双辉等离子表面冶金Ni-Cr耐蚀钢板若干应用基础问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通碳钢材料以其良好的塑性和韧性、易加工、成本低等特点被广泛地应用于建筑、交通,机械和能源等领域。然而,碳钢材料却具有一个普遍的问题:易腐蚀。国内外的学者们通过开发各种耐蚀钢和耐候钢来改善钢铁的耐蚀性,但该类钢铁材料大量使用耐蚀合金元素使得材料成本上升,且不能有效地利用合金元素。碳钢钢板在钢铁材料中占有非常重要的地位。因此,在碳钢钢板表面形成不锈钢成为世界冶金界的一个梦想。本论文提出采用双辉等离子表面冶金技术在普通碳钢钢板表面制备镍基耐蚀合金层,以形成一种新型的等离子表面冶金耐蚀碳钢钢板。该新型钢板可以在保持基体碳钢良好的塑韧性的同时具有优秀的表面耐蚀性能,从而达到节约贵重合金元素,大幅度降低材料成本的作用。论文针对等离子表面冶金耐蚀钢板规模应用中涉及的一系列基础科学问题进行系统地研究。
     为解决等离子表面冶金规模生产中合金元素供给量不足的问题,论文提出一种格栅状空心阴极源极结构,以Ni80Cr20合金靶为源极材料,在Q235低碳钢表面获得与基体结合良好,且成分呈梯度分布的Ni-Cr合金层,合金层的主要物相均为奥氏体相Ni2.9Cr0.7Fe0.36和少量镍铁矿相Ni3Fe。与平面状源极结构相比,格栅状空心阴极源极结构由于能够提供更充足的合金元素供给量,其Ni-Cr合金层具有更厚的厚度和更高的Ni、Cr合金元素含量,耐蚀性能也明显优于平面状源极结构下的合金层。
     论文对等离子表面冶金工艺参数对Ni-Cr合金层的组织性能的影响进行了系统研究。结果表明,提高处理温度可以增加Ni-Cr合金层的厚度,增大合金层中Ni、Cr合金元素含量,从而改善Ni-Cr合金层的耐蚀性能,在1000℃左右的处理温度下能够获得耐蚀性能较好的Ni-Cr合金层。增大工作气压使得Ni-Cr合金层的厚度和Ni、Cr元素含量均呈现先增后减的趋势,Ni-Cr合金层的耐蚀性能也同样呈现先升后降的趋势,51Pa左右的工作气压下的Ni-Cr合金层耐蚀性能最好。增加极间距使得Ni-Cr合金层厚度和合金元素含量呈现先增后减的趋势,而其耐蚀性能同样呈现先升后降的趋势,其中在15mm左右的极间距下的Ni-Cr合金层耐蚀性能最好。延长保温时间可以获得更厚的Ni-Cr合金层,提高Ni-Cr合金层的耐蚀性能,但是保温3h后Ni-Cr合金层的耐蚀性的改善就不再十分明显。
     研究了基体碳含量对合金层组织性能的影响规律。在Q235低碳钢、45钢和T8钢三种不同碳含量的碳钢表面制备了Ni-Cr合金层。合金层的扩散层厚度随着基体碳含量增多而增大。Q235低碳钢基体的合金层为致密的纤维状结构,45钢和T8钢基体的合金层为对腐蚀不利的多空的锥形柱状晶结构,且柱状晶随着基体碳含量增加而呈现粗化现象。电化学腐蚀试验结果显示:Q235低碳钢基体的Ni-Cr合金层的耐蚀性能最好,T8钢基体的合金层次之,而45钢基体的合金层的耐蚀性能表现最差。
     Ni-Cr合金靶材成分对Ni-Cr合金层的元素成分和物相具有直接影响。当合金靶中合金元素Cr含量为20%时,Ni-Cr合金层的主要物相为Ni2.9Cr0.7Fe0.36相和少量Ni3Fe相;随着合金靶中Cr元素含量增加到40%时,Ni-Cr合金层的主要物相转变为Cr0.19Fe0.7Ni0.11相和少量Fe-Cr相;当合金靶中Cr元素的含量进一步增加,Ni-Cr合金层的物相中Fe-Cr相含量增加,Cr0.19Fe0.7Ni0.11相含量减少;当合金靶中Cr元素含量增加到80%时,Ni-Cr合金层的主要物相转变为Fe-Cr相和少量Cr0.19Fe0.7Ni0.11相。各成分的合金靶下,Ni-Cr合金层表面Ni、Cr元素都主要以单质Ni、Cr和NiO形式存在。通过对Ni-Cr合金层中Ni、Cr合金元素的成分偏析效应进行了研究,建立了合金靶成分与合金层成分的关系公式。纳米压痕试验表明,随着合金靶中Cr元素含量增加,合金层的塑韧性降低。增加合金靶中Cr元素含量,可以提高Ni-Cr合金层中的Cr元素含量,使得合金层表面更容易形成连续致密的钝化膜,合金层的耐蚀性能得到进一步提高。然而,由于Ni60Cr40合金靶下的Ni-Cr合金层厚度较薄,其耐蚀性能较Ni80Cr20合金靶下的合金层要差。
     建立了Ni-Cr合金层中的主要物相Ni2.9Cr0.7Fe0.36的原子模型Ni9Cr2Fe1,并根据能量最低原理,得到了Ni2.9Cr0.7Fe0.36相的平衡态几何结构。Ni9Cr2Fe1晶体的成键电子主要由Cr3s和3p价电子贡献,而其Fermi能级处的态密度主要由Ni3d和Cr3d电子贡献。Ni-Cr合金层中Ni、Cr、Fe原子间的电荷交互作用使Fe原子呈现正电性,促使Fe原子电位上升,导致Fe原子较难发生电化学腐蚀反应。因此,Ni-Cr合金层能够为基体提供有效的腐蚀防护作用。
     设计了一种新型的双辉等离子表面冶金装置以满足工业化的需求,这种新型的等离子表面处理装置能够对大面积碳钢钢板进行处理,从而获得等离子表面冶金Ni-Cr耐蚀钢板。静态浸泡腐蚀试验和中性盐雾腐蚀试验的结果均表明,等离子表面冶金Ni-Cr耐蚀钢板的耐蚀性能要明显优于基材Q235低碳钢,其耐蚀性能接近于316L不锈钢。
Carbon steel was widely used in many fields such as building, traffic, mechanism and energy,because of its well plasticity and toughness, easy processing and low cost. However, the carbon steelhas a common problem, low corrosion resistance. Scholars developed corrosion-resistant steel andweathering steel to improve the corrosion resistance of steel, but the corrosion-resistant alloyingelements increased the cost and can not be used effectively. The steel plat is very important for thesteel materials. Therefore, the formation of stainless steel on carbon steel plate has been the dream ofworld metallurgical industry. In this paper, to form a new type of plasma surface metallurgycorrosion-resistant carbon steel plate, double glow plasma surface metallurgy technique was used toprepare the nickel-base alloyed layer on carbon steel. This new surface metallurgy material, whichexhibits good plasticity, toughness and excellent corrosion resistance, can economize costly alloyingelements and reduce the cost of materials. Meanwhile, a series of basic scientific issues related to thescale application of surface metallurgy steel plate were studied systematically.
