纳米二氧化钛对Wistar大鼠突触可塑性的影响及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术指的是将普通尺度的材料用特殊的工艺加工制作而成,使其具有纳米尺度并表现出许多不同的特性。由此加工而成粒径小于100nm的材料被人们称为纳米材料。由于纳米材料具有小尺寸效应、大的比表面积、光催化等特性,现在已经被广泛应用多个领域,例如医学、药物载体、农业以及工业生产等等。
     纳米二氧化钛(Nanosized titanium dioxide,nano-TiO2)作为最常用的纳米材料之一,在工业中被大量制作并应用于印刷业、造纸业、食物添加剂以及颜料、化妆品等产业。虽然纳米二氧化钛已被广泛应用,但是关于纳米二氧化钛对人体健康以及周围环境的影响,目前仍不十分清楚。纳米二氧化钛可以通过多种途径进入人体,例如通过呼吸道吸入、经由消化道摄入、通过皮肤直接渗入以及通过注射的方式进入到血液循环系统等等。这样纳米二氧化钛极有可能到达人体的各个器官,对人体健康产生影响。研究发现,由于具有纳米尺度及特殊的理化性质,纳米材料可以穿透血脑屏障进入大脑,因此关于纳米二氧化钛对中枢神经系统的影响的研究至关重要。本研究从整体水平、细胞水平以及离子通道水平研究了纳米二氧化钛对中枢神经系统的影响,并对其作用的可能机制进行了初步探讨。
     第一部分纳米二氧化钛对Wistar大鼠空间认知能力的影响
     目的:观察纳米二氧化钛对Wistar大鼠空间认知能力的影响,并对其可能机制进行探讨。
     材料与方法:大鼠随机分成三组:正常对照组、5mg/kg纳米二氧化钛组以及50mg/kg纳米二氧化钛组。采用腹腔注射的方式给予大鼠纳米二氧化钛悬浊液,每天一次,连续给予21天。之后,利用Morris水迷宫实验检测了纳米二氧化钛对大鼠空间认知功能的影响,利用电生理实验记录大鼠海马Schaffer侧枝至CA1区的长时程增强效应(long-term potentiation,LTP)。利用电感耦合等离子体质谱法(inductively coupled plasma-mass spectrometry,ICP-MS)检测腹腔注射纳米二氧化钛后大鼠海马区Ti元素的含量变化,同时用ELISA方法检测纳米二氧化钛对海马脑区超氧化物歧化酶(Superoxidedismutase,SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)活性的影响及丙二醛(malondialdehyde,MDA)含量的改变。
     结果:
     1、ICP-MS检测发现,给予大鼠腹腔注射纳米二氧化钛后,随着纳米二化钛浓度的增高,大鼠海马区的Ti元素含量逐渐增高,与正常组相比具有统计学差异。
     2、Morris水迷宫实验:在空间探索阶段,与正常对照组及5mg/kg纳米二氧化钛组相比,50mg/kg纳米二氧化钛组大鼠的逃避潜伏期明显增加,在定位巡航阶段,50mg/kg纳米二氧化钛组大鼠在目标象限游泳时间及穿越平台的次数显著减少,正常组与5mg/kg纳米二氧化钛组大鼠没有统计学差异。
     3、LTP实验:与正常对照组及5mg/kg纳米二氧化钛组相比,50mg/kg纳米二氧化钛组大鼠兴奋性突触后电位的斜率显著降低(P<0.05),而前两者没有统计学差异。
     4、 ELISA实验:50mg/kg纳米二氧化钛组及5mg/kg纳米二氧化钛组大鼠海马区的SOD、GSH-Px活性均显著下降,而MDA含量均显著增高,与正常组相比,具有统计学差异。
     结论:
     通过本部分实验可知,纳米二氧化钛可以通过血脑屏障,并在大鼠海马脑区沉积。同时纳米二氧化钛可以降低大鼠海马Schaffer侧枝至CA1区的LTP水平,引起大鼠空间认知功能受到损害,而这可能与纳米二氧化钛引起神经元发生氧化应激损伤有关。
     第二部分纳米二氧化钛对PC12细胞的损伤作用
     目的:利用PC12细胞作为神经元模型,观察纳米二氧化钛对神经元细胞的损伤作用。
     方法:将不同浓度的纳米二氧化钛与PC12细胞分别共培养6,12,24和48小时后,利用倒置相差显微镜观察PC12细胞形态的变化,用四唑盐比色法(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide,MTT)检测纳米二氧化钛对PC12细胞存活率的影响。利用流式细胞术检测PC12细胞发生凋亡的情况和活性氧簇(reactiveoxygen species,ROS)在细胞内的积聚水平。同时,通过加入ROS清除剂2-巯基丙酰甘氨酸(N-(2-mercaptopropionyl)-glycine,N-MPG),观察ROS的产生对细胞凋亡的影响。
     结果:
     1、纳米二氧化钛与PC12细胞共培养后,细胞的形态学发生明显变化,细胞的数量也逐渐变少,具有浓度依赖性,同时,可以看到纳米二氧化钛在细胞表面聚集。
     2、MTT实验:与纳米二氧化钛共培养后,细胞的存活率显著下降,且具有时间和浓度依赖性。
     3、流式细胞术:检测发现纳米二氧化钛可以引起细胞内ROS水平的增高,且可以诱导PC12细胞发生凋亡。
     4、ROS清除剂N-MPG可以降低纳米二氧化钛对PC12细胞损伤,使PC12细胞的凋亡率降低。
     结论:
     纳米二氧化钛可能使ROS在细胞内积聚进而诱导PC12细胞发生凋亡现象。
     第三部分纳米二氧化钛对大鼠海马CA1区神经元离子通道的影响
     目的:利用膜片钳技术,观察纳米二氧化钛对大鼠海马CA1区神经元电压门控钠通道、钾通道及神经元兴奋性的影响。
     方法:利用全细胞膜片钳技术,在电压钳记录模式下,观察纳米二氧化钛对电压门控钠通道、钾通道的电流幅值及通道动力学的影响。在电流钳记录模式下,观察纳米二氧化钛对神经元动作电位的影响。
     结果:
     1、纳米二氧化钛抑制了电压门控钠通道电流的幅值,具有浓度依赖性,使稳态失活曲线右移,失活后恢复时间延长,但对其激活曲线没有显著影响。
     2、纳米二氧化钛抑制了瞬时外向钾电流及延迟整流钾电流的幅值,同时加快了瞬时外向钾通道的失活过程并使失活后恢复时间延长,但是对瞬时外向钾通道的及延迟整流钾电流的激活动力学没有显著影响。
     3、纳米二氧化钛降低了单个动作电位的峰值及超射值,增加了半峰宽及动作电位的发放频率。
     结论:
     纳米二氧化钛可以抑制电压门控钠通道和钾通道,并使神经元兴奋性增加,进而使神经元发生损伤。
Nanotechnology involves the creation and manipulation of materialsat the nanoscale level to create unique products that exploit novelproperties. Nanomaterials range in size from1to100nm. The newphysical and chemical properties of novel engineered nanoparticle makethem extremely attractive for using in applications such as medicalscience, drug applications, agricultural and defense industries. Nanosizedtitanium dioxide (nano-TiO_2), one of the most widely used nanoparticles,has now been produced in a large industrial scale and used widely inpaints, paper and plastics, as well as in food additives and colorants.
     Despite wide ranges of applications, there is a serious lack ofinformation on the impact of nano-TiO_2on human health and theenvironment. The extensive uses in medical research and industrialapplications highlight that there are many routes for the nano-TiO_2to potentially enter into human bodies, such as through inhalation(respiratory tract), ingestion (gastrointestinal tract), dermal penetration(skin) and injection (blood circulation). With the ultrafine size andunusual properties, nano-TiO_2can enter human body and cross biologicalbarriers such as blood brain barrier (BBB) relatively unimpeded. Thereby,the studies to evaluate the effects of nano-TiO_2on the central nervoussystem (CNS) are allimportant.
     In this study, we investigated the effects of nano-TiO_2on the spatialcognition capability of Wistar rats by intraperitoneal injection.Meanwhile, the cytotoxicology of nano-TiO_2and the effects of nano-TiO_2on the ion channels of hipocampal CA1neurons were detected inexperiments.
     Part1the effects of nano-TiO_2on the spatial cognition capability ofWistar rats
     Objective: To investigate the effects of nano-TiO_2on synaptic plasticityand spatial cognition of Wistar rats, and discuss the underlingmechanism.
     Material and methods: Rats were randomly divided into three groups:normal control group,5mg/kg nano-TiO_2group and50mg/kg nano-TiO_2group. Rats were treated intraperitoneally with different concentrations ofnano-TiO_2suspension once a day for3weeks. After that, the Morriswater maze (MWM) test was employed to evaluate the spatial cognitivefunction. The long term potentiation (LTP) from Schaffer collaterals toCA1region in the hippocampus was recorded. The Ti content in thehippocampus was tested by the inductively coupled plasma-massspectrometry (ICP-MS). In addition, the activity of superoxide dismutase(SOD), glutathione peroxidase(GSH-Px) and the content of malondialdehyde (MDA) in hippocampus were detected to approach thepossible mechanism of neuron damage caused by nano-TiO_2.
     Results:
     1. The ICP-MS test showed that the Ti content in the hippocampus wasincreased in a concentration-dependent manner when rats wereexposed to nano-TiO_2, which indicated that nano-TiO_2could crossBBB and accumulate in the hippocampus region.
     2. The MWM test showed that the escape latencies in place navigationphase was significantly increased in50mg/kg nano-TiO_2groupcompared to those of5mg/kg nano-TiO_2group and the control group(P<0.01). Moreover, in spatial probe phase, the time percentage intarget quadrant was significantly decreased in50mg/kg nano-TiO_2group (P<0.05); there was no significance between5mg/kgnano-TiO_2group and control group. And the number of platformlocation crossings was also decreased in both the50mg/kg nano-TiO_2 group and the5mg/kg nano-TiO_2group compared to that of controlgroup.
