系列过渡金属配合物的设计、合成、结构及量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以羧酸为主要构筑单元,利用共价键和分子间的相互作用组装超分子配合物的研究方法受到广泛关注,它们不仅结构富有特色,而且在催化、电磁材料、微孔材料、非线性光学材料等方面有潜在的应用前景。超氧化物歧化酶(SOD)是一种金属酶,它广泛的存在于好氧生物体内并且起到非常重要的作用。因此有关含有水杨醛类席夫碱SOD模拟化合物的研究迅速发展起来。本文以多羧酸类配体和三(2–氨基乙基)胺缩水杨醛席夫碱为配体在常温条件下合成得到一系列过渡金属配合物,对它们的结构、性质进行了初步研究。主要工作集中在以下几个方面:
     1.以柔性多羧酸(丁二酸和戊二酸)为第一配体,3,5–二甲基吡唑为辅助配体,在溶液中合成得到4个过渡金属配合物:[Zn(Hdmpz)_2(O_2C(CH_2)_2CO_2)]_n (1), Ni_3(Hdmpz)_4(HOOC(CH_2)_2CO_2)_2(O_2C(CH_2)_2CO_2)_2(CH_3OH)_2 (2), HB(C_5H_7N_2)_3Ni(C_4H_5O_4)(C_5H_8N_2)_2·2H_2O (3),Co_3(Hdmpz)_2(HOOC(CH_2)_3CO_2)_2(O_2C(CH_2)_3CO_2)_2(CH_3OH)_4 (4)。红外光谱和单晶衍射表明,配合物1是由丁二酸配体桥连起来的锌配位聚合物,中心金属锌位于变形的八面体的中心,配体丁二酸的两端的羧基采取双齿螯合的配位方式与金属锌配位。配合物2和4是由羧酸配体(丁二酸和戊二酸)桥连起来的中心对称的三核过渡金属配合物,其中丁二酸和戊二酸的羧基都是采取μ_3–η~2–η~2和μ_2–η~1–η~1与金属配位,它们与金属的配位方式相似。而配合物3是含有聚吡唑硼酸盐镍的羧酸化合物,其中金属镍与丁二酸单齿配位。同时,配合物1–4晶体结构中含有丰富的氢键及弱相互作用,将配合物组装成多维的超分子结构。
     2.以刚性多羧酸(2,6–吡啶二羧酸)为第一配体,3,5–二甲基吡唑为辅助配体,在溶液中合成得到2个过渡金属配合物: [Co(2,6–PDC)(Hdmpz)_3]·H_2O (5), [Zn(2,6–PDC)(Hdmpz)_2] (6)。红外光谱和单晶衍射表明,配合物5和6是由2,6–吡啶二羧酸和3,5–二甲基吡唑为有机配体,与过渡金属形成的六配位的单核结构,同时在分子中也存在氢键和弱相互作用。
     3.在室温条件下采用液液合成方法得到两个三(2–氨基乙基)胺缩水杨醛席夫碱(C_6H_(12)N_4)(C_7H_6O)_3 (7)及过渡金属配合物(C_6H_7N_4) Mn (C_7H_5O)_3·H_2O (8),通过红外光谱和单晶结构测定得知:配合物8是三(2–氨基乙基)胺缩水杨醛席夫碱过渡金属锰的配合物,其中金属锰位于六配位的扭曲的八面体几何中心。
In recent years, supramolecular complexes constructed by carboxylic acids through both covalent bond and weak interactions have attracted great interest of chemists. This is because of their intriguing structural frameworks but also account for their potential applications in catalysis, electronic and magnetic materials, microporous materials and nonlinear optics materials. SOD is a kind of metalloenzyme, which exists widely in the body of aerobionts and plays an important role. The investigation of SOD mimics complexes with Schiff bases (in particular derived from the salicylaldehyde) are developed rapidly. In this thesis, a series of complexes based on multicarboxylic acids and Tri(2-aminoethyl)amine have been successfully synthesized in solution conditions, their structure and properties were investigated.