     In order to solve the problem of insufficient allowance of alloying elements in scale production,grid-like hollow cathode source structure was introduced. Using Ni80Cr20alloyed target as sourcematerial, Ni-Cr alloyed layer was formed on Q235steel. The alloyed layer combined excellently withsubstrate and had gradient distribution of composition. The main phase of alloyed layer was austeniticsteel Ni2.9Cr0.7Fe0.36and a little of awaruite Ni3Fe. Compared with planar source structure, thegrid-like hollow cathode source structure could provide more adequate allowance of alloyingelements, so its Ni-Cr alloyed layer had thicker thickness and higher content of Ni, Cr alloyingelements which result in more excellent corrosion resistance.
     In the paper, the effect of process parameters on microstructure and properties of Ni-Cr alloyedlayer were studied systematically. The results showed that the thickness of Ni-Cr alloyed layer and thecontent of Ni and Cr alloying elements increased as the treatment temperature increased. As a result,the corrosion-resistant of Ni-Cr alloyed layer was improved, and the best corrosion resistance wasobtained when the treatment temperature reached about1000℃. With the increasing of workingpressure, the thickness of Ni-Cr alloyed layer and the content of Ni and Cr alloying elements inalloyed layer showed trend of first increased and then decreased. Meanwhile, the corrosion resistanceof alloyed layer also increased firstly and reduced afterwards, and the best corrosion resistance wasobtained when the working pressure was about51Pa. Increasing the electrode spacing, the thicknessof Ni-Cr alloyed layer, the content of Ni and Cr alloying elements and the corrosion resistance of alloyed layer exhibited the same results. The optimal electrode spacing was about15mm. Prolongingthe holding time could obtain thicker Ni-Cr alloyed layer, and improve the corrosion resistance ofalloyed layer. But the improvement was not significant anymore after heat for3h.
     The influence of the carbon content of the substrate on the microstructure and properties of thealloyed layer was investigated. Ni-Cr alloyed layers were obtained on surface of Q235steel,45steeland T8steel. The thickness of diffusion layer of Ni-Cr alloyed layer increased as the carbon contentincreased. The Ni-Cr alloyed layer on Q235exhibited compact fibrous structure, while the alloyedlayer on45steel and T8steel showed porous tapered column structure which showed coarseningphenomenon as the carbon content increased. The fibrous structure is dense, while the tapered columnstructure contains voids. Therefore, the Ni-Cr alloyed layer on Q235steel had the bestcorrosion-resistant. For the tapered column structure Ni-Cr alloyed layer, the corrosion-resistant ofalloyed layer on T8steel was better than the alloyed layer on45steel due to its thicker thickness ofdiffusion layer.
     The composition of Ni-Cr alloyed target has direct effect on the composition and phase of Ni-Cralloyed layer. When the content of Cr alloying element in alloyed target was20%, the main phase wasNi2.9Cr0.7Fe0.36and a little of Ni3Fe. Then the content increased to40%, the phase of alloyed layerchanged into Cr0.19Fe0.7Ni0.11and a little of Fe-Cr. As the content of Cr alloying element in alloyedtarget increased, the content of Cr0.19Fe0.7Ni0.11decreased and the content of Fe-Cr in alloyed layerincreased. Finally the content reached80%, the main phase of alloyed layer was Fe-Cr and a little ofCr0.19Fe0.7Ni0.11. Under different alloyed targets, the Ni and Cr elements on surface of Ni-Cralloyed layer exist in the form of simple substance Ni, Cr and NiO. The composition segregationeffect of Ni and Cr alloying elements in alloyed layer was investigated, and then the relation formulaof the composition of alloyed target and the composition of Ni-Cr alloyed layer was founded. Thenano-indentation test of Ni-Cr alloyed layer indicated that the plasticity and toughness of alloyedlayer reduced as the content of Cr alloying element in alloyed target increased. As the content of Cralloying element in alloyed target increased, the content of Cr alloying element in Ni-Cr alloyed layerincreased, the continuous dense passive film can be easily formed on surface of alloyed layer whichcould improve the corrosion-resistant of alloyed layer. However, thickness of Ni-Cr alloyed layerunder Ni60Cr40alloyed target was thin, thus its corrosion-resistant was worse than that underNi80Cr20alloyed target.
     The atom model Ni9Cr2Fe1of Ni2.9Cr0.7Fe0.36, which was the main phase in Ni-Cr alloyed layer,was built. According to the energy minimum principle, equilibrium geometric structure ofNi2.9Cr0.7Fe0.36was obtained. The bonding electron of Ni9Cr2Fe1was contributed by the3s and3pvalence electron of Cr, while the density of states at the Fermi level was contributed by the3d electron of Ni and Cr. The charge interaction of Ni, Cr and Fe atoms in Ni-Cr alloyed layer made theFe atom exhibit positively charged and increased the potential of Fe atom which inreased thedifficulty of the electrochemical corrosion reaction of Fe atom. Therefore, the Ni-Cr alloyed layercould provide effective corrosion resistance for the substrate.
     In order to meet the needs of industrialization, a new type of double glow plasma surfacemetallurgy device was designed. The large area of carbon steel plate could be processed in theequipment to obtain plasma surface metallurgy Ni-Cr corrosion-resistant steel plate. The results ofstatic immersion corrosion test and salt spray corrosion test demonstrated that the corrosion-resistantof plasma surface metallurgy Ni-Cr corrosion-resistant steel plate was better than that of Q235lowcarbon steel, and its corrosion-resistant was close to that of316L stainless steel.