     3. The LTP test indicated that the slope of excitatory postsynapticpotential (EPSP) was lower in50mg/kg nano-TiO_2group than that of5mg/kg nano-TiO_2group and control group (P<0.05).
     4. In50mg/kg nano-TiO_2group and5mg/kg nano-TiO_2group, theactivity levels of superoxide dismutase (SOD) and glutathioneperoxidase (GSH-Px) were significantly decreased while the contentof malondialdehyde (MDA) was significantly increased comparedwith those of control group.
     Conclusion:
     Nano-TiO_2can cross the BBB and accumulate in the hippocampus.Meanwhile, nano-TiO_2could decrease LTP from Schaffer collaterals toCA1region in the hippocampus and impair the spatial cognitivecapability of rats, which may partly due to oxidative stress damage of neurons caused by nano-TiO_2.
     Part2cytotoxicolgy of nano-TiO_2on PC12cells
     Objective: To investigate the cytotoxicology of nano-TiO_2on PC12cells.
     Methods: PC12cells were cultured with different concentrations ofnano-TiO_2for6,12,24and48h. The inverted phase contrast microscopewas used to observe the morphology of nano-TiO_2treated PC12cells,and the cellular viability was tested by3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, the flowcytometry was used to detect the apoptosis of PC12cells and the level ofintracellular reactive oxygen species (ROS) after cells were treated bynano-TiO_2. The ROS scavenger N-(2-mercaptopropionyl)-glycine (N-MPG) was used to approach the relationship between the cellapoptosis and intracellular ROS accumulation.
     Results:
     1. When PC12cells were incubated with different concentrations ofnano-TiO_2for24h, there was a significant change in the cellmorphology, and the cell number was reduced in aconcentration-dependent manner.
     2. Results of MTT assay showed that the cellular viability wassignificantly decreased in concentration and time dependent mannerafter cells were treated with nano-TiO_2.
     3. Results of flow cytometry test: The treatment of nano-TiO_2induced theapoptosis of PC12cells and increased the level of intracellular ROS.
     4. The ROS scavenger N-MPG improved the cellular viability andreduced the damage caused by nano-TiO_2.
     Conclusion:
     Nano-TiO_2could cause the accumulation of intracellular ROS andinduce the cell apoptosis successively.
     Part3the effect of nano-TiO_2on voltage-gated ion channels in rathippocampal CA1neurons
     Objective: To approach the effect of nano-TiO_2on voltage-gated ionchannels in rat hippocampal CA1neurons
     Methods: The effects of nano-TiO_2on voltage-gated sodium currents (INa)and voltage-gated potassium currents were studied in rat hippocampalCA1neurons using the voltage clamp technique in the whole-cellconfiguration. Meanwhile, the effects of nano-TiO_2on the actionpotential (AP) were detected by the current clamp technique in thewhole-cell configuration.
     Results:
     1. The amplitude of INawas significantly inhibited by nano-TiO_2in aconcentration-dependent manner, which produced a positive shift inthe inactivation curve of INaand delayed the recovery of INafrominactivation. The activation curve was not affected.
     2. The amplitude of transient outward potassium current (IA) and delayedrectifier potassium current (IK) was significantly inhibited bynano-TiO_2. Meanwhile, the steady-state inactivation curve of IAwasshifted to the left by nano-TiO_2, and the recovery of IAfrominactivation was delayed. There were no significant shift in theactivation curve of IAand IKafter nano-TiO_2treatment.
     3. In the present of nano-TiO_2, the peak amplitude and overshoot of theevoked single action potential were decreased, but the half-width wasincreased. Furthermore, the firing rate of repetitive firing wasdecreased.
     Conclusion:
     Nano-TiO_2could alter the excitability of neurons by impairingfunctions of voltage-gated sodium channels (VGSCs) and Kv, andthereby induce damages of neurons.
引文
[1]. Nel A, X.T., Madler L, Li N, Toxic Potential of Materials at theNanolevel. Science,2006.311(5761): p.622-627.
    [2]. Elsaesser, A. and C.V. Howard, Toxicology of nanoparticles. AdvDrug Deliv Rev,2011.
    [3]. Wiesenthal, A., L. Hunter, S. Wang, J. Wickliffe, and M. Wilkerson,Nanoparticles: small and mighty. Int J Dermatol,2011.50(3): p.247-54.
    [4]. Hirai, T., T. Yoshikawa, H. Nabeshi, T. Yoshida, S. Tochigi, K.Ichihashi, M. Uji, T. Akase, K. Nagano, Y. Abe, H. Kamada, N. Itoh,S. Tsunoda, Y. Yoshioka, and Y. Tsutsumi, Amorphous silicananoparticles size-dependently aggravate atopic dermatitis-like skinlesions following an intradermal injection. Part Fibre Toxicol.9: p.3.
    [5]. Warheit, D.B., W.J. Brock, K.P. Lee, T.R. Webb, and K.L. Reed,Comparative pulmonary toxicity inhalation and instillation studieswith different TiO2particle formulations: impact of surfacetreatments on particle toxicity. Toxicol Sci,2005.88(2): p.514-24.
    [6]. L'Azou, B., J. Jorly, D. On, E. Sellier, F. Moisan, J. Fleury-Feith, J.Cambar, P. Brochard, and C. Ohayon-Courtes, In vitro effects ofnanoparticles on renal cells. Part Fibre Toxicol,2008.5: p.22.
    [7]. Sharifi, S., S. Behzadi, S. Laurent, M. Laird Forrest, P. Stroeve, andM. Mahmoudi, Toxicity of nanomaterials. Chem Soc Rev,2012.41(6): p.2323-43.
    [8]. Schrand, A.M., M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A.Smith, and A.F. Syed, Metal-based nanoparticles and their toxicityassessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol,2010.2(5): p.544-68.
    [9]. Lam, C.W., J.T. James, R. McCluskey, and R.L. Hunter, Pulmonarytoxicity of single-wall carbon nanotubes in mice7and90days afterintratracheal instillation. Toxicol Sci,2004.77(1): p.126-34.
    [10].Zhou, Y. and R.A. Yokel, The chemical species of aluminuminfluences its paracellular flux across and uptake into Caco-2cells, amodel of gastrointestinal absorption. Toxicol Sci,2005.87(1): p.15-26.
    [11].Sadrieh, N., A.M. Wokovich, N.V. Gopee, J. Zheng, D. Haines, D.Parmiter, P.H. Siitonen, C.R. Cozart, A.K. Patri, S.E. McNeil, P.C.Howard, W.H. Doub, and L.F. Buhse, Lack of significant dermalpenetration of titanium dioxide from sunscreen formulationscontaining nano-and submicron-size TiO2particles. Toxicol Sci,2010.115(1): p.156-66.
    [12].Oberdorster, G., E. Oberdorster, and J. Oberdorster, Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles.Environ Health Perspect,2005.113(7): p.823-39.
    [13].张婷,唐萌,纳米颗粒吸入毒性研究进展.卫生研究,2008.37(5):p.633-636.
    [14].Borm, P.J. and W. Kreyling, Toxicological hazards of inhalednanoparticles--potential implications for drug delivery. J NanosciNanotechnol,2004.4(5): p.521-31.
    [15].Nikula, K.J., Rat lung tumors induced by exposure to selectedpoorly soluble nonfibrous particles. Inhal Toxicol,2000.12(1-2): p.97-119.
    [16].Florence, A.T., A.M. Hillery, N. Hussain, and P.U. Jani, Factorsaffecting the oral uptake and translocation of polystyrenenanoparticles: histological and analytical evidence. J Drug Target,1995.3(1): p.65-70.
    [17].Sugibayashi, K., H. Todo, and E. Kimura, Safety evaluation oftitanium dioxide nanoparticles by their absorption and eliminationprofiles. J Toxicol Sci,2008.33(3): p.293-8.
    [18].Jani, P.U., McCarthy, D.E., Florence, A.T., Titanium dioxide (rutile)particle uptake from the rat GI tract and translocation to systemicorgans after oral administration. Int. J. Pharm.,1994.105: p.157-168.
    [19].Hoet, P.H., I. Bruske-Hohlfeld, and O.V. Salata, Nanoparticles-known and unknown health risks. J Nanobiotechnology,2004.2(1):p.12.
    [20].Oberdorster, G., Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W.Kreyling, and C. Cox, Translocation of inhaled ultrafine particles tothe brain. Inhal Toxicol,2004.16(6-7): p.437-45.
    [21].Sharma, H.S. and A. Sharma, Nanoparticles aggravate heat stressinduced cognitive deficits, blood-brain barrier disruption, edemaformation and brain pathology. Prog Brain Res,2007.162: p.245-73.
    [22].Gelis, C., S. Girard, A. Mavon, M. Delverdier, N. Paillous, and P.Vicendo, Assessment of the skin photoprotective capacities of anorgano‐mineral broad‐spectrum sunblock on two ex vivo skinmodels. Photodermatology, photoimmunology&photomedicine,2003.19(5): p.242-253.
    [23].Sun, D., T.T. Meng, T.H. Loong, and T.J. Hwa, Removal of naturalorganic matter from water using a nano-structured photocatalystcoupled with filtration membrane. Water Sci Technol,2004.49(1): p.103-10.
    [24].Park, J.H., S. Kim, and A.J. Bard, Novel carbon-doped TiO2nanotube arrays with high aspect ratios for efficient solar watersplitting. Nano Lett,2006.6(1): p.24-8.
    [25].Chen, Y., M. Kele, P. Sajonz, B. Sellergren, and G. Guiochon,Influence of Thermal Annealing on the Thermodynamic andMass-Transfer Kinetic Properties of d-and l-Phenylalanine Anilideon Imprinted Polymeric Stationary Phases. Anal Chem,1999.71(5):p.928-38.
    [26].Banerjee, A.N., The design, fabrication, and photocatalytic utility ofnanostructured semiconductors: focus on TiO. Nanotechnology,Science and Applications,2011.4: p.35-65.