     1. Four metal complexes were synthesized in the solution with the main liganaliphtiacids (succinate/ glutarate) and the auxiliary ligand Hdmpz: [Zn(Hdmpz)_2(O_2C(CH_2)_2CO_2)]_n (1), Ni_3(Hdmpz)_4(HOOC(CH_2)_2CO_2)_2(O_2C(CH_2)_2CO_2)_2(CH_3OH)_2 (2), HB(C_5H_7N_2)_3Ni(C_4H_5O_4)(C_5H_8N_2)_2·2H_2O (3),Co_3(Hdmpz)_2(HOOC(CH_2)_3CO_2)_2(O_2C(CH_2)_3CO_2)_2(CH_3OH)_4 (4). IR spectra and single crystal X-ray diffraction analysis show that complex 1 is a polymer that is interconnected by bridging succinate moieties in chelating bidentate coordination modes with Zinc. Complexes 2 and 3 are tri-nuclear structures; both of them have two types of bridging–coordinated modes of carboxylate ligands (μ_3–η~2–η~2 ,μ_2–η~1–η~1). Moreover, 3 is nickel succinate complex containing poly(pyrazolyl)borate, thereinto, complex 3 is coordinated by bridging succinate moiety in chelating monodentate coordination modes with nickel.And there are rich intra- or intermolecular hydrogen bonds and weak interactions in the crystals of 1–4, thereby forming a set of supramolecular frameworks.
     2. Two metal complexes were synthesized in the solution with the main rigid ligand Acids(Pyridine-2,6-dicarboxylic acid) and the auxiliary ligand Hdmpz: [Co(2,6–PDC)(Hdmpz)_3]·H_2O (5), [Zn(2,6–PDC)(Hdmpz)_2] (6). IR spectra and single crystal X-ray diffraction analysis show that complex 5 and 6 are in a six-coordinated mode, which features anomalistic octahedral geometry. In addition, there are hydrogen bonds and weak interactions in the crystals of 5, 6.
     3. Two complexes were synthesized in the solution with Salicylidene tri(2-aminoethyl)amine (7) and Salicylidene tri(2-aminoethyl)amine manganese (8) complexes. X-ray diffraction analysis show that complex 8 is in a six coordinated mode with anomalistic octahedral geometry.
引文
[1] Zhang J Z,Cao W Y,Pan J X,Chen Q W. A novel two-dimensional square grid cobalt complex: Synthesis, structure, luminescent and magetic properties. Inorg. Chem. Commun. 2007, 10: 1360~1364.
    [2] Qin C, Wang X L, Wang E, Xu L. Synthesis, structures and thermal properties of three new two-dimensional coordination networks assembled by lanthanide salts and carboxylate ligand. Inorg. Chim. Acta. 2006, 359: 417~423.
    [3] Hoskins B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111: 5962~5964.
    [4] Gardner G B, Venkataraman D, Moore J S, Lee S. Spontaneous assembly of a hinged coordination network. Nature. 1995, 374: 792~803.
    [5] Konsler R G, Karl J, Jacobsen E N. Cooperative Asymmetric Catalysis with Dimeric Salen Complexes. J. Am. Chem. Soc. 1998, 120: 10780~10781.
    [6] Sun C Y, Zheng X Y, Gao S L, Li C, Jin L P. Multiple Regulated Assembly, Crystal Structures and Magnetic Properties of Porous Coordination Polymers with Flexible Ligands. Eur. J. Inorg. Chem. 2005, 4150~4159.
    [7] Puntus L N, Zolin V F, Babushkina T A, Kutuza I B. Luminescence properties of isomeric and tautomeric lanthanide pyridinedicarboxylates. Journal of Alloys and Compounds. 2004, 380: 310~314.
    [8] Huang Y G, Yuan D Q, Gong Y Q, Jiang F L, Hong M C. Synthesis, structures and luminescent properties of lanthanide-organic frameworks based onpyridine-2,6-dicarboxylic acid. J. Mol. Struct. 2008, 872: 99~104.
    [9] Ghosh S K, Neogi S, Sanudo E C, Bharadwaj P k. Water dimmers connect [Cu(cda)(py)3](cda = pyridine-4-hydroxy-2,6-dicarboxylate, py = pyridine) complex units to left- and right-handed helices that form a tubular coordination polymer through supramolecular bonding. Inorg. Chim. Acta. 2008, 361: 56~62.