引文
[1] H. Wiesinger. Metal treatment and drop forging [J]. Metall. Plant Technol.,2000,2344-46.
    [2] J. R. Stubbles. High temperature materials coatings and surface interactions [J]. AISE SteelTechnol.,1999,44-50.
    [3] I. Christmas. Properties of high temperature alloys [J]. Metall. Plant Technol.,2000,2332-34.
    [4]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1984:3.
    [5]肖纪美.金属材料的腐蚀问题——腐蚀金属学[M].北京:中国工业出版社,1962:
    [6]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003:1-2.
    [7]陆柱.可持续发展战略与腐蚀防守技术[J].腐蚀与防护,1997,18(2):51-54.
    [8]孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社,2003:
    [9]黄建中,左禹.材料的耐蚀性和腐蚀数据[M].北京:化学工业出版社,2003:
    [10]何业东,齐慧滨.材料腐蚀与防护概论[M].北京:机械工业出版社,2005:
    [11]冯辉霞,崔锦峰,俞树荣.重防腐蚀涂料及其应用[J].全面腐蚀控制,2005,19(5):1-3-13.
    [12]杨德钧,沈卓身.金属腐蚀学[M].北京:冶金工业出版社,2003:
    [13]肖纪美,曹楚南.材料腐蚀学原理[M].北京:化学工业出版社,2002:
    [14]肖纪美.腐蚀总论——材料的腐蚀及其控制方法[M].北京:化学工业出版社,1994:
    [15]俆滨士,刘世参.中国材料工程大典.第16卷[M].北京:化学工业出版社,2005:
    [16] M. Kevin. Powder coatings for high speed coil lines [J]. European Coatings Journal A,2001,(12):37-38.
    [17]肖佑国.我国有机涂层板用涂料的开发[J].涂料工业,1994,36(4):39-42.
    [18]朱立,徐小连.彩色涂层钢板技术[M].北京:化学工业出版社,2005:1-5.
    [19]顾国成,吴文森.钢铁材料的防蚀涂层[M].北京:科学出版社,1987:
    [20] H. E. Townsend, A. R. Borzillo. Thirty-year atmospheric corrosion performance of55%aluminum-zinc alloy-coated sheet steel [J]. Materials Performace,1996,35(4):30-36.
    [21] H.-H. Liu, W.-J. Cheng, C.-J. Wang. The mechanism of oxide whisker growth and hotcorrosion of hot-dipped Al-Si coated430stainless steels in air-NaCl(g) atmosphere [J].Applied Surface Science,2011,257(24):10645-10652.
    [22] W.-J. Cheng, C.-J. Wang. Microstructural evolution of intermetallic layer in hot-dippedaluminide mild steel with silicon addition [J]. Surface and Coatings Technology,2011,205(19):4726-4731.
    [23] D. Giménez-Romero, J. J. García-Jare o, F. Vicente. Correlation between the fractaldimension of the electrode surface and the EIS of the zinc anodic dissolution for differentkinds of galvanized steel [J]. Electrochemistry Communications,2004,6(2):148-152.
    [24] D. Yang, J. Chen, Q. Han, et al. Effects of lanthanum addition on corrosion resistance ofhot-dipped galvalume coating [J]. Journal of Rare Earths,2009,27(1):114-118.
    [25] A. Amadeh, B. Pahlevani, S. Heshmati-Manesh. Effects of rare earth metal addition on surfacemorphology and corrosion resistance of hot-dipped zinc coatings [J]. Corrosion Science,2002,44(10):2321-2331.
    [26] C. Kruehong, G. A. El-Mahdy, A. Nishikata, et al. Influence of second phases on theelectrochemical behavior of hot dipped Al-Mg-Si coated steel [J]. Corrosion Science,2010,52(7):2379-2386.
    [27]陈国华,王光信.电化学方法应用[M].北京:化学工业出版社,2003:
    [28]钱苗根,姚寿山,张少宗.现代表面工程技术[M].北京:机械工业出版社,1999:
    [29]胡萍丽,谢发勤,吴向清,等. N80钢电镀Ni-Cr合金工艺的研究[J].电镀与环保,2009,29(1):26-29.
    [30] H. Adelkhani, M. R. Arshadi. Properties of Fe-Ni-Cr alloy coatings by using direct and pulsecurrent electrodeposition [J]. Journal of Alloys and Compounds,2009,476(1-2):234-237.
    [31] A. Ispas, H. Matsushima, A. Bund, et al. A study of external magnetic-field effects onnickel-iron alloy electrodeposition, based on linear and non-linear differential ACelectrochemical response measurements [J]. Journal of Electroanalytical Chemistry,2011,651(2):197-203.
    [32] J.-y. Fei, G. D. Wilcox. Electrodeposition of zinc-nickel compositionally modulated multilayercoatings and their corrosion behaviours [J]. Surface and Coatings Technology,2006,200(11):3533-3539.
    [33] X. Xia, I. Zhitomirsky, J. R. McDermid. Electrodeposition of zinc and composite zinc-yttriastabilized zirconia coatings [J]. Journal of Materials Processing Technology,2009,209(5):2632-2640.
    [34] A. C. Hegde, K. Venkatakrishna, N. Eliaz. Electrodeposition of Zn-Ni, Zn-Fe and Zn-Ni-Fealloys [J]. Surface and Coatings Technology,2010,205(7):2031-2041.
    [35] J. B. Hajdu, E. F. Yarkosky, P. A. Cacciatore. Electroless nickel processes for memory disks [J].Processdings-The Electrochemical Society,1990,90(8):685-702.
    [36] M. Manna. Effect of high temperature oxide scale on steel surface for electroless nickelplating process and characterization of coatings [J]. Surface and Coatings Technology,2010,204(11):1842-1846.
    [37]郝龙,程庆,黄文全,等.不锈钢化学镀Ni-P合金在H2SO4溶液中的腐蚀行为[J].中国腐蚀与防护学报,2009,29(1):55-58.
    [38] H. Ashassi-Sorkhabi, S. H. Rafizadeh. Effect of coating time and heat treatment on structuresand corrosion characteristics of electroless Ni-P alloy deposits [J]. Surface and CoatingsTechnology,2004,176(3):318-326.