    [27].Warheit, D.B., T.R. Webb, K.L. Reed, S. Frerichs, and C.M. Sayes,Pulmonary toxicity study in rats with three forms of ultrafine-TiO2particles: differential responses related to surface properties.Toxicology,2007.230(1): p.90-104.
    [28].Grassian, V.H., T. O'Shaughnessy P, A. Adamcakova-Dodd, J.M.Pettibone, and P.S. Thorne, Inhalation exposure study of titaniumdioxide nanoparticles with a primary particle size of2to5nm.Environ Health Perspect,2007.115(3): p.397-402.
    [29].Chen, H.W., S.F. Su, C.T. Chien, W.H. Lin, S.L. Yu, C.C. Chou, J.J.Chen, and P.C. Yang, Titanium dioxide nanoparticles induceemphysema-like lung injury in mice. FASEB J,2006.20(13): p.2393-5.
    [30].Ma-Hock, L., S. Burkhardt, V. Strauss, A.O. Gamer, K. Wiench, B.van Ravenzwaay, and R. Landsiedel, Development of a short-terminhalation test in the rat using nano-titanium dioxide as a modelsubstance. Inhal Toxicol,2009.21(2): p.102-18.
    [31].Lee, K.P., H.J. Trochimowicz, and C.F. Reinhardt, Pulmonaryresponse of rats exposed to titanium dioxide (TiO2) by inhalation fortwo years. Toxicol Appl Pharmacol,1985.79(2): p.179-92.
    [32].Bhattacharya, K., M. Davoren, J. Boertz, R.P. Schins, E. Hoffmann,and E. Dopp, Titanium dioxide nanoparticles induce oxidative stressand DNA-adduct formation but not DNA-breakage in human lungcells. Part Fibre Toxicol,2009.6: p.17.
    [33].Park, E.J., J. Yi, K.H. Chung, D.Y. Ryu, J. Choi, and K. Park,Oxidative stress and apoptosis induced by titanium dioxidenanoparticles in cultured BEAS-2B cells. Toxicol Lett,2008.180(3):p.222-9.
    [34].Gurr, J.R., A.S. Wang, C.H. Chen, and K.Y. Jan, Ultrafine titaniumdioxide particles in the absence of photoactivation can induceoxidative damage to human bronchial epithelial cells. Toxicology,2005.213(1-2): p.66-73.
    [35].Wang, J., G. Zhou, C. Chen, H. Yu, T. Wang, Y. Ma, G. Jia, Y. Gao, B.Li, J. Sun, Y. Li, F. Jiao, Y. Zhao, and Z. Chai, Acute toxicity andbiodistribution of different sized titanium dioxide particles in miceafter oral administration. Toxicol Lett,2007.168(2): p.176-85.
    [36].Liu, H., L. Ma, J. Zhao, J. Liu, J. Yan, J. Ruan, and F. Hong,Biochemical toxicity of nano-anatase TiO2particles in mice. BiolTrace Elem Res,2009.129(1-3): p.170-80.
    [37].Xiong, D., T. Fang, L. Yu, X. Sima, and W. Zhu, Effects ofnano-scale TiO2, ZnO and their bulk counterparts on zebrafish:acute toxicity, oxidative stress and oxidative damage. Sci TotalEnviron,2011.409(8): p.1444-52.
    [38].Zhao, J., N. Li, S. Wang, X. Zhao, J. Wang, J. Yan, J. Ruan, H. Wang,and F. Hong, The mechanism of oxidative damage in thenephrotoxicity of mice caused by nano-anatase TiO2. Journal ofExperimental Nanoscience,2010.5(5): p.447-462.
    [39].Dunford, R., A. Salinaro, L. Cai, N. Serpone, S. Horikoshi, H.Hidaka, and J. Knowland, Chemical oxidation and DNA damagecatalysed by inorganic sunscreen ingredients. FEBS Lett,1997.418(1-2): p.87-90.
    [40].Granum, B., P.I. Gaarder, E. Groeng, R. Leikvold, E. Namork, andM. Lovik, Fine particles of widely different composition have anadjuvant effect on the production of allergen-specific antibodies.Toxicol Lett,2001.118(3): p.171-81.
    [41].Pflucker, F., V. Wendel, H. Hohenberg, E. Gartner, T. Will, S.Pfeiffer, R. Wepf, and H. Gers-Barlag, The human stratum corneumlayer: an effective barrier against dermal uptake of different forms oftopically applied micronised titanium dioxide. Skin Pharmacol ApplSkin Physiol,2001.14Suppl1: p.92-7.
    [42].Kiss, B., T. Biro, G. Czifra, B.I. Toth, Z. Kertesz, Z. Szikszai, A.Z.Kiss, I. Juhasz, C.C. Zouboulis, and J. Hunyadi, Investigation ofmicronized titanium dioxide penetration in human skin xenograftsand its effect on cellular functions of human skin-derived cells. ExpDermatol,2008.17(8): p.659-67.
    [43].Gamer, A.O., E. Leibold, and B. van Ravenzwaay, The in vitroabsorption of microfine zinc oxide and titanium dioxide throughporcine skin. Toxicol In Vitro,2006.20(3): p.301-7.
    [44].Bennat, C. and C.C. Muller-Goymann, Skin penetration andstabilization of formulations containing microfine titanium dioxideas physical UV filter. Int J Cosmet Sci,2000.22(4): p.271-83.
    [45].Menzel, F., T. Reinert, J. Vogt, and T. Butz, Investigations ofpercutaneous uptake of ultrafine TiO2particles at the high energyion nanoprobe LIPSION. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials andAtoms,2004.219–220(0): p.82-86.
    [46].Lademann, J., H. Weigmann, C. Rickmeyer, H. Barthelmes, H.Schaefer, G. Mueller, and W. Sterry, Penetration of titanium dioxidemicroparticles in a sunscreen formulation into the horny layer andthe follicular orifice. Skin Pharmacol Appl Skin Physiol,1999.12(5):p.247-56.
    [47].Begley, D.J., The blood-brain barrier: principles for targetingpeptides and drugs to the central nervous system. J PharmPharmacol,1996.48(2): p.136-46.
    [48].Long, T.C., J. Tajuba, P. Sama, N. Saleh, C. Swartz, J. Parker, S.Hester, G.V. Lowry, and B. Veronesi, Nanosize titanium dioxidestimulates reactive oxygen species in brain microglia and damagesneurons in vitro. Environ Health Perspect,2007.115(11): p.1631-7.
    [49].Illum, L., Transport of drugs from the nasal cavity to the centralnervous system. Eur J Pharm Sci,2000.11(1): p.1-18.
    [50].Wang, J., Y. Liu, F. Jiao, F. Lao, W. Li, Y. Gu, Y. Li, C. Ge, G. Zhou,B. Li, Y. Zhao, Z. Chai, and C. Chen, Time-dependent translocationand potential impairment on central nervous system by intranasallyinstilled TiO(2) nanoparticles. Toxicology,2008.254(1-2): p.82-90.
    [51].Zhang, L., R. Bai, B. Li, C. Ge, J. Du, Y. Liu, L. Le Guyader, Y.Zhao, Y. Wu, S. He, Y. Ma, and C. Chen, Rutile TiO particles exertsize and surface coating dependent retention and lesions on themurine brain. Toxicol Lett,2011.207(1): p.73-81.
    [52].Hu, R., L. Zheng, T. Zhang, G. Gao, Y. Cui, Z. Cheng, J. Cheng, M.Hong, M. Tang, and F. Hong, Molecular mechanism of hippocampalapoptosis of mice following exposure to titanium dioxidenanoparticles. J Hazard Mater,2011.191(1-3): p.32-40.
    [53].Ma, L., J. Liu, N. Li, J. Wang, Y. Duan, J. Yan, H. Liu, H. Wang, andF. Hong, Oxidative stress in the brain of mice caused by translocatednanoparticulate TiO2delivered to the abdominal cavity.Biomaterials,2010.31(1): p.99-105.
    [54].Wang, J., C. Chen, Y. Liu, F. Jiao, W. Li, F. Lao, Y. Li, B. Li, C. Ge,G. Zhou, Y. Gao, Y. Zhao, and Z. Chai, Potential neurological lesionafter nasal instillation of TiO(2) nanoparticles in the anatase andrutile crystal phases. Toxicol Lett,2008.183(1-3): p.72-80.
    [55].Hu, R., X. Gong, Y. Duan, N. Li, Y. Che, Y. Cui, M. Zhou, C. Liu, H.Wang, and F. Hong, Neurotoxicological effects and the impairmentof spatial recognition memory in mice caused by exposure to TiO2nanoparticles. Biomaterials,2010.31(31): p.8043-50.
    [56].Malenka, R.C. and M.F. Bear, LTP and LTD: an embarrassment ofriches. Neuron,2004.44(1): p.5-21.
    [57].Squire, L.R., Memory and brain.1987: Oxford University Press,USA.
    [58].Olton, D.S., J.A. Walker, and F.H. Gage, Hippocampal connectionsand spatial discrimination. Brain Res,1978.139(2): p.295-308.
    [59].Bliss, T.V. and A.R. Gardner-Medwin, Long-lasting potentiation ofsynaptic transmission in the dentate area of the unanaestetized rabbitfollowing stimulation of the perforant path. J Physiol,1973.232(2):p.357-74.
    [60].D'Hooge, R. and P.P. De Deyn, Applications of the Morris watermaze in the study of learning and memory. Brain Res Brain Res Rev,2001.36(1): p.60-90.
    [61].Paxinos, G. and C. Watson, The Rat Brain in Stereotaxic Coordinates:Hard Cover Edition.2007: Academic press.
    [62].Hussain, S., S. Boland, A. Baeza-Squiban, R. Hamel, L.C.Thomassen, J.A. Martens, M.A. Billon-Galland, J. Fleury-Feith, F.Moisan, J.C. Pairon, and F. Marano, Oxidative stress andproinflammatory effects of carbon black and titanium dioxidenanoparticles: role of particle surface area and internalized amount.Toxicology,2009.260(1-3): p.142-9.