    [10] Fujita M, Kwon Y J, Washizu S, Ogura K. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine. J. Am. Chem. Soc. 1994, 116: 1151~1152.
    [11] Yaghi O M, Davis C E, Li G M, Li, H. Selective Guest Binding by Tailored Channels in a 3-D porous Zinc(II)-Benzenetricarboxylate Network. J. Am. Chem. Soc. 1997, 119: 2861~2868.
    [12] Zhang X J, Xing Y H, Han J, Zeng X Q, Ge M F, Niu S Y. A Series of NovelLn-Succinate-Oxalate Coordination Polymers: Synthesis, Structure, Thermal Stability, and Fluorescent Properties. Crystal Growth & Design. 2008, 8(10): 3680~3688.
    [13] Zhang X J, Xing Y H, Sun Z, Han, J, Zhang, Y H, Ge M F, Niu S Y. A Series of Two-dimentional Metal-Organic Frameworks Based on the Assembly of Rigid and Flexible Carboxylate-Containing Mixed Ligands with Lanthanide Metal Salts. Crystal Growth&Design. 2007, 7(10): 2041~2046.
    [14] Zhang X J, Xing Y H, Wang C G, Han J, Li J, Ge M F, Zeng X Q, Niu S Y, Lanthanide–alkali metals–oxalates coordination polymers: Synthesis andstructures of [Nd(C2O4)1.5(H2O)3]·2H2O, Nd(C2O4)(CH3COO)(H2O), KLn(C2O4)2(H2O)4 (Ln=Y, Tb). Inorg. Chim. Acta. 2009, 362:1058~1064.
    [15] Wang C G, Xing Y H, Li Z P, Li J, Zeng X Q, Ge M F, Niu S Y. Synthesis, crystal structures and properties of a series of three-dimensional lanthanide coordination polymers with the rigid and flexible mixed dicarboxylate ligands of 1,4-benzene dicarboxylic acid and succinic acid. J. Mol. Struct. 2009, 921: 126~131.
    [16] Zhang X J, Xing Y H, Han J, Ge M F, Niu S Y. A Series of Three-Dimensional Rare Earth Coordination Polymers with Two Binary Carboxylate as Mixed-Ligand: Syntheses, Structures, Properties of [LnIII(mal)(ox)0.5(H2O)2]·2H2O (Ln = Pr, Nd, and La), Z. Anorg. Allg. Chem. 2008, 634: 1765~1769.
    [17] Carlucci L, Ciani G, Proserpio D M. A. Sironi, Novel Networks of Unusually Coordinated Silver(I) Cations: The Wafer–Like Structure of [Ag(pyz)2][Ag2(pyz)5](PF6)3·2G and the Simple Cubic Frame of [Ag(pyz)3](SbF6), Angew. Chem. Int. Ed.1995, 34: 1895~1898.
    [18] Hong M C, Zhao Y J, Su W P, Cao R, Fujita M. A Silver(I) Coordination Polymer Chain Containing Nanosized Tubes with Anionic and Solvent Molecule Guests Angew. Chem. Int. Ed. 2000, 39: 2468~2470.
    [19] Du M, Zou R Q, Zhong R Q, Xu Q. Metal-regulated assemblies of CuII, NiII, and ZnII complexes with isoquinoline-3-carboxylate displaying dicerse supramolecular networks. Inorg. Chim. Acta. 2007, 360: 3442~3447.
    [20] Munakata M L, Wu P. T. Kuroda-sowa, Advances in inorganic chemisty. 1999, 46:175.
    [21] Josefina P, Marta I, Caridad R V, Natalia S. Rare-earths as catalytic centres inorgano-inorganic polymeric frameworks. Mater.Chem. 2004, 14: 2683~2689.
    [22] Zheng F K, Wu a q, Li Y, Guo G C, Wang M S, Li Q, Huang J S. Copper(II), niclel(II) and cobalt(II) complexes of 4-cyanobenzonic acid:syntheses, crystal structures and spectral properties. J. Mol. Struct. 2005, 740:147~157.
    [23] Zheng Y Q, Lin J L. A New Succinato-bridged Supramolecular Helix Chain: Crystal Structure of [Mn(H2O)2(bpy)(C4H4O4)]·H2O with bpy = 2,2′-bipyridine. Z. Anorg. Allg. Chem. 2001, 627:1990~1992.