    [39] B. Jiang, L. Xiao, S. Hu, et al. Optimization and kinetics of electroless Ni-P-B plating ofquartz optical fiber [J]. Optical Materials,2009,31(10):1532-1539.
    [40] D. D. N. Singh, R. Ghosh. Electroless nickel-phosphorus coatings to protect steelreinforcement bars from chloride induced corrosion [J]. Surface and Coatings Technology,2006,201(1-2):90-101.
    [41] A. Afzali, V. Mottaghitalab, M. S. Motlagh, et al. The electroless plating of Cu-Ni-P alloy ontocotton fabrics [J]. Korean Journal of Chemical Engineering,2010,27(4):1145-1149.
    [42]潘邻.表面改性热处理技术与应用[M].北京:机械工业出版社,2005:
    [43]金犁.多弧离子镀制备Ti_(1-x)Al_xN薄膜的工艺及其性能研究[D],武汉:武汉科技大学,2006.
    [44] C. Liu, Q. Bi, A. Matthews. EIS comparison on corrosion performance of PVD TiN and CrNcoated mild steel in0.5N NaCl aqueous solution [J]. Corrosion Science,2001,43(10):1953-1961.
    [45] M. M. Stack, H. W. Wang, W. D. Münz. Some thoughts on the construction oferosion-corrosion maps for PVD coated steels in aqueous environments [J]. Surface andCoatings Technology,1999,113(1-2):52-62.
    [46] R. A. Antunes, A. C. D. Rodas, N. B. Lima, et al. Study of the corrosion resistance and in vitrobiocompatibility of PVD TiCN-coated AISI316L austenitic stainless steel for orthopedicapplications [J]. Surface&Coatings Technology,2010,205(7):2074-2081.
    [47] K. Lukaszkowicz, J. Sondor, A. Kriz, et al. Structure, mechanical properties and corrosionresistance of nanocomposite coatings deposited by PVD technology onto theX6CrNiMoTi17-12-2and X40CrMoV5-1steel substrates [J]. Journal of Materials Science,2010,45(6):1629-1637.
    [48] S. Korablov, B. Basavalingu, M. Yoshimura. Wet corrosion of nitride PVD films insupercritical solutions [J]. Corrosion Science,2005,47(6):1384-1402.
    [49] L. W. Ma, J. M. Cairney, M. J. Hoffman, et al. Effect of coating thickness on the deformationmechanisms in PVD TiN-coated steel [J]. Surface&Coatings Technology,2010,204(11):1764-1773.
    [50]汪俊.细长不锈钢管内表面沉积的类金刚石碳膜性能研究[D],大连:大连理工大学,2009.
    [51]马大衍,王昕,马胜利.脉冲直流PCVD制备Ti-Si-N薄膜的电化学腐蚀行为[J].稀有金属材料与工程,2004,33(7):740-743.
    [52] G. Bolelli, B. Bonferroni, G. Coletta, et al. Wear and corrosion behaviour of HVOFWC-CoCr/CVD DLC hybrid coating systems deposited onto aluminium substrate [J]. Surface&Coatings Technology,2011,205(17-18):4211-4220.
    [53] C. H. Henager, A. L. Schemer-Kohrn, S. G. Pitman, et al. Pitting corrosion in CVD SiC at300degrees C in deoxygenated high-purity water [J]. Journal of Nuclear Materials,2008,378(1):9-16.
    [54] T. Sugama. CVD-titanium carbonitride coatings as corrosion-preventing barriers for steel inacid-brine steam at200℃[J]. Materials Letters,1999,38(3):227-234.
    [55]戴达煌,周克崧,袁镇海.现代材料表面技术科学[M].北京:冶金技术出版社,2004:
    [56]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社,2004:
    [57]李金桂,吴再思.防腐蚀表面工程技术[M].北京:化学工业出版社,2003:
    [58]王振强.热喷涂WC-Co/Cr与Al2O3/TiO2涂层的盐溶液腐蚀行为研究[D],哈尔滨:哈尔滨工业大学,2009.
    [59] J. M. Guilemany, N. Espallargas, P. H. Suegama, et al. Comparative study of Cr3C2-NiCrcoatings obtained by HVOF and hard chromium coatings [J]. Corrosion Science,2006,48(10):2998-3013.
    [60] M. M. Verdian, K. Raeissi, M. Salehi. Electrochemical impedance spectroscopy ofHVOF-sprayed NiTi intermetallic coatings deposited on AISI1045steel [J]. Journal of Alloysand Compounds,2010,507(1):42-46.
    [61] S. Brossard, P. R. Munroe, M. M. Hyland. Study of the Splat Formation for HVOF SprayedNiCr on Stainless Steel Substrates and the Effects of Heating and Boiling Pre-Treatments [J].Journal of Thermal Spray Technology,2010,19(5):990-1000.
    [62] A. A. Boudi, M. S. J. Hashmi, B. S. Yilbas. HVOF coating of Inconel625onto stainless andcarbon steel surfaces: corrosion and bond testing [J]. Journal of Materials ProcessingTechnology,2004,155-1562051-2055.
    [63] A. A. Boudi, M. S. J. Hashmi, B. S. Yilbas. ESEM evaluation of Inconel-625thermal spraycoating (HVOF) onto stainless steel and carbon steel post brine exposure after tensile tests [J].Journal of Materials Processing Technology,2006,173(1):44-52.
    [64] D. Zois, A. Lekatou, M. Vardavoulias. Preparation and characterization of highly amorphousHVOF stainless steel coatings [J]. Journal of Alloys and Compounds,2010,504S283-S287.
    [65] W.-M. Zhao, Y. Wang, L.-X. Dong, et al. Corrosion mechanism of NiCrBSi coatings depositedby HVOF [J]. Surface and Coatings Technology,2005,190(2-3):293-298.
    [66] B. B. Process for surface treatment of metallic elements [P], Germany,1932.
    [67] B. B. Vacuum furnace, heated by glow discharge [P], Germany,1939.
    [68]王剑莉.表面改性铁基合金的电化学性能研究[D],大连:大连海事大学,2007.
    [69] A. Basu, J. D. Majumdar, J. Alphonsa, et al. Corrosion resistance improvement of high carbonlow alloy steel by plasma nitriding [J]. Materials Letters,2008,62(17-18):3117-3120.