    [63].Cui, Y., X. Gong, Y. Duan, N. Li, R. Hu, H. Liu, M. Hong, M. Zhou,L. Wang, H. Wang, and F. Hong, Hepatocyte apoptosis and itsmolecular mechanisms in mice caused by titanium dioxidenanoparticles. J Hazard Mater,2010.183(1-3): p.874-80.
    [64].Liang, G., Y. Pu, L. Yin, R. Liu, B. Ye, Y. Su, and Y. Li, Influence ofdifferent sizes of titanium dioxide nanoparticles on hepatic and renalfunctions in rats with correlation to oxidative stress. J ToxicolEnviron Health A,2009.72(11-12): p.740-5.
    [65].Clark, R.E., N.J. Broadbent, and L.R. Squire, The hippocampus andspatial memory: findings with a novel modification of the watermaze. J Neurosci,2007.27(25): p.6647-54.
    [66].Morris, R.G., P. Garrud, J.N. Rawlins, and J. O'Keefe, Placenavigation impaired in rats with hippocampal lesions. Nature,1982.297(5868): p.681-3.
    [67].Zhang, X.C., Y.Q. Zhang, and Z.Q. Zhao, Involvement of nitricoxide in long-term potentiation of spinal nociceptive responses inrats. Neuroreport,2005.16(11): p.1197-201.
    [68].Lee, I., T.S. Jerman, and R.P. Kesner, Disruption of delayed memoryfor a sequence of spatial locations following CA1-or CA3-lesions ofthe dorsal hippocampus. Neurobiol Learn Mem,2005.84(2): p.138-47.
    [69].Halliwell, B., Reactive oxygen species and the central nervoussystem. J Neurochem,1992.59(5): p.1609-23.
    [70].Knapp, L.T. and E. Klann, Potentiation of hippocampal synaptictransmission by superoxide requires the oxidative activation ofprotein kinase C. J Neurosci,2002.22(3): p.674-83.
    [71].Kamsler, A. and M. Segal, Hydrogen peroxide modulation ofsynaptic plasticity. J Neurosci,2003.23(1): p.269-76.
    [72].Kamsler, A. and M. Segal, Paradoxical actions of hydrogen peroxideon long-term potentiation in transgenic superoxide dismutase-1mice.J Neurosci,2003.23(32): p.10359-67.
    [73].Milton, V.J. and S.T. Sweeney, Oxidative stress in synapsedevelopment and function. Dev Neurobiol,2012.72(1): p.100-10.
    [74].Bindokas, V.P., J. Jordan, C.C. Lee, and R.J. Miller, Superoxideproduction in rat hippocampal neurons: selective imaging withhydroethidine. J Neurosci,1996.16(4): p.1324-36.
    [75].Klann, E., Cell-permeable scavengers of superoxide preventlong-term potentiation in hippocampal area CA1. J Neurophysiol,1998.80(1): p.452-7.
    [76].Serrano, F. and E. Klann, Reactive oxygen species and synapticplasticity in the aging hippocampus. Ageing Res Rev,2004.3(4): p.431-43.
    [77].Auerbach, J.M. and M. Segal, Peroxide modulation of slow onsetpotentiation in rat hippocampus. J Neurosci,1997.17(22): p.8695-701.
    [78].Avshalumov, M.V., B.T. Chen, and M.E. Rice, Mechanismsunderlying H(2)O(2)-mediated inhibition of synaptic transmission inrat hippocampal slices. Brain Res,2000.882(1-2): p.86-94.
    [79].Watson, J.B., H. Khorasani, A. Persson, K.P. Huang, F.L. Huang,and T.J. O'Dell, Age-related deficits in long-term potentiation areinsensitive to hydrogen peroxide: coincidence with enhancedautophosphorylation of Ca2+/calmodulin-dependent protein kinaseII. J Neurosci Res,2002.70(3): p.298-308.
    [80].Limbach, L.K., P. Wick, P. Manser, R.N. Grass, A. Bruinink, andW.J. Stark, Exposure of engineered nanoparticles to human lungepithelial cells: influence of chemical composition and catalyticactivity on oxidative stress. Environ Sci Technol,2007.41(11): p.4158-63.
    [81].Long, T.C., N. Saleh, R.D. Tilton, G.V. Lowry, and B. Veronesi,Titanium dioxide (P25) produces reactive oxygen species inimmortalized brain microglia (BV2): implications for nanoparticleneurotoxicity. Environ Sci Technol,2006.40(14): p.4346-52.
    [82].Hussain, S.M., K.L. Hess, J.M. Gearhart, K.T. Geiss, and J.J.Schlager, In vitro toxicity of nanoparticles in BRL3A rat liver cells.Toxicol In Vitro,2005.19(7): p.975-83.
    [83].Lu, P.J., I.C. Ho, and T.C. Lee, Induction of sister chromatidexchanges and micronuclei by titanium dioxide in Chinese hamsterovary-K1cells. Mutat Res,1998.414(1-3): p.15-20.
    [84].Wang, J.J., B.J. Sanderson, and H. Wang, Cyto-and genotoxicity ofultrafine TiO2particles in cultured human lymphoblastoid cells.Mutat Res,2007.628(2): p.99-106.
    [85].Amezaga-Madrid, P., R. Silveyra-Morales, L. Cordoba-Fierro, G.V.Nevarez-Moorillon, M. Miki-Yoshida, E. Orrantia-Borunda, and F.J.Solis, TEM evidence of ultrastructural alteration on Pseudomonasaeruginosa by photocatalytic TiO2thin films. J PhotochemPhotobiol B,2003.70(1): p.45-50.
    [86].Zhao, J., L. Bowman, X. Zhang, V. Vallyathan, S.H. Young, V.Castranova, and M. Ding, Titanium dioxide (TiO2) nanoparticlesinduce JB6cell apoptosis through activation of the caspase-8/Bidand mitochondrial pathways. J Toxicol Environ Health A,2009.72(19): p.1141-9.
    [87].Du, H., X. Zhu, C. Fan, S. Xu, Y. Wang, and Y. Zhou, Oxidativedamage and OGG1expression induced by a combined effect oftitanium dioxide nanoparticles and lead acetate in humanhepatocytes. Environ Toxicol,2011.
    [88].Thannickal, V.J. and B.L. Fanburg, Reactive oxygen species in cellsignaling. Am J Physiol Lung Cell Mol Physiol,2000.279(6): p.L1005-28.
    [89].Harman, D., The aging process. Proc Natl Acad Sci U S A,1981.78(11): p.7124-8.
    [90].Freeman, B.A. and J.D. Crapo, Biology of disease: free radicals andtissue injury. Lab Invest,1982.47(5): p.412-26.
    [91].Suh, Y.A., R.S. Arnold, B. Lassegue, J. Shi, X. Xu, D. Sorescu, A.B.Chung, K.K. Griendling, and J.D. Lambeth, Cell transformation bythe superoxide-generating oxidase Mox1. Nature,1999.401(6748):p.79-82.
    [92].Valko, M., D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, and J.Telser, Free radicals and antioxidants in normal physiologicalfunctions and human disease. Int J Biochem Cell Biol,2007.39(1):p.44-84.
    [93].Cross, C.E., B. Halliwell, E.T. Borish, W.A. Pryor, B.N. Ames, R.L.Saul, J.M. McCord, and D. Harman, Oxygen radicals and humandisease. Ann Intern Med,1987.107(4): p.526-45.
    [94].Halliwell, B., J.M. Gutteridge, and C.E. Cross, Free radicals,antioxidants, and human disease: where are we now? J Lab ClinMed,1992.119(6): p.598-620.
    [95].Becker, L.B., New concepts in reactive oxygen species andcardiovascular reperfusion physiology. Cardiovasc Res,2004.61(3):p.461-70.
    [96].Kasparova, S., V. Brezova, M. Valko, J. Horecky, V. Mlynarik, T.Liptaj, O. Vancova, O. Ulicna, and D. Dobrota, Study of theoxidative stress in a rat model of chronic brain hypoperfusion.Neurochem Int,2005.46(8): p.601-11.
    [97].Yamagishi, S.I., D. Edelstein, X.L. Du, and M. Brownlee,Hyperglycemia potentiates collagen-induced platelet activationthrough mitochondrial superoxide overproduction. Diabetes,2001.50(6): p.1491-4.
    [98].Herlein, J.A., B.D. Fink, Y. O'Malley, and W.I. Sivitz, Superoxideand respiratory coupling in mitochondria of insulin-deficientdiabetic rats. Endocrinology,2009.150(1): p.46-55.
    [99].Valko, M., M. Izakovic, M. Mazur, C.J. Rhodes, and J. Telser, Roleof oxygen radicals in DNA damage and cancer incidence. Mol CellBiochem,2004.266(1-2): p.37-56.
    [100].Valko, M., C.J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur,Free radicals, metals and antioxidants in oxidative stress-inducedcancer. Chem Biol Interact,2006.160(1): p.1-40.
    [101].Beal, M.F., Aging, energy, and oxidative stress inneurodegenerative diseases. Ann Neurol,1995.38(3): p.357-66.
    [102].Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basicbiological phenomenon with wide-ranging implications in tissuekinetics. Br J Cancer,1972.26(4): p.239-57.
    [103].Norbury, C.J. and I.D. Hickson, Cellular responses to DNA damage.Annual review of pharmacology and toxicology,2001.41(1): p.367-401.
    [104].Reed, J.C. and K.J. Tomaselli, Drug discovery opportunities fromapoptosis research. Curr Opin Biotechnol,2000.11(6): p.586-92.
    [105].Elmore, S., Apoptosis: a review of programmed cell death. ToxicolPathol,2007.35(4): p.495-516.
    [106].Chen, Q.M. and V.C. Tu, Apoptosis and heart failure: mechanismsand therapeutic implications. Am J Cardiovasc Drugs,2002.2(1): p.43-57.