    [24] Ghoshal D, Maji T K, Mestafa G, Sain S, Lu T H, Kibas J, Zangrand E, Chaudhuri N R. Polymeric networks of copper(II) using succinate and aromatic N–N donor ligands: synthesis, crystal structure, magnetic behaviour and the effect of weak interactions on their crystal packing. J. Chem. Soc. Dalton Trans. 2004, 1687~1695.
    [25] Mao H, Zhang C, Li G, Zhang H, Hou H, Li L, Wu Q, Zhu Y, Wang E. New types of the flexible self-assembled metal–organic coordination polymers constructed by aliphatic dicarboxylates and rigid bidentate nitrogen ligands. J. Chem. Soc., Dalton Trans. 2004, 3918~3925.
    [26] Kim Y J, Jung D Y. Hydrothermal Synthesis and Magnetic Behavior of a Novel Layered Coordination Polymer Generated from Manganese(II) Adipate. Inorg. Chem. 200, 39: 1470~1475.
    [27] Daiguebonne C, Kerbellec N, Bernot K, Gerault Y, Deluzet A, Guillou O. Synthesis, Crystal Structure, and Porosity Estimation of Hydrated Erbium Terephthalate Coordination Polymers. Inorg. Chem. 2006, 45: 5399~5406.
    [28] Hu D X, Luo F, Che Y X, Zheng J, M. Construction of Lanthanide Metal?Organic Frameworks by Flexible Aliphatic Dicarboxylate Ligands Plus a Rigid m-Phthalic Acid Ligand. Cryst. Growth Des. 2007, 7: 1733~1737.
    [29] Guo X D, Zhu G S, Sun F X, Li Z Y, Zhao X J, Li X T, Wang H C, Qiu S L. Synthesis, Structure, and Luminescent Properties of Microporous Lanthanide Metal?Organic Frameworks with Inorganic Rod-Shaped Building Units. Inorg. Chem. 2006, 45: 2581~2587.
    [30] Yu L Q, Huang R D, Xu Y Q, Liu T F, Chu W, Hu C W. Syntheses, structures and properties of novel 3D lanthanide metal-organic frameworks with paddle-wheel building blocks. Inorg. Chim. Acta. 2008, 361: 2115~2122.
    [31] Gao H.L, Yi L, Zhao B, Zhao X Q, Cheng P, Liao D Z, Yan S P. Synthesis and Characterization of Metal?Organic Frameworks Based on4-Hydroxypyridine-2,6-dicarboxylic Acid and Pyridine-2,6-dicarboxylic Acid Ligands, Inorg. Chem. 2006, 45: 5980~5988.
    [32] Xing Y H, Zhang Y H, Sun Z, Ye L, Xu Y T, Ge M F, Zhang B L, Niu S Y. Two new scorpionates vanadium haloperoxidases model complexes:Synthesis and structure of VO(O2)(pzH)(HB(pz)3)and VO(O2)(pzH)(B(PZ)4)(pzH =Pyrazole(C3H4N2)). J. Inorg. BioChem. 2007, 101: 36~43.
    [33] Machura B, Jaworska M, Kruszynski R. Synthesis, crystal, molecular and electronic structure of the [ReBr3(NO)(AsPh3)(pzH)] complex. Polyhedron, 2004, 23: 2523~2531.
    [34] Eddaoudi M, Moler D B, Li H, Chen B, Reineke T M, O'Keeffe M, Yaghi O M. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal?Organic Carboxylate Frameworks. Acc. Chem. Res. 2001, 34: 319~330.
    [35] Yaghi O M, O'Keeffe M N, Ockwig W, Chae H K, ddaoudi M E, Kim J. Reticular synthesis and the design of new materials. Nature. 2003, 423: 705~714.
    [36] Xu X X,Lu Y,Wang E,Ma Y ,Bai X L. New photoluminescence coordination polymers constructed from different ligands, which are generated from maleic acid at hydrothermal conditions. Inorg. Chim. Acta. 2007, 360: 455~460.