    [70] L. Wang, K. S. Nam, S. C. Kwon. Effect of plasma nitriding of electroplated chromiumcoatings on the corrosion protection C45mild steel [J]. Surface and Coatings Technology,2007,202(2):203-207.
    [71] V. H. Baggio-Scheid, G. de Vasconcelos, M. A. S. Oliveira, et al. Duplex surface treatment ofchromium pack diffusion and plasma nitriding of mild steel [J]. Surface and CoatingsTechnology,2003,163-164313-317.
    [72]张通和,吴瑜光.离子束表面工程技术与应用[M].北京:机械工业出版社,2005:
    [73]郭凌宇.等离子体基低能氮离子注入奥氏体不锈钢的电化学腐蚀行为研究[D],大连:大连交通大学,2009.
    [74] M. Vigen Karimi, S. K. Sinha, D. C. Kothari, et al. Effect of ion implantation on corrosionresistance and high temperature oxidation resistance of Ti deposited316stainless steel [J].Surface and Coatings Technology,2002,158-159609-614.
    [75]赵永亮.等离子体/离子复合注入不锈钢表面改性研究[D],哈尔滨:哈尔滨工业大学,2006.
    [76] L. L. G. da Silva, M. Ueda, R. Z. Nakazato. Enhanced corrosion resistance of AISI H13steeltreated by nitrogen plasma immersion ion implantation [J]. Surface and Coatings Technology,2007,201(19-20):8291-8294.
    [77] G. F. Gomes, M. Ueda, H. Reuther, et al. Nitrogen recoil chromium implantation into SAE1020steel by means of ion beam or plasma immersion ion implantation [J]. Surface andCoatings Technology,2005,196(1-3):275-278.
    [78] D. Manova, T. Hoche, S. Mandl, et al. Development of CrN precipitates during the initialstages of PIII nitriding of stainless steel thin films [J]. Nuclear Instruments&Methods inPhysics Research Section B-Beam Interactions with Materials and Atoms,2009,267(8-9):1536-1539.
    [79] X. Zhong. Method and apparatus for introducing normally solid materials into substratesurfaces [P], USA,1985.
    [80] X. Zhong. Method and apparatus for introducing normally solid material into substratesurfaces [P], USA,1988.
    [81] X. Zhong. Method and apparatus for introducing normally solid material into substratesurfaces [P], Britain,1984.
    [82] X. Zhong. Method and apparatus for introducing normally solid material into substratesurfaces [P], Canada,1986.
    [83] X. Zhong. Method and apparatus for introducing normally solid material into substratesurfaces [P], Australia,1989.
    [84] X. Zhong. Method and apparatus for introducing normally solid material into substratesurfaces [P], Sweden,1989.
    [85]池成忠.碳钢表面中温双辉等离子渗铬合金化及渗层中碳迁移的研究[D],太原:太原理工大学,2004.
    [86]刘浩宇.材料表面技术的研究及双辉技术在防腐蚀中的应用[J].全面腐蚀控制,2006,(03):26-31.
    [87]谢燕翔,刘俊,王振霞,等.0Cr18Ni9钢表面等离子铌合金化及改性层抗晶间腐蚀性能的研究[J].热加工工艺,2009,38(4):71-73.
    [88]宣伟.纯钛双辉等离子渗钽的工艺及改性层耐蚀性能研究[D],南京:南京航空航天大学,2010.
    [89]梁文萍. Ti_2AlNb O相合金双辉等离子渗Mo、Cr及其性能研究[D],太原:太原理工大学,2007.
    [90]范爱兰. Ti6A14V合金双辉离子Mo-N共渗组织结构及腐蚀-磨损性能研究[D],太原:太原理工大学,2003.
    [91] X. Zhong. Double glow surface alloying process [C]. The Third Pacific Rim InternationalConference on Advanced Materials and Processing, Hawaii:1998:1969-1978.
    [92]徐重.等离子表面冶金学[M].北京:科学出版社,2008:24-27.
    [93] W. Ronghua. Plasma surface engineering research and its practical applications [M]. India:Research Signpost,2008:355-379.
    [94] H. Kihira, S. Ito, A. Mizoguchi. Creation of alloy design concept for anti air-born salinityweathering steel [J]. Zairy-to-Kankyo,2000,4930.
    [95] D. Peckner, I. M. Bernstein. Handbook of Stainless Steels [M]. New York: McGraw-Hill,1977:11.
    [96]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006:
    [97] M. Yamashita, H. Nagano, T. Misawa. Structure of protective rust layers formed on weatheringsteels bylong-term exposure in the industrial atmospheres of Japan and NorthAmerica [J]. ISIJinternational,1998,38(1):285-290.
    [98] T. Kamimura, M. Stratmann. The influence of chromium on the atmospheric corrosion of steel[J]. Corrosion Science,2001,43(3):429-447.
    [99] Z. T. Zhang, B. Cherry, M. Marosszeky. Polarisation behaviour of steel bar samples inconcrete in seawater.Part1: Experimental measurement of polarization curves of steel inconcrete [J]. Corrosion Science,2008,50357-364.
    [100] M. Stern, A. L. Geary. Electrochemical polarisation: I. A theoretical analysis of the shape ofpolarisation curves [J]. Journal of the Electrochemical Society,1957,10456-63.
    [101] M. ürgen, A. F. akir, O. L. Eryilmaz, et al. Corrosion of zirconium boride and zirconiumboron nitride coated steels [J]. Surface and Coatings Technology,1995,71(1):60-66.
    [102] E. Celik, I. Ozdemir, E. Avci, et al. Corrosion behaviour of plasma sprayed coatings [J].Surface and Coatings Technology,2005,193(1-3):297-302.
    [103] Y. H. Yoo, D. P. Le, J. G. Kim, et al. Corrosion behavior of TiN, TiAlN, TiAlSiN thin filmsdeposited on tool steel in the3.5wt.%NaCl solution [J]. Thin Solid Films,2008,516(11):3544-3548.
    [104] D. P. Le, Y. H. Yoo, J. G. Kim, et al. Corrosion characteristics of polyaniline-coated316Lstainless steel in sulphuric acid containing fluoride [J]. Corrosion Science,2009,51(2):330-338.
    [105]曹楚南,张鉴清.电化学阻抗谱[M].北京:科学出版社,2002:
    [106]张鉴清.电化学测试技术[M].北京:化学工业出版社,2010:162-203.