    [107].White, B.C., J.M. Sullivan, D.J. DeGracia, B.J. O'Neil, R.W.Neumar, L.I. Grossman, J.A. Rafols, and G.S. Krause, Brainischemia and reperfusion: molecular mechanisms of neuronal injury.J Neurol Sci,2000.179(S1-2): p.1-33.
    [108].Rodriguez, M., B.R. Lucchesi, and J. Schaper, Apoptosis inmyocardial infarction. Ann Med,2002.34(6): p.470-9.
    [109].Thompson, C.B., Apoptosis in the pathogenesis and treatment ofdisease. Science,1995.267(5203): p.1456-62.
    [110].Meier, P., A. Finch, and G. Evan, Apoptosis in development. Nature,2000.407(6805): p.796-801.
    [111].Rich, T., R.L. Allen, and A.H. Wyllie, Defying death after DNAdamage. Nature,2000.407(6805): p.777-83.
    [112].Yuan, J. and B.A. Yankner, Apoptosis in the nervous system.Nature,2000.407(6805): p.802-9.
    [113].Garcia-Ruiz, C., A. Colell, M. Mari, A. Morales, and J.C.Fernandez-Checa, Direct effect of ceramide on the mitochondrialelectron transport chain leads to generation of reactive oxygenspecies. Role of mitochondrial glutathione. J Biol Chem,1997.272(17): p.11369-77.
    [114].Liu, S., Y. Han, T. Zhang, and Z. Yang, Protective effect oftrifluoperazine on hydrogen peroxide-induced apoptosis in PC12cells. Brain Res Bull,2011.84(2): p.183-8.
    [115].Ishisaka, R., K. Utsumi, and T. Utsumi, Involvement of lysosomalcysteine proteases in hydrogen peroxide-induced apoptosis in HL-60cells. Bioscience, biotechnology, and biochemistry,2002.66(9): p.1865-1872.
    [116].Simon, H.U., A. Haj-Yehia, and F. Levi-Schaffer, Role of reactiveoxygen species (ROS) in apoptosis induction. Apoptosis,2000.5(5):p.415-8.
    [117].Greene, L.A. and A.S. Tischler, Establishment of a noradrenergicclonal line of rat adrenal pheochromocytoma cells which respond tonerve growth factor. Proceedings of the National Academy ofSciences,1976.73(7): p.2424.
    [118].Suzuki, H., T. Toyooka, and Y. Ibuki, Simple and easy method toevaluate uptake potential of nanoparticles in mammalian cells usinga flow cytometric light scatter analysis. Environ Sci Technol,2007.41(8): p.3018-24.
    [119].Rahman, Q., M. Lohani, E. Dopp, H. Pemsel, L. Jonas, D.G. Weiss,and D. Schiffmann, Evidence that ultrafine titanium dioxide inducesmicronuclei and apoptosis in Syrian hamster embryo fibroblasts.Environmental health perspectives,2002.110(8): p.797.
    [120].Jin, C.Y., B.S. Zhu, X.F. Wang, and Q.H. Lu, Cytotoxicity oftitanium dioxide nanoparticles in mouse fibroblast cells. Chem ResToxicol,2008.21(9): p.1871-7.
    [121].Sayes, C.M., R. Wahi, P.A. Kurian, Y. Liu, J.L. West, K.D. Ausman,D.B. Warheit, and V.L. Colvin, Correlating nanoscale titaniastructure with toxicity: a cytotoxicity and inflammatory responsestudy with human dermal fibroblasts and human lung epithelial cells.Toxicol Sci,2006.92(1): p.174-85.
    [122].Kakinoki, K., K. Yamane, R. Teraoka, M. Otsuka, and Y. Matsuda,Effect of relative humidity on the photocatalytic activity of titaniumdioxide and photostability of famotidine. J Pharm Sci,2004.93(3): p.582-9.
    [123].Baggs, R.B., J. Ferin, and G. Oberdorster, Regression of pulmonarylesions produced by inhaled titanium dioxide in rats. Vet Pathol,1997.34(6): p.592-7.
    [124].Limbach, L.K., Y. Li, N. Robert, T.J. Brunner, M.A. Hintermann,M. Muller, D. Gunther, and W.J. Stark, Oxide nanoparticle uptake inhuman lung fibroblasts: effects of particle size, agglomeration, anddiffusion at low concentrations. Environmental science&technology,2005.39(23): p.9370-9376.
    [125].Jezek, P. and L. Hlavata, Mitochondria in homeostasis of reactiveoxygen species in cell, tissues, and organism. Int J Biochem CellBiol,2005.37(12): p.2478-503.
    [126].Valko, M., C. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, Freeradicals, metals and antioxidants in oxidative stress-induced cancer.Chemico-biological interactions,2006.160(1): p.1-40.
    [127].Gurr, J.R., A.S.S. Wang, C.H. Chen, and K.Y. Jan, Ultrafinetitanium dioxide particles in the absence of photoactivation caninduce oxidative damage to human bronchial epithelial cells.Toxicology,2005.213(1): p.66-73.
    [128].Nel, A., T. Xia, L. M dler, and N. Li, Toxic potential of materials atthe nanolevel. Science,2006.311(5761): p.622-627.
    [129].Ray, S.K., D.D. Matzelle, G.G. Wilford, E.L. Hogan, and N.L.Banik, Cell death in spinal cord injury (SCI) requires de novoprotein synthesis. Annals of the New York Academy of Sciences,2001.939(1): p.436-449.
    [130].Kreyling, W., M. Semmler, F. Erbe, P. Mayer, S. Takenaka, H.Schulz, G. Oberd rster, and A. Ziesenis, Translocation of ultrafineinsoluble iridium particles from lung epithelium to extrapulmonaryorgans is size dependent but very low. Journal of Toxicology andEnvironmental Health Part A,2002.65(20): p.1513-1530.
    [131].Chatterjee, A., A. Priyam, S.C. Bhattacharya, and A. Saha, pHdependent interaction of biofunctionalized CdS nanoparticles withnucleobases and nucleotides: A fluorimetric study. Journal ofluminescence,2007.126(2): p.764-770.
    [132].Emerich, D.F. and C.G. Thanos, Nanotechnology and medicine.Expert Opin Biol Ther,2003.3(4): p.655-63.
    [133].Mocan, T., S. Clichici, L. Agoston-Coldea, L. Mocan, S. Simon,I.R. Ilie, A.R. Biris, and A. Muresan, Implications of oxidative stressmechanisms in toxicity of nanoparticles (review). Acta Physiol Hung,2010.97(3): p.247-55.
    [134].Barillet, S., A. Simon-Deckers, N. Herlin-Boime, M.Mayne-L’Hermite, C. Reynaud, D. Cassio, B. Gouget, and M.Carrière, Toxicological consequences of TiO2, SiC nanoparticlesand multi-walled carbon nanotubes exposure in several mammaliancell types: an in vitro study. Journal of Nanoparticle Research,2010.12(1): p.61-73.
    [135].Sun, D., T. Meng, T. Loong, and T. Hwa, Removal of naturalorganic matter from water using a nano-structured photocatalystcoupled with filtration membrane. Water science and technology: ajournal of the International Association on Water Pollution Research,2004.49(1): p.103.
    [136].Wang, J.J., B.J.S. Sanderson, and H. Wang, Cyto-and genotoxicityof ultrafine TiO2 particles in cultured humanlymphoblastoid cells. Mutation Research/Genetic Toxicology andEnvironmental Mutagenesis,2007.628(2): p.99-106.
    [137].Lockman, P.R., J.M. Koziara, R.J. Mumper, and D.D. Allen,Nanoparticle surface charges alter blood-brain barrier integrity andpermeability. J Drug Target,2004.12(9-10): p.635-41.
    [138].Denac, H., M. Mevissen, and G. Scholtysik, Structure, function andpharmacology of voltage-gated sodium channels.Naunyn-Schmiedeberg's Archives of Pharmacology,2000.362(6): p.453-479.
    [139].Taylor, C.P. and B.S. Meldrum, Na+channels as targets forneuroprotective drugs. Trends in pharmacological sciences,1995.16(9): p.309-316.
    [140].Long, T.C., J. Tajuba, P. Sama, N. Saleh, C. Swartz, J. Parker, S.Hester, G.V. Lowry, and B. Veronesi, Nanosize titanium dioxidestimulates reactive oxygen species in brain microglia and damagesneurons in vitro. Environmental health perspectives,2007.115(11):p.1631.
    [141].Liu, S., L. Xu, T. Zhang, G. Ren, and Z. Yang, Oxidative stress andapoptosis induced by nanosized titanium dioxide in PC12cells.Toxicology,2010.267(1-3): p.172-177.
    [142].Hatta, S., J. Sakamoto, and Y. Horio, Ion channels and diseases.Med Electron Microsc,2002.35(3): p.117-26.
    [143].Epstein, F.H., M.J. Ackerman, and D.E. Clapham, Ionchannels—basic science and clinical disease. New England Journalof Medicine,1997.336(22): p.1575-1586.
    [144].Kiss, T. and O.N. Osipenko, Toxic effects of heavy metals on ionicchannels. Pharmacol Rev,1994.46(3): p.245-67.
    [145].Soto, F., M. Garcia-Guzman, and W. Stühmer, Cloned ligand-gatedchannels activated by extracellular ATP (P2X receptors). Journal ofMembrane Biology,1997.160(2): p.91-100.
    [146].Kloda, A., E. Petrov, G.R. Meyer, T. Nguyen, A.C. Hurst, L. Hool,and B. Martinac, Mechanosensitive channel of large conductance.The international journal of biochemistry&cell biology,2008.40(2):p.164-169.
    [147].Catterall, W.A., Structure and function of voltage-gated ionchannels. Molecular biology of membrane transport disorders,1996(13481): p.129.
    [148].Yu, F.H., V. Yarov-Yarovoy, G.A. Gutman, and W.A. Catterall,Overview of molecular relationships in the voltage-gated ionchannel superfamily. Pharmacol Rev,2005.57(4): p.387-95.