    [37] Li Q Y, Tang X Y, Zhang W H, Wang J, Ren Z G, Li H X, Zhang Y, Lang J P. Constructions of a set of novel hydrogen-bonded supramolecules from reactions of cobalt(II) salt with bis(3,5-dimethylpyrazolyl)methane and different carboxylic acids. J. Mol. Struct. 2008, 879:119~129.
    [38] Saylor S M, Supkowski R M, LaDuca R L. Coordination geometry induced control of channel morphology in divalent metal pyridinedicarboxylate coordination polymers containing a kinked tethering organodiimine. Inorg. Chim. Acta. 2008, 361: 317~326.
    [39] Sharma R P, Bala R, Sharma R, Perez J, Miguel D. Second-sphere coordination complex via hydrogen bonding:Synthesis, characterization, X-ray crystal structure determination and packing of hexaammineconalt(III) chlorice di(para-nitrobenzoate). J. Mol. Struct. 2006, 797:49~55.
    [40] Rajput L, Biradha K. Design and synthesis of coordination networks containing amide, pyridine and carboxylate functionalities. Polyhedron, 2008, 1248~1255.
    [41] Ghoshal D, Magi T Y, Mostafa G, Sain Saugata, Lu T H, Ribas J. Polymeric networks of copper(II) using succinate and aromatic N-N donor ligands:synthesis, crystal atructure, magnetic behavior and the effect of weak interactions on their crystal packing. Dalton Trans. 2004, 1687~1695.
    [42] Wang W Z, Liu X, Liao D Z, Jiang Z H, Yan S P, Wang G. L. A novel one-dimensional, ferromagnetic copper(II) complex with chloro-bridges and hydrogen-bonds: [(PDA)2Cu2(μ-Cl)2][CuPz2(H2O)4] (H2PDA = pyridine-2,6-dicarboxylic acid, Pz = pyrazole), Inorg. Chem. Commun. 2001, 4: 327~331.
    [43] Gerrard,L A, Wood P T. Hydrothermal crystal engineering using hard and soft acids and bases: synthesis and X-ray crystal structures of the metal hydroxide-based phases M3M′2(OH)2[NC5H3 (CO2)2-2,4]4(H2O)4 (M = Co, Ni, Zn; M′= Pd, Pt). J. Chem, Soc.,Chem. Commun. 2000, 2107~2108.
    [44] Y. C. Liang, R. Cao, W. P. Su, M. C. Hong, W. J. Zhang, Syntheses, Structures, and Magnetic Properties of Two Gadolinium(iii)-Copper(ii) Coordination Polymers by a Hydrothermal Reaction. Angew. Chem. Int. 2000, 39: 3304~3307.
    [45] O. R. Evans, W. B. Lin, Crystal Engineering of NLO Materials Based on Metal?Organic Coordination Networks. Acc. Chem. Res., 2002, 35: 511~522.
    [46] O. R. Evans, Z. Y. Wang, W. B. Lin, An unprecedented 3D coordination network composed of two intersecting helices,Chem. Commun. 1999, 1903~1904.
    [47] Lin W, Mao B L, Evans O R. NLO-active zinc(II) and cadmium(II) coordination networks with 8-fold diamondoid structures. Chem. Commun. 2000, 2263~2264.
    [48] Ghosh S K, Neogi S, Sanudo E C, Bharadwaj P K. Water dimers connect [Cu(cda)(py)3] (cda=pyridine-4-hydroxy-2,6-dicarboxylate, py=pyridine) complex units to left- and right-handed helices that form a tubular coordination polymer through supramolecular bonding. Inorg. Chim. Acta. 2008, 361: 56~62.
    [49] Zou R Q, Bu X H, Du M, Sui Y X. A hydrogen-bonded 3D coordination network of CuII nitrate with pyridine-2,6-dicarboxylic acid and 3-(2-pyridyl)pyrazole: hydrothermal synthesis, characterization and crystal structure. J. Mol. Struct. 2004, 707: 11~15.
    [50] Lin W, Evans O R, Xiong R G, Wang Z Y. Supramolecular Engineering of Chiral and Acentric 2D Networks. Synthesis, Structures, and Second-Order Nonlinear Optical Properties of Bis(nicotinato)zinc and Bis{3-[2-(4-pyridyl)ethenyl]benzo-ato}cadmium. J. Am. Chem. Soc.1998, 120: 13272.
