA as a cause of presbyacusis.Audiol Neurootol.2004 Jan-Feb;9(1):23-33.
    77 Seidman MD. Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope.2000 May;110(5 Pt 1):727-38.
    78 Le T, Keithley EM. Effects of antioxidants on the aging inner ear.Hear Res. 2007 Apr;226(1-2):194-202. Epub 2006 Jul 14.
    79 Hawkins JE Jr. The role of vasoconstriction in noise-induced hearing loss.Ann Otol Rhinol Laryngol.1971 Dec;80(6):903-13
    80 Dai P, Yang W, Jiang S, etc. Correlation of cochlear blood supply with mitochondrial DNA common deletion in presbyacusis.Acta Otolaryngol.2004 Mar;124(2):130-6.
    81 Pujol R, Rebillard G, Puel JL, etc. Glutamate neurotoxicity in the cochlea:a possible consequence of ischaemic or anoxic conditions occurring in ageing. Acta Otolaryngol Suppl.1990;476:32-6.
    82 Rybak LP, Whitworth CA. Ototoxicity:therapeutic opportunities. Drug Discov Today.2005 Oct 1;10(19):1313-21. Review
    83 Seidman MD, Shivapuja BG, Quirk WS. The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage.Otolaryngol Head Neck Surg.1993 Dec;109(6):1052-6
    84 Ohinata Y, Miller JM, Schacht J. Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea. Brain Res.2003 Mar 21;966(2):265-73.
    85 Miquel J, Ferrandiz ML, De Juan E, Sevila I, Martinez M. N-acetylcysteine protects against age-related decline of oxidative phosphorylation in liver mitochondria. Eur J Pharmacol.1995 Mar 16;292(3-4):333-5.
    86 Seidman MD. Effects of dietary restriction and antioxidants on presbyacusis.Laryngoscope.2000 May;110(5 Pt 1):727-38
    87 Houston DK, Johnson MA, Nozza RJ, etc. Age-related hearing loss, vitamin B-12, and folate in elderly women. Am J Clin Nutr.1999 Mar;69(3):564-71.
    88 Park S, Johnson MA, Shea-Miller K, etc. Age-related hearing loss, methylmalonic acid, and vitamin B12 status in older adults. J Nutr Elder. 2006;25(3-4):105-20.
    89 Durga J, Verhoef P, Anteunis LJ, etc. Effects of folic acid supplementation on hearing in older adults:a randomized, controlled trial. Ann Intern Med.2007 Jan 2; 146(1):1-9.
    90 Takumida M, Anniko M. Radical scavengers:a remedy for presbyacusis. A pilot study. Acta Otolaryngol.2005 Dec;125(12):1290-5.
    91 Popelka MM, Cruickshanks KJ, Wiley TL, etc. Moderate alcohol consumption and hearing loss:a protective effect. J Am Geriatr Soc.2000 Oct;48(10):1273-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700