    [149].Kelner, K.L., Ion channels: opening the gate. Science,1996.271(5249): p.615.
    [150].Chen, J. and M. Gopalakrishnan, Opening ion channels: enzyme atthe gate. ChemMedChem,2007.2(5): p.625-6.
    [151].Neher, E. and B. Sakmann, Single-channel currents recorded frommembrane of denervated frog muscle fibres. Nature,1976.260(5554): p.799-802.
    [152].Noda, M., T. Ikeda, T. Kayano, H. Suzuki, H. Takeshima, M.Kurasaki, H. Takahashi, and S. Numa, Existence of distinct sodiumchannel messenger RNAs in rat brain. Nature,1986.320(6058): p.188-92.
    [153].Noda, M., S. Shimizu, T. Tanabe, T. Takai, T. Kayano, T. Ikeda, H.Takahashi, H. Nakayama, Y. Kanaoka, N. Minamino, and et al.,Primary structure of Electrophorus electricus sodium channeldeduced from cDNA sequence. Nature,1984.312(5990): p.121-7.
    [154].Schulz, D.J., S. Temporal, D.M. Barry, and M.L. Garcia,Mechanisms of voltage-gated ion channel regulation: from geneexpression to localization. Cell Mol Life Sci,2008.65(14): p.2215-31.
    [155].Marban, E., T. Yamagishi, and G.F. Tomaselli, Structure andfunction of voltage-gated sodium channels. J Physiol,1998.508(Pt3): p.647-57.
    [156].Papazian, D.M., L.C. Timpe, Y.N. Jan, and L.Y. Jan, Alteration ofvoltage-dependence of Shaker potassium channel by mutations inthe S4sequence. Nature,1991.349(6307): p.305-10.
    [157].Lainé, M., M.A. Lin, J. Bannister, W.R. Silverman, A.F. Mock, B.Roux, and D.M. Papazian, Atomic proximity between S4segmentand pore domain in Shaker potassium channels. Neuron,2003.39(3):p.467-481.
    [158].Benitah, J.P., G.F. Tomaselli, and E. Marban, Adjacent pore-liningresidues within sodium channels identified by paired cysteinemutagenesis. Proc Natl Acad Sci U S A,1996.93(14): p.7392-6.
    [159].Fozzard, H.A. and D.A. Hanck, Structure and function ofvoltage-dependent sodium channels: comparison of brain II andcardiac isoforms. Physiol Rev,1996.76(3): p.887-926.
    [160].Catterall, W.A., Cellular and molecular biology of voltage-gatedsodium channels. Physiol Rev,1992.72(4Suppl): p. S15-48.
    [161].Catterall, W.A., From ionic currents to molecular mechanisms: thestructure and function of voltage-gated sodium channels. Neuron,2000.26(1): p.13-25.
    [162].van den Boogaard, M.J.H., M. Dorland, F.A. Beemer, and H.K.P.van Amstel, Mutations of SCN1A, encoding a neuronal sodiumchannel, in two families with GEFS+2. Nature genetics,2000.24: p.343.
    [163].Catterall, W.A., Na+channel mutations and epilepsy. Epilepsia,2010.51: p.59-59.
    [164].Gumz, M.L., L.R. Stow, I.J. Lynch, M.M. Greenlee, A. Rudin, B.D.Cain, D.R. Weaver, and C.S. Wingo, The circadian clock proteinPeriod1regulates expression of the renal epithelial sodium channelin mice. The Journal of clinical investigation,2009.119(8): p.2423.
    [165].Rojas, C.V., J.Z. Wang, L.S. Schwartz, E.P. Hoffman, B.R. Powell,and R.H. Brown, Jr., A Met-to-Val mutation in the skeletal muscleNa+channel alpha-subunit in hyperkalaemic periodic paralysis.Nature,1991.354(6352): p.387-9.
    [166].Perney, T.M. and L.K. Kaczmarek, The molecular biology of K+channels. Curr Opin Cell Biol,1991.3(4): p.663-70.
    [167].Martina, M., G.L. Yao, and B.P. Bean, Properties and functionalrole of voltage-dependent potassium channels in dendrites of ratcerebellar Purkinje neurons. J Neurosci,2003.23(13): p.5698-707.
    [168].Jan, L.Y. and Y.N. Jan, Voltage‐gated Potassium Channels and theDiversity of Electrical Signaling. The Journal of Physiology,2012.
    [169].Doyle, D.A., J. Morais Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis,S.L. Cohen, B.T. Chait, and R. MacKinnon, The structure of thepotassium channel: molecular basis of K+conduction and selectivity.Science,1998.280(5360): p.69-77.
    [170].Choe, S., Potassium channel structures. Nat Rev Neurosci,2002.3(2): p.115-21.
    [171].Chanda, B., O.K. Asamoah, R. Blunck, B. Roux, and F. Bezanilla,Gating charge displacement in voltage-gated ion channels involveslimited transmembrane movement. Nature,2005.436(7052): p.852-6.
    [172].Posson, D.J., P. Ge, C. Miller, F. Bezanilla, and P.R. Selvin, Smallvertical movement of a K+channel voltage sensor measured withluminescence energy transfer. Nature,2005.436(7052): p.848-51.
    [173].Kurata, H.T., Z. Wang, and D. Fedida, NH2-terminal inactivationpeptide binding to C-type-inactivated Kv channels. J Gen Physiol,2004.123(5): p.505-20.
    [174].Pourrier, M., D. Herrera, R. Caballero, G. Schram, Z. Wang, and S.Nattel, The Kv4.2N-terminal restores fast inactivation and confersKChlP2modulatory effects on N-terminal-deleted Kv1.4channels.Pflugers Arch,2004.449(3): p.235-47.
    [175].Birnbaum, S.G., A.W. Varga, L.L. Yuan, A.E. Anderson, J.D.Sweatt, and L.A. Schrader, Structure and function of Kv4-familytransient potassium channels. Physiol Rev,2004.84(3): p.803-33.
    [176].Coetzee, W.A., Y. Amarillo, J. Chiu, A. Chow, D. Lau, T.McCormack, H. Moreno, M.S. Nadal, A. Ozaita, D. Pountney, M.Saganich, E. Vega-Saenz de Miera, and B. Rudy, Molecular diversityof K+channels. Ann N Y Acad Sci,1999.868: p.233-85.
    [177].Vazquez-Garcia, M. and G. Reyes-Guerrero, Three types of singlevoltage-dependent potassium channels in the sarcolemma of frogskeletal muscle. J Membr Biol,2009.228(1): p.51-62.
    [178].Walsh, K.B., J.P. Arena, W.M. Kwok, L. Freeman, and R.S. Kass,Delayed-rectifier potassium channel activity in isolated membranepatches of guinea pig ventricular myocytes. Am J Physiol,1991.260(4Pt2): p. H1390-3.
    [179].Neher, E. and B. Sakmann, The patch clamp technique. Sci Am,1992.266(3): p.44-51.
    [180].Sigworth, F.J., The patch clamp is more useful than anyone hadexpected. Fed Proc,1986.45(12): p.2673-7.
    [181].Hamill, O.P., A. Marty, E. Neher, B. Sakmann, and F.J. Sigworth,Improved patch-clamp techniques for high-resolution currentrecording from cells and cell-free membrane patches. Pflugers Arch,1981.391(2): p.85-100.
    [182].Yoshimura, M., H. Furue, G. Kato, A. Doi, M. Mizuno, and T.Katafuchi, Application of in vivo patch-clamp technique topharmacological analysis of synaptic transmission in the CNS.Nihon yakurigaku zasshi. Folia pharmacologica Japonica,2004.124(2): p.111-8.
    [183].Sakmann, B. and E. Neher, Single-channel recording.2009:Springer.
    [184].刘振伟,实用膜片钳技术.军事医学科学出版社,2006.
    [185].Bezanilla, F., The voltage sensor in voltage-dependent ion channels.Physiol Rev,2000.80(2): p.555-92.
    [186].Costa, P.F., The kinetic parameters of sodium currents in maturingacutely isolated rat hippocampal CA1neurones. Brain Res DevBrain Res,1996.91(1): p.29-40.
    [187].Bevan, S. and N. Storey, Modulation of sodium channels inprimary afferent neurons. Novartis Found Symp,2002.241: p.144-53; discussion153-8,226-32.
    [188].Ogata, N. and Y. Ohishi, Molecular diversity of structure andfunction of the voltage-gated Na+channels. Jpn J Pharmacol,2002.88(4): p.365-77.
    [189].Rola, R., B. Szulczyk, P. Szulczyk, and G. Witkowski, Expressionand kinetic properties of Na(+) currents in rat cardiac dorsal rootganglion neurons. Brain Res,2002.947(1): p.67-77.
    [190].Waxman, S.G., T.R. Cummins, S. Dib-Hajj, J. Fjell, and J.A. Black,Sodium channels, excitability of primary sensory neurons, and themolecular basis of pain. Muscle Nerve,1999.22(9): p.1177-87.
    [191].Hille, B., Ionic channels: molecular pores of excitable membranes.Harvey Lect,1986.82: p.47-69.
    [192].Taylor, C.P. and B.S. Meldrum, Na+channels as targets forneuroprotective drugs. Trends Pharmacol Sci,1995.16(9): p.309-16.
    [193].Takahashi, S., M. Shibata, J. Gotoh, and Y. Fukuuchi, Astroglialcell death induced by excessive influx of sodium ions. Eur JPharmacol,2000.408(2): p.127-35.
    [194].Guo, F., N. Yu, J.Q. Cai, T. Quinn, Z.H. Zong, Y.J. Zeng, and L.Y.Hao, Voltage-gated sodium channel Nav1.1, Nav1.3and beta1subunit were up-regulated in the hippocampus of spontaneouslyepileptic rat. Brain Res Bull,2008.75(1): p.179-87.
    [195].Meisler, M.H. and J.A. Kearney, Sodium channel mutations inepilepsy and other neurological disorders. J Clin Invest,2005.115(8): p.2010-7.