    [107] J. H. Morgan. Cathodic protection: Its theory and practice in the prevention of corrosion [M].London: Leonard Hill,1959:
    [108]李久青,杜翠薇.腐蚀试验方法及监测技术[M].北京:中国石化出版社,2007:72-73.
    [109] M. A. Lieberman, A. J. Lichtenberg. Principles of Plasma Discharges and Materials Processing
    [M]. Hoboken, New Jersey: Wiley-Interscience,2005:
    [110]周开亿.空心阴极放电及其应用(上册)[M].北京:真空科学与技术杂志社,1982:
    [111]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996:
    [112]江剑平,翁甲辉,杨泮堂.阴极电子学与气体放电原理[M].北京:国防工业出版社,1980:359.
    [113] S. Komiya, S. Ono, N. Umezu, et al. Characterization of thick chromium-carbon andchromium-nitrogen films deposited by hollow cathode discharge [J]. Thin Solid Films,1977,45(3):433-445.
    [114] S. Komiya, N. Umezu, T. Narusawa. Formation of thick titanium carbide films by the hollowcathode discharge reactive deposition process [J]. Thin Solid Films,1978,54(1):51-60.
    [115] X. Wu, R. S. Chandel, S. H. Pheow, et al. Brazing of Inconel X-750to stainless steel304using induction process [J]. Materials Science and Engineering A,2000,288(1):84-90.
    [116] R. Peelamedu, D. Kumar, S. Kumar. Microwave atmospheric pressure plasma for surfacetreatment and reactive coating on steel surfaces [J]. Surface and Coatings Technology,2006,201(7):4008-4013.
    [117] L. Dur es, B. F. O. Costa, R. Santos, et al. Fe2O3/aluminum thermite reaction intermediate andfinal products characterization [J]. Materials Science and Engineering: A,2007,465(1-2):199-210.
    [118] L. Zhang, Y. Jin, B. Peng, et al. Effects of annealing temperature on the crystal structure andproperties of electroless deposited Ni-W-Cr-P alloy coatings [J]. Applied Surface Science,2008,255(5, Part1):1686-1691.
    [119] S. Sokolov, E. Ortel, J. Radnik, et al. Influence of steel composition and pre-treatmentconditions on morphology and microstructure of TiO2mesoporous layers produced by dipcoating on steel substrates [J]. Thin Solid Films,2009,518(1):27-35.
    [120] I. A. Inman, P. S. Datta. Studies of high temperature sliding wear of metallic dissimilarinterfaces III: Incoloy MA956versus Incoloy800HT [J]. Tribology International,2010,43(11):2051-2071.
    [121] H. Zhang, D. Y. Li. Effects of sputtering condition on tribological properties of tungstencoatings [J]. Wear,2003,255(7-12):924-932.
    [122] C. Hammond. The Basics of Crystallography and Diffraction [M]. Oxford: Oxford UniversityPress,2001:
    [123]徐宝琨,阎卫平,刘明登.结晶学[M].吉林:吉林大学出版社,1991:
    [124]孟庆格,李建国,谭宁. pH值对块体非晶Pr60Fe30Al10在NaCl溶液中的腐蚀行为影响[J].稀有金属材料与工程,2007,36(1):71-74.
    [125] B. Szczygiel, M. Kolodziej. Composite Ni/Al2O3coatings and their corrosion resistance [J].Electrochimica Acta,2005,50(20):4188-4195.
    [126] A.-C. Ciubotariu, L. Benea, M. Lakatos-Varsanyi, et al. Electrochemical impedancespectroscopy and corrosion behaviour of Al2O3-Ni nano composite coatings [J].Electrochimica Acta,2008,53(13):4557-4563.
    [127]李劲风,张.昭,程英亮,等. NaCl溶液中Al-Li合金腐蚀过程的电化学特征[J].金属学报,2002,38(7):760-764.
    [128] C. Gouveia-Caridade, M. I. S. Pereira, C. M. A. Brett. Electrochemical noise and impedancestudy of aluminium in weakly acid chloride solution [J]. Electrochimica Acta,2004,49(5):785-793.
    [129] A. Altube, A. R. Pierna. Thermal and electrochemical properties of cobalt containing Finemettype alloys [J]. Electrochimica Acta,2004,49(2):303-311.
    [130]金宝舵,王树博,谢晓峰,等.阴极低铂载量催化剂直接甲醇燃料电池的交流阻抗谱[J].清华大学学报,2008,48(12):2107-2110.
    [131]吴红艳. Ti2AlNb基合金等离子表面合金化及摩擦学行为的研究[D],南京:南京航空航天大学,2008.
    [132] E. I. Meletis. A review of present mechanisms of transgranular stress corrosion cracking [J].Journal of the Mechanical Behavior of Materials,1996,7(1):1-14.
    [133] M. Janik-Czachor, Z. Szklarska-Smialowska. Pitting corrosion of single crystals of theFe-16Cr alloy in solutions containing Cl-ions [J]. Corrosion Science,1968,8(4):215-220.
    [134] C. FANG, X. ZHANG, H. HAO, et al. Effects of high magnetic field on solidification andcorrosion behaviors of magnesium alloy [J]. Journal of Materials Science&Technology,2007,23(6):806-810.
    [135]周开亿.空心阴极放电及其应用(下册)[M].北京:真空科学与技术杂志社,1982:580-581.
    [136]丘军林.气体放电与气体激光[M].武汉:华中理工大学出版社,1995:69-71.
    [137] L. Chengming, T. Linhai, X. Zhong, et al. Sputtering of W-Mo alloy under ion bombardment[J]. Trans. Nonferrous Met. Soc. China,1999,9(3):629-633.
    [138] Z. Li, S. Liu, Z. Chen. Study on plasma discharge parameters in double-glow plasma surfacealloying furnace [J]. Vacuum,2009,83(5):801-804.
    [139] X. Jiang, X. Xie, Z. Xu, et al. Investigation on multi-element Ni-Cr-Mo-Cu alloying layer bydouble glow plasma alloying technique [J]. Materials Chemistry and Physics,2005,92(2-3):340-347.
    [140] H. Wu, P. Zhang, L. Wang, et al. The role of process parameters in plasma surface chromisingof Ti2AlNb-based alloys [J]. Applied Surface Science,2009,256(5):1333-1340.
    [141] W. Wang, Z. Xu, Z. He, et al. Study on double-glow plasma niobium surface alloying of puretitanium [J]. Vacuum,2007,81(8):937-942.