    [51] Qin C, Wang X L, Wang E B, Su Z M. A series of three dimensional lanthanide coordination polymers with rutile and unprecedented rutile-related topologies. Inorg. Chim. Acta. 2005, 44: 7122~7129.
    [52] Forster P M, Burbank A R. The role of temperature in the synthesis of hybrid inorganic-organic materials: the example of cobalt succinates. Chem Commun. 2004, 368~369.
    [53] Guillou N, Livage C, Beek W V. A layer nickel succinate with unprecedented hexanickel unites: structure elucidation from power-diffraction data, and magnetic and sorption properties. Angew Chem Int Ed. 2003, 42: 644~647.
    [54] Zaworotko M J, From Disymmetric Molecules to Chiral Polymers: A New Twist for Supramolecular Synthesis. Angew. Chem., Int. Ed. 1998, 37: 1211~1213.
    [55] Inoue K, Hayamizu T, Iwamura H, Hashizume D, Ohashi Y. Assemblage and Alignment of the Spins of the Organic Trinitroxide Radical with a Quartet Ground State by Means of Complexation with Magnetic Metal Ions. A Molecule-Based Magnet with Three-Dimensional Structure and High TC of 46 K, J. Am. Chem. Soc. 1996, 118: 1803.
    [56] Kitazawa T, Nishikiori S, Kuroda R, Iwamoto T. Clathrate compounds of cadmium cyanide and related hosts with cristobalite-like lattice structures. J. Chem. Soc., Dalton Trans. 1994, 1029~1036.
    [57] Uemura K, Kitagawa S, Kondo M, Fukui K, Kitaura R, Chang H C, Mizutani T. Novel Flexible Frameworks of Porous Cobalt(II) Coordination Polymers That Show Selective Guest Adsorption Based on the Switching of Hydrogen-Bond Pairs of Amide Groups. Chem. Eur. J. 2002, 8: 3587~3600.
    [58] Livage C, Egger C, Fe′rey G. Hybrid Open Networks (MIL 16): Synthesis, Crystal Structure, and Ferrimagnetism of Co4(OH)2(H2O)2(C4H4O4)3·2H2O, a New Layered Cobalt(II) Carboxylate with 14-Membered Ring Channels. Chem. Mater.1999, 11:1546~1550.
    [59] Livage C, Egger C, Fe′rey G. Hydrothermal versus Nonhydrothermal Synthesis for the Preparation of Organic-Inorganic Solids: The Example of Cobalt(II) Succinate. Chem. Mater. 2001, 13: 410~414.
    [60] Zheng Y Q, Lin J L. A New Succinato-bridged Supramolecular Helix Chain: Crystal Structure of [Mn(H2O)2(bpy)(C4H4O4)]·H2O with bpy = 2,2′-bipyridine. Z. Anorg. Allg. Chem. 2001, 627:1990~1992.
    [61] Ghoshal D, Maji T K, Mestafa G, Sain S, Lu T H, Kibas J, Zangrand E, Chaudhuri N R. Polymeric networks of copper(II) using succinate and aromatic N–N donor ligands: synthesis, crystal structure, magnetic behaviour and the effect of weak interactions on their crystal packing. J. Chem. Soc.,Dalton Trans. 2004, 1687~1695.
    [62] Mao H, Zhang C, Li G, Zhang H, Hou H, Li L, Wu Q, Zhu Y, Wang E. New types of the flexible self-assembled metal–organic coordination polymers constructed by aliphatic dicarboxylates and rigid bidentate nitrogen ligands. J. Chem. Soc., Dalton Trans. 2004, 3918~3925.
    [63] Ying S M, Mao J G, Sun Y Q, Zeng H Y, Dong Z C. Syntheses and crystal structures of three open-frameworks of metal succinates containing a 4,4′-bipyridine ligand. Polyhedron, 2003, 22: 3097~3103.
    [64] Padmanabhan M, Kumary S M, Huang X Y, Li J. Succinate bridged dimeric Cu(II) system containing sandwiched non-coordinating succinate dianion: Crystal structure, spectroscopic and thermal studies of [(phen)2Cu(μ-L)Cu(phen)2]L·12.5H2O (H2L=succinic acid; phen=1,10-phenanthroline). Inorg. Chim. Acta. 2005, 358: 3537~3544.