    [196].Liu, Z., S. Liu, G. Ren, T. Zhang, and Z. Yang, Nano-CuO inhibitedvoltage-gated sodium current of hippocampal CA1neurons viareactive oxygen species but independent from G-proteins pathway. JAppl Toxicol,2010.31(5): p.439-45.
    [197].Liu, Z., G. Ren, T. Zhang, and Z. Yang, The inhibitory effects ofnano-Ag on voltage-gated potassium currents of hippocampal CA1neurons. Environ Toxicol,2010.26(5): p.552-8.
    [198].Zhao, J., L. Xu, T. Zhang, G. Ren, and Z. Yang, Influences ofnanoparticle zinc oxide on acutely isolated rat hippocampal CA3pyramidal neurons. Neurotoxicology,2009.30(2): p.220-30.
    [199].Armstrong, C.M., Sodium channels and gating currents. PhysiolRev,1981.61(3): p.644-83.
    [200].Stuhmer, W., F. Conti, H. Suzuki, X.D. Wang, M. Noda, N. Yahagi,H. Kubo, and S. Numa, Structural parts involved in activation andinactivation of the sodium channel. Nature,1989.339(6226): p.597-603.
    [201].Isom, L.L., K.S. De Jongh, D.E. Patton, B.F. Reber, J. Offord, H.Charbonneau, K. Walsh, A.L. Goldin, and W.A. Catterall, Primarystructure and functional expression of the beta1subunit of the ratbrain sodium channel. Science,1992.256(5058): p.839-42.
    [202].Isom, L.L., D.S. Ragsdale, K.S. De Jongh, R.E. Westenbroek, B.F.Reber, T. Scheuer, and W.A. Catterall, Structure and function of thebeta2subunit of brain sodium channels, a transmembraneglycoprotein with a CAM motif. Cell,1995.83(3): p.433-42.
    [203].Makita, N., P.B. Bennett, and A.L. George, Jr., Moleculardeterminants of beta1subunit-induced gating modulation involtage-dependent Na+channels. J Neurosci,1996.16(22): p.7117-27.
    [204].Qu, Y., J.C. Rogers, S.F. Chen, K.A. McCormick, T. Scheuer, andW.A. Catterall, Functional roles of the extracellular segments of thesodium channel alpha subunit in voltage-dependent gating andmodulation by beta1subunits. J Biol Chem,1999.274(46): p.32647-54.
    [205].Santana, L.F., A.M. Gomez, and W.J. Lederer, Ca2+flux throughpromiscuous cardiac Na+channels: slip-mode conductance. Science,1998.279(5353): p.1027-33.
    [206].Sorbera, L.A. and M. Morad, Atrionatriuretic peptide transformscardiac sodium channels into calcium-conducting channels. Science,1990.247(4945): p.969-973.
    [207].Tang, M., M. Wang, T. Xing, J. Zeng, H. Wang, and D.Y. Ruan,Mechanisms of unmodified CdSe quantum dot-induced elevation ofcytoplasmic calcium levels in primary cultures of rat hippocampalneurons. Biomaterials,2008.29(33): p.4383-4391.
    [208].Wang, H. and J.A. Joseph, Mechanisms of hydrogenperoxide-induced calcium dysregulation in PC12cells1. FreeRadical Biology and Medicine,2000.28(8): p.1222-1231.
    [209].Salinas, M., F. Duprat, C. Heurteaux, J.P. Hugnot, and M.Lazdunski, New modulatory alpha subunits for mammalian Shab K+channels. J Biol Chem,1997.272(39): p.24371-9.
    [210].Rudy, B., Molecular diversity of ion channels and cell function.Ann N Y Acad Sci,1999.868: p.1-12.
    [211].Hoffman, D.A., J.C. Magee, C.M. Colbert, and D. Johnston, K+channel regulation of signal propagation in dendrites of hippocampalpyramidal neurons. Nature,1997.387(6636): p.869-75.
    [212].Tamatani, M., S. Ogawa, G. Nunez, and M. Tohyama, Growthfactors prevent changes in Bcl-2and Bax expression and neuronalapoptosis induced by nitric oxide. Cell Death Differ,1998.5(10): p.911-9.
    [213].Yu, S.P., C.H. Yeh, S.L. Sensi, B.J. Gwag, L.M. Canzoniero, Z.S.Farhangrazi, H.S. Ying, M. Tian, L.L. Dugan, and D.W. Choi,Mediation of neuronal apoptosis by enhancement of outwardpotassium current. Science,1997.278(5335): p.114-7.
    [214].Jaffe, D.B., W.N. Ross, J.E. Lisman, N. Lasser-Ross, H. Miyakawa,and D. Johnston, A model for dendritic Ca2+accumulation inhippocampal pyramidal neurons based on fluorescence imagingmeasurements. J Neurophysiol,1994.71(3): p.1065-77.
    [215].Good, T.A., D.O. Smith, and R.M. Murphy, Beta-amyloid peptideblocks the fast-inactivating K+current in rat hippocampal neurons.Biophys J,1996.70(1): p.296-304.
    [216].Franklin, J.L. and E.M. Johnson, Jr., Elevated intracellular calciumblocks programmed neuronal death. Ann N Y Acad Sci,1994.747: p.195-204.
    [217].Siesjo, B.K., Calcium-mediated processes in neuronal degeneration.Ann N Y Acad Sci,1994.747: p.140-61.
    [218].Choi, D.W., Calcium-mediated neurotoxicity: relationship tospecific channel types and role in ischemic damage. Trends Neurosci,1988.11(10): p.465-9.
    [1]. Cui, Y., Q. Wei, H. Park, and C.M. Lieber, Nanowire nanosensorsfor highly sensitive and selective detection of biological andchemical species. Science,2001.293(5533): p.1289-92.
    [2]. Hussain, S.M., K.L. Hess, J.M. Gearhart, K.T. Geiss, and J.J.Schlager, In vitro toxicity of nanoparticles in BRL3A rat liver cells.Toxicol In Vitro,2005.19(7): p.975-83.
    [3]. Emerich, D.F. and C.G. Thanos, Nanotechnology and medicine.Expert Opin Biol Ther,2003.3(4): p.655-63.
    [4]. Long, T.C., J. Tajuba, P. Sama, N. Saleh, C. Swartz, J. Parker, S.Hester, G.V. Lowry, and B. Veronesi, Nanosize titanium dioxidestimulates reactive oxygen species in brain microglia and damagesneurons in vitro. Environ Health Perspect,2007.115(11): p.1631-7.
    [5]. Park, J.H., S. Kim, and A.J. Bard, Novel carbon-doped TiO2nanotube arrays with high aspect ratios for efficient solar watersplitting. Nano Lett,2006.6(1): p.24-8.
    [6]. Liang, G., Y. Pu, L. Yin, R. Liu, B. Ye, Y. Su, and Y. Li, Influence ofdifferent sizes of titanium dioxide nanoparticles on hepatic and renalfunctions in rats with correlation to oxidative stress. J ToxicolEnviron Health A,2009.72(11-12): p.740-5.
    [7]. Warheit, D.B., T.R. Webb, K.L. Reed, S. Frerichs, and C.M. Sayes,Pulmonary toxicity study in rats with three forms of ultrafine-TiO2particles: differential responses related to surface properties.Toxicology,2007.230(1): p.90-104.
    [8]. Fabian, E., R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben,and B. van Ravenzwaay, Tissue distribution and toxicity ofintravenously administered titanium dioxide nanoparticles in rats.Arch Toxicol,2008.82(3): p.151-7.
    [9]. Oberdorster, G., E. Oberdorster, and J. Oberdorster, Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles.Environ Health Perspect,2005.113(7): p.823-39.
    [10].Stone, V. and K. Donaldson, Nanotoxicology: signs of stress. NatNanotechnol,2006.1(1): p.23-4.
    [11].Klamt, F., F. Dal-Pizzol, M.L. Conte da Frota, Jr., R. Walz, M.E.Andrades, E.G. da Silva, R.R. Brentani, I. Izquierdo, and J.C.Fonseca Moreira, Imbalance of antioxidant defense in mice lackingcellular prion protein. Free Radic Biol Med,2001.30(10): p.1137-44.
    [12].Crack, P.J. and J.M. Taylor, Reactive oxygen species and themodulation of stroke. Free Radic Biol Med,2005.38(11): p.1433-44.
    [13].Huang, J., L. Wu, S. Tashiro, S. Onodera, and T. Ikejima, Reactiveoxygen species mediate oridonin-induced HepG2apoptosis throughp53, MAPK, and mitochondrial signaling pathways. J Pharmacol Sci,2008.107(4): p.370-9.
    [14].Ermak, G. and K.J. Davies, Calcium and oxidative stress: from cellsignaling to cell death. Mol Immunol,2002.38(10): p.713-21.
    [15].Moller, P., N.R. Jacobsen, J.K. Folkmann, P.H. Danielsen, L.Mikkelsen, J.G. Hemmingsen, L.K. Vesterdal, L. Forchhammer, H.Wallin, and S. Loft, Role of oxidative damage in toxicity ofparticulates. Free Radic Res,2010.44(1): p.1-46.
    [16].Mocan, T., S. Clichici, L. Agoston-Coldea, L. Mocan, S. Simon, I.R.Ilie, A.R. Biris, and A. Muresan, Implications of oxidative stressmechanisms in toxicity of nanoparticles (review). Acta Physiol Hung,2010.97(3): p.247-55.
    [17].Grassian, V.H., T. O'Shaughnessy P, A. Adamcakova-Dodd, J.M.Pettibone, and P.S. Thorne, Inhalation exposure study of titaniumdioxide nanoparticles with a primary particle size of2to5nm.Environ Health Perspect,2007.115(3): p.397-402.
    [18].Chen, H.W., S.F. Su, C.T. Chien, W.H. Lin, S.L. Yu, C.C. Chou, J.J.Chen, and P.C. Yang, Titanium dioxide nanoparticles induceemphysema-like lung injury in mice. FASEB J,2006.20(13): p.2393-5.