    [142] C. Chi, Z. He, Z. Xu. The effects of gas pressure in plasma surface alloying process on testingaccuracy of the photoelectric pyrometer [J]. Vacuum,2003,72(3):213-215.
    [143] M. C. Li, M. Royer, D. Stien, et al. Inhibitive effect of sodium eperuate on zinc corrosion inalkaline solutions [J]. Corrosion Science,2008,50(7):1975-1981.
    [144] L. Sziráki, E. Sz cs, Z. Pilbáth, et al. Study of the initial stage of white rust formation on zincsingle crystal by EIS, STM/AFM and SEM/EDS techniques [J]. Electrochimica Acta,2001,46(24-25):3743-3754.
    [145] M. A. Arenas, J. de Damborenea. Interference by cerium cations during the multi-step zincdissolution process in a chloride-containing electrolyte [J]. Corrosion Science,2006,48(10):3196-3207.
    [146]张平则,李忠厚,贺志勇,等. Ti-6Al-4V表面双层辉光离子渗Cr研究[J].兵器材料科学与工程,2005,28(5):17-20.
    [147]谷坤明,吕乐阳,毛斐,等.厚度对DLC薄膜内应力的影响研究[J].功能材料,2011,42(s1):102-105.
    [148]严宇民,林乐耘,朱小龙.残余应力对BFe30-1-1铜管耐蚀性能的影响[J].中国腐蚀与防护学报,1994,14(1):59-64.
    [149] R.-H. Kim, H.-H. Park, G.-T. Joo. The growth of LiNbO3(006) on MgO (001) and LiTaO3(012) substrates by sol-gel procedure [J]. Applied Surface Science,2001,169-170564-569.
    [150]王豫,陈二保.化学气相沉积TiN—沉积温度及基体中碳的影响[J].安徽工业大学学报(自然科学版),1989,6(2):49-58.
    [151]王豫.钢基体中碳与铁对化学气相沉积TiN动力学的影响[J].钢铁研究学报,1999,11(5):47-51.
    [152]王豫,水恒勇.化学气相沉积制膜技术的应用与发展[J].热处理,2001,16(4):1-4.
    [153] B. A. Movchan, A. V. Demchishin, G. F. Badilenko. Effect of substrate temperature andamount of strengthening phase on density and mechanical properties of thick Ni-ZrO2condensates [J]. Thin Solid Films,1977,40(0):237-246.
    [154] B. A. Movchan, A. V. Demchishin, L. D. Kooluck. Investigation into the effects of the nature,the size and the number of particles on the structure and mechanical properties of thickiron-based dispersion-strengthened condensates [J]. Thin Solid Films,1977,44(3):285-294.
    [155] B. A. Movchan, G. F. Badilenko, A. V. Demchishin. Control of the structure and mechanicalproperties of thick vacuum condensates using dispersed particles [J]. Thin Solid Films,1979,63(1):67-75.
    [156] B. A. Movchan, A. V. Demchishin, G. F. Badilenko, et al. Structure-property relationships inmicrolaminate TiC/TiB2condensates [J]. Thin Solid Films,1982,97(3):215-219.
    [157] J. A. Thornton, D. G. Cornog. Sputtered austenitic manganese steel [J]. Thin Solid Films,1977,45(2):397-406.
    [158] J. A. Thornton, D. P. Ferriss. Structural and wear properties of sputter-deposited lavesintermetallic alloy [J]. Thin Solid Films,1977,40(0):365-374.
    [159] J. A. Thornton, A. S. Penfold, J. L. Lamb. Sputter-deposited Al2O3/Mo/Al2O3selectiveabsorber coatings [J]. Thin Solid Films,1980,72(1):101-110.
    [160] T. John A. High rate sputtering techniques [J]. Thin Solid Films,1981,80(1-3):1-11.
    [161] J. A. Thornton, J. L. Lamb. Thermal stability studies of sputter-deposited multilayer selectiveabsorber coatings [J]. Thin Solid Films,1982,96(2):175-183.
    [162] T. John A. Plasma-assisted deposition processes: Theory, mechanisms and applications [J].Thin Solid Films,1983,107(1):3-19.
    [163] J. A. Thornton. The microstructure of sputter-deposited coatings [J]. Journal of VacuumScience&Technology A: Vacuum, Surfaces, and Films,1986,4(6):3059-3065.
    [164] P. A. Lindfors, W. M. Mularie, G. K. Wehner. Cathodic arc deposition technology [J]. Surfaceand Coatings Technology,1986,29(4):275-290.
    [165] H. Freller, H. Haessler. TixAl1-xN films deposited by ion plating with an arc evaporator [J].Thin Solid Films,1987,153(1-3):67-74.
    [166]汪轩义,吴荫顺,张琳,等.316L不锈钢钝化膜在Cl-介质中的耐蚀机制[J].腐蚀科学与防护技术,2000,12(6):311-314.
    [167] D. H. DeYoung. Solubilities of oxides for inert anodes in Cryolite-based melts [J]. LightMetals,1986,299-307.
    [168] Q. Yu, X. Ma, M. Wang, et al. Influence of embedded particles on microstructure, corrosionresistance and thermal conductivity of CuO/SiO2and NiO/SiO2nanocomposite coatings [J].Applied Surface Science,2008,254(16):5089-5094.
    [169] B. Fernández, J. M. Almanza, J. L. Rodríguez, et al. Corrosion mechanisms of Al2O3/MgAl2O4by V2O5, NiO, Fe2O3and vanadium slag [J]. Ceramics International,2011,37(8):2973-2979.
    [170] A. Bouzoubaa, B. Diawara, V. Maurice, et al. Ab initio study of the interaction of chlorideswith defect-free hydroxylated NiO surfaces [J]. Corrosion Science,2009,51(4):941-948.
    [171]胡萍丽,谢发勤,吴向清,等. N80钢电镀Ni-Cr合金工艺的研究[J].电镀与环保,2009,29(1):26.
    [172]鲍崇高,潘继勇.双相不锈钢2605N与铁素体不锈钢Cr30的腐蚀性能[J].铸造,2010,59(10):1024-1026.
    [173]向红亮,黄伟林,刘东,等.29Cr超级双相不锈铸钢表面腐蚀XPS分析[J].腐蚀科学与防护技术,2011,23(4):303-312.
    [174] N. Saito, I. Nakaaki, H. Iwata, et al. Structural and electrical properties of Ni-Cr oxide filmsprepared by magnetron sputtering [J]. Thin Solid Films, In Press, Corrected Proof,
    [175] M. Yamashita, H. Konishi, T. Kozakura, et al. In situ observation of initial rust formationprocess on carbon steel under Na2SO4and NaCl solution films with wet/dry cycles usingsynchrotron radiation X-rays [J]. Corrosion Science,2005,47(10):2492-2498.
    [176] R. W. Stahle, J. Hochmann, R. D. McCright, et al. Stress Corrosion Cracking and HydrogenEmbrittlement of Iron Base Alloys [J]. Journal of the Electrochemical Society,1979,126(5):215C-215C.
    [177] V. G. Rivlin, G. V. Raynor. Critical evaluation of constitution of chromium-iron-nickel system[J]. International Metals Reviews,1980,25(1):21-40.
    [178] A. Marucco. Phase transformations during long-term ageing of Ni-Fe-Cr alloys in thetemperature range450-600℃[J]. Materials Science and Engineering A,1995,194(2):225-233.
    [179] S. Dai, W. Liu. First-principles study on the structural, mechanical and electronic properties ofδ and γ″phases in Inconel718[J]. Computational Materials Science,2010,49(2):414-418.
    [180] C. T. Sims, W. C. Hagel. The Superalloys [M]. New York, USA: John Wiley&Sons,1972:
    [181] C. T. Sims, N. S. Stoloff, W. C. Hagel. Superalloys II [M]. New York, USA: John Wiley&Sons,1987:
    [182] R. C. Reed. The Superalloys Fundamentals and Applications [M]. Cambridge, UK: CambridgeUniversity Press,2006:
    [183] H. Y. Yasuda, D. Furuta, Y. Umakoshi. Effect of long-range order on the cyclic deformationbehaviour of Ni3Fe single crystals [J]. Acta Materialia,2000,48(13):3401-3408.
    [184] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos. Phase stability in the Fe-Ni system:Investigation by first-principles calculations and atomistic simulations [J]. Acta Materialia,2005,53(15):4029-4041.
    [185] G. Cacciamani, A. Dinsdale, M. Palumbo, et al. The Fe-Ni system: Thermodynamic modellingassisted by atomistic calculations [J]. Intermetallics,2010,18(6):1148-1162.
    [186] Y. Himuro, Y. Tanaka, N. Kamiya, et al. Stability of ordered L12phase in Ni3Fe-Ni3X (X:Siand Al) pseudobinary alloys [J]. Intermetallics,2004,12(6):635-643.
    [187] D. Connétable, M. Mathon, J. Lacaze. First principle energies of binary and ternary phases ofthe Fe-Nb-Ni-Cr system [J]. Calphad, In Press, Uncorrected Proof,
    [188] M. Hillert, C. Qiu. A reassessment of the Cr-Fe-Ni system [J]. Metallurgical and MaterialsTransactions A,1990,21(6):1673-1680.
    [189] J. Miettinen. Thermodynamic reassessment of Fe-Cr-Ni system with emphasis on the iron-richcorner [J]. Calphad,1999,23(2):231-248.
    [190] L. H. Thomas. The calculation of atomic fields [J]. Mathematical Proceedings of theCambridge Philosophical Society,1927,23(5):542-548.
    [191] E. Fermi. A statistical method for determining some properties of the atom. I [J]. Atti dellaAccademia Nazionale dei Lincei,1927,6602-607.
    [192] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas [J]. Physical Review,1964,136(3B):B864-B871.
    [193] W. Kohn, L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review,1965,140(4A): A1133-A1138.
    [194] J. P. Perdew, W. Yue. Accurate and simple density functional for the electronic exchangeenergy: Generalized gradient approximation [J]. Physical Review B,1986,33(12):8800-8802.
    [195] J. P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gascorrelation energy [J]. Physical Review B,1992,45(23):13244-13249.
    [196] A. D. Becke. A multicenter numerical integration scheme for polyatomic molecules [J]. TheJournal of Chemical Physics,1988,88(4):2547-2553.
    [197] C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula intoa functional of the electron density [J]. Physical Review B,1988,37(2):785-789.
    [198] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple [J].Physical Review Letters,1996,77(18):3865-3868.
    [199] D. R. Hamann, M. Schlüter, C. Chiang. Norm-Conserving Pseudopotentials [J]. PhysicalReview Letters,1979,43(20):1494-1497.
    [200] P. E. Bl chl. Generalized separable potentials for electronic-structure calculations [J]. PhysicalReview B,1990,41(8):5414-5416.
    [201] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J].Physical Review B,1990,41(11):7892-7895.
    [202]赵巍.金属Fe/水溶液界面几何结构与电子结构研究[D],北京:清华大学,2009.
    [203] W. Zhao, J. Wang, F. Liu, et al. First Principles Study of Water Monomer Adsorption onCharged Fe(110) Surface [J]. Journal of Nanoscience and Nanotechnology,2009,9(2):1229-1233.
    [204]赵巍,汪家道,刘峰斌,等. H2O分子在Fe(100),Fe(110),Fe(111)表面吸附的第一性原理研究[J].物理学报,2009,(05):3352-3358.
    [205]朱晓林. Q235钢双辉等离子Ni-Cr共渗及其性能研究[D],南京:南京航空航天大学,2009.
    [206] J.G. Casta o, C.A. Botero, A.H. Restrepo, et al. Atmospheric corrosion of carbon steel inColombia [J]. Corrosion Science,2010,52(1):216-223.
    [207] Y. Ma, Y. Li, F. Wang. The effect of β-FeOOH on the corrosion behavior of low carbon steelexposed in tropic marine environment [J]. Materials Chemistry and Physics,2008,112(3):844-852.
    [208] M. Kimura, H. Kihira, N. Ohta, et al. Control of Fe(O,OH)6nano-network structures of rustfor high atmospheric-corrosion resistance [J]. Corrosion Science,2005,47(10):2499-2509.
    [209]王建军,郭小丹,郑文龙,等.海洋大气暴露3年的碳钢与耐候钢表面锈层分析[J].腐蚀与防护,2002,23(7):288-291.
    [210]曹楚南.中国材料的自然环境腐蚀[M].北京:化学工业出版社,2005:90-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700