    [19].Afaq, F., P. Abidi, R. Matin, and Q. Rahman, Cytotoxicity,pro-oxidant effects and antioxidant depletion in rat lung alveolarmacrophages exposed to ultrafine titanium dioxide. J Appl Toxicol,1998.18(5): p.307-12.
    [20].Ma-Hock, L., S. Burkhardt, V. Strauss, A.O. Gamer, K. Wiench, B.van Ravenzwaay, and R. Landsiedel, Development of a short-terminhalation test in the rat using nano-titanium dioxide as a modelsubstance. Inhal Toxicol,2009.21(2): p.102-18.
    [21].Lee, K.P., H.J. Trochimowicz, and C.F. Reinhardt, Pulmonaryresponse of rats exposed to titanium dioxide (TiO2) by inhalation fortwo years. Toxicol Appl Pharmacol,1985.79(2): p.179-92.
    [22].Heinrich U, F.R., Rittinghausen S, Chronic inhalation exposure ofWistar rats and two different strains of mice to diesel engineexhaust,carbon black,and titanium dioxide. Inhal Toxicol,1995.7: p.533-556.
    [23].Schapira, R.M., A.J. Ghio, R.M. Effros, J. Morrisey, U.A. Almagro,C.A. Dawson, and A.D. Hacker, Hydroxyl radical production andlung injury in the rat following silica or titanium dioxide instillationin vivo. Am J Respir Cell Mol Biol,1995.12(2): p.220-6.
    [24].Arif, J.M., S.G. Khan, M. Ashquin, and Q. Rahman, Modulation ofmacrophage-mediated cytotoxicity by kerosene soot: possible role ofreactive oxygen species. Environ Res,1993.61(2): p.232-8.
    [25].Bhattacharya, K., M. Davoren, J. Boertz, R.P. Schins, E. Hoffmann,and E. Dopp, Titanium dioxide nanoparticles induce oxidative stressand DNA-adduct formation but not DNA-breakage in human lungcells. Part Fibre Toxicol,2009.6: p.17.
    [26].Park, E.J., J. Yi, K.H. Chung, D.Y. Ryu, J. Choi, and K. Park,Oxidative stress and apoptosis induced by titanium dioxidenanoparticles in cultured BEAS-2B cells. Toxicol Lett,2008.180(3):p.222-9.
    [27].Gurr, J.R., A.S. Wang, C.H. Chen, and K.Y. Jan, Ultrafine titaniumdioxide particles in the absence of photoactivation can induceoxidative damage to human bronchial epithelial cells. Toxicology,2005.213(1-2): p.66-73.
    [28].Jani, P.U., McCarthy, D.E., Florence, A.T., Titanium dioxide (rutile)particle uptake from the rat GI tract and translocation to systemicorgans after oral administration Int. J. Pharm.,1994.105: p.157-168.
    [29].Sugibayashi, K., H. Todo, and E. Kimura, Safety evaluation oftitanium dioxide nanoparticles by their absorption and eliminationprofiles. J Toxicol Sci,2008.33(3): p.293-8.
    [30].Wang, J., G. Zhou, C. Chen, H. Yu, T. Wang, Y. Ma, G. Jia, Y. Gao, B.Li, J. Sun, Y. Li, F. Jiao, Y. Zhao, and Z. Chai, Acute toxicity andbiodistribution of different sized titanium dioxide particles in miceafter oral administration. Toxicol Lett,2007.168(2): p.176-85.
    [31].Xiong, D., T. Fang, L. Yu, X. Sima, and W. Zhu, Effects ofnano-scale TiO2, ZnO and their bulk counterparts on zebrafish:acute toxicity, oxidative stress and oxidative damage. Sci TotalEnviron,2011.409(8): p.1444-52.
    [32].Du, H., X. Zhu, C. Fan, S. Xu, Y. Wang, and Y. Zhou, Oxidativedamage and OGG1expression induced by a combined effect oftitanium dioxide nanoparticles and lead acetate in humanhepatocytes. Environ Toxicol,2011.
    [33].J.F. Zhao, J.W., S.S. Wang, X.Y. Zhao, J.Y. Yan, J. Ruan, Themechanism of oxidative damage in the nephrotoxicity of micecaused by nano-anatase TiO2. J. Exp. Nanosci.,2010.5: p.447-462.
    [34].Begley, D.J., The blood-brain barrier: principles for targetingpeptides and drugs to the central nervous system. J PharmPharmacol,1996.48(2): p.136-46.
    [35].Illum, L., Transport of drugs from the nasal cavity to the centralnervous system. Eur J Pharm Sci,2000.11(1): p.1-18.
    [36].Wang, J., Y. Liu, F. Jiao, F. Lao, W. Li, Y. Gu, Y. Li, C. Ge, G. Zhou,B. Li, Y. Zhao, Z. Chai, and C. Chen, Time-dependent translocationand potential impairment on central nervous system by intranasallyinstilled TiO(2) nanoparticles. Toxicology,2008.254(1-2): p.82-90.
    [37].Gao, X., S. Yin, M. Tang, J. Chen, Z. Yang, W. Zhang, L. Chen, B.Yang, Z. Li, Y. Zha, D. Ruan, and M. Wang, Effects ofDevelopmental Exposure to TiO(2) Nanoparticles on SynapticPlasticity in Hippocampal Dentate Gyrus Area: an In Vivo Study inAnesthetized Rats. Biol Trace Elem Res,2011.
    [38].Zhang, L., R. Bai, B. Li, C. Ge, J. Du, Y. Liu, L. Le Guyader, Y.Zhao, Y. Wu, S. He, Y. Ma, and C. Chen, Rutile TiO(2) particlesexert size and surface coating dependent retention and lesions on themurine brain. Toxicol Lett,2011.207(1): p.73-81.
    [39].Ma, L., J. Liu, N. Li, J. Wang, Y. Duan, J. Yan, H. Liu, H. Wang, andF. Hong, Oxidative stress in the brain of mice caused by translocatednanoparticulate TiO2delivered to the abdominal cavity.Biomaterials,2010.31(1): p.99-105.
    [40].Yang, Z., Z.W. Liu, R.P. Allaker, P. Reip, J. Oxford, Z. Ahmad, andG. Ren, A review of nanoparticle functionality and toxicity on thecentral nervous system. J R Soc Interface,2010.7Suppl4: p.S411-22.
    [41].Hu, R., L. Zheng, T. Zhang, G. Gao, Y. Cui, Z. Cheng, J. Cheng, M.Hong, M. Tang, and F. Hong, Molecular mechanism of hippocampalapoptosis of mice following exposure to titanium dioxidenanoparticles. J Hazard Mater,2011.191(1-3): p.32-40.
    [42].Wang, J., C. Chen, Y. Liu, F. Jiao, W. Li, F. Lao, Y. Li, B. Li, C. Ge,G. Zhou, Y. Gao, Y. Zhao, and Z. Chai, Potential neurological lesionafter nasal instillation of TiO(2) nanoparticles in the anatase andrutile crystal phases. Toxicol Lett,2008.183(1-3): p.72-80.
    [43].Hu, R., X. Gong, Y. Duan, N. Li, Y. Che, Y. Cui, M. Zhou, C. Liu, H.Wang, and F. Hong, Neurotoxicological effects and the impairmentof spatial recognition memory in mice caused by exposure to TiO2nanoparticles. Biomaterials,2010.31(31): p.8043-50.
    [44].Long, T.C., N. Saleh, R.D. Tilton, G.V. Lowry, and B. Veronesi,Titanium dioxide (P25) produces reactive oxygen species inimmortalized brain microglia (BV2): implications for nanoparticleneurotoxicity. Environ Sci Technol,2006.40(14): p.4346-52.
    [45].Yu, Y., W. Ren, and B. Ren, Nanosize titanium dioxide causeneuronal apoptosis: a potential linkage between nanoparticleexposure and neural disorder. Neurol Res,2008.
    [46].X.B. Li, S.Q.X., Z.R. Zhang, J.S. Hermann, Apoptosis induced bytitanium dioxide nanoparticles in cultured murine microglia N9cells.Chin. Sci. Bull.,2009.54(20): p.3830-3836.
    [47].K. Takeda, K.S., A. Ishihara, M. Kubo-Irie, R. Fujimoto, M. Tabata,S. Oshio, Y. Nihei, T. Ihara, M. Sugamata, Nanoparticles transferredfrom pregnant mice to their offspring can damage the genital andcranial nerve systems. J. Health Sci.,2009.55(1): p.95-102.
    [48].Liu, S., L. Xu, T. Zhang, G. Ren, and Z. Yang, Oxidative stress andapoptosis induced by nanosized titanium dioxide in PC12cells.Toxicology,2010.267(1-3): p.172-7.
    [49].Bennat, C. and C.C. Muller-Goymann, Skin penetration andstabilization of formulations containing microfine titanium dioxideas physical UV filter. Int J Cosmet Sci,2000.22(4): p.271-83.
    [50].Tan, M.H., C.A. Commens, L. Burnett, and P.J. Snitch, A pilot studyon the percutaneous absorption of microfine titanium dioxide fromsunscreens. Australas J Dermatol,1996.37(4): p.185-7.
    [51].Lademann, J., H. Weigmann, C. Rickmeyer, H. Barthelmes, H.Schaefer, G. Mueller, and W. Sterry, Penetration of titanium dioxidemicroparticles in a sunscreen formulation into the horny layer andthe follicular orifice. Skin Pharmacol Appl Skin Physiol,1999.12(5):p.247-56.
    [52].Shukla, R.K., V. Sharma, A.K. Pandey, S. Singh, S. Sultana, and A.Dhawan, ROS-mediated genotoxicity induced by titanium dioxidenanoparticles in human epidermal cells. Toxicol In Vitro.25(1): p.231-41.
    [53].Jin, C.Y., B.S. Zhu, X.F. Wang, and Q.H. Lu, Cytotoxicity oftitanium dioxide nanoparticles in mouse fibroblast cells. Chem ResToxicol,2008.21(9): p.1871-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700