    [65] Busnot A, Le Querler J f, Yazbeck J. Synthetic reversible oxygen- or nitrogen-carrying chelates of nickel(II). Themochimica Acta.1992, 197: 443~451.
    [66] Geraghty M, McCann M, Casey M T, Curran M, Devereux M, McKee V, McCrea J. Synthesis and catalytic activity of manganese(II) complexes of pentanedioic acid; X-ray crystal structure of [Mn(phen)2(H2O)2][Mn(O2C(CH2)3CO2)(phen)2H2O]-(O2C(CH2)3CO2)·12H2O (phen = 1,10-phenanthroline). Inorg. Chim. Acta. 1998, 277: 257~262.
    [67] Ara I, Falvello L R, Fornies J, Lasheras R, Martin A, Oliva O, Sicila V. Synthesis and structural characterisation of new mono and dinuclear pyrazolatopalladium (II) complexes self-assembled through robust hydrogen-bonds. Inorg. Chim. Acta. 2006, 359: 4574~4584.
    [68] Zhang L P, Wang Y H, Jin L P. Hydrothermal synthesis and crystal structures of three novel lanthanide coordination polymers with glutarate and 1,10-phenanthroline. J. Mol. Struct. 2003, 646: 169~178.
    [69] Devic T, Serre C, Audebrand N, Marrot J, Ferey G. MIL-103, A 3-D Lanthanide-Based Metal Organic Framework with Large One-DimensionalTunnels and A High Surface Area. J. Am. Soc. 2005, 127: 12788~12789.
    [70] Boyd R W, Nonlinear Optics. Academic Press, New York, 1992.
    [71] Cui S X, Zhao Y L, Li B, Zhang J P, Liu Q, Zhang Y. Structural and magnetic properties of one-dimensional polymeric CoII complex. Polyhedron, 2008, 27: 671~678.
    [72]赵海峰.杂环含硫Schiff碱及其过渡金属配合物的合成、表征和生物活性研究华东师范大学硕士论文.2005.
    [73]郑允飞,陈文纳,李德昌,任海静,韦善怀. Schiff碱及其配合物的应用研究进展化工技术与开发. 2004, 4: 33.
    [74]程爱玲.水溶性Schiff碱金属配合物的合成及性能研究.华东师范大学硕士论文. 2006
    [75]冯小珍,夏金虹,刘峥,氨基酸席夫碱配合物的制备及性能研究进展,化学研究与应用,2007,19(3): 238~243.
    [76]姚克敏,李宁,黄巧虹. Ln(III)-Cu(II)与直链醚-氨基酸新型Schiff碱异核配合物合成和催化[J].中国科学(B), 1998, 28(6): 517~523.
    [77]韩晶.氨基酸希夫碱类过渡金属超氧化物岐化酶模型化合物的设计、合成、表征及量子化学研究。辽宁师范大学硕士论文,2008年5月.
    [78]张建民,李瑞芳,刘树祥,过渡金属配合物的稳定性及其杀菌活性[J].无机化学学报. 1999,15(4): 493~496.
    [79]黎植昌,李太山.N–亚水杨基氨基酸锌配合物的合成及表征[J].高等学校化学学报, 1993, 14(3): 301~304.
    [80]李太山,黎植昌. Synthesis and properties of N-salicyli-dene-L-amino acids [J].化学试剂.1992, 14 (4): 201~203.
    [81] Guzow K, Milewska M. 3-[2-(8-Quinoli-nyl) benzoxazol-5-yl]alanine derivative a specific fluorophore for transition and rare-earth metal ion detection. [J]. Tetrahedron. 2004, 60: 11889~11894.
    [82] Cejas M A, Comez-Hens A, Valcarcel M. Fluorimetric Determination of Magnesium by Ternary Complex Formation with Pyridoxal Nicotinylhydrazone and Amines. Anal. Chim. Acta.1981, 130(1): 73~79.
    [83]陈德余,张义建,张平.甲硫氨酸席夫碱铜、锌、钴配合物的合成及抗O2–·性能.应用化学.2000, 17(6): 607~610.
    [84]叶勇. 2–氯代苯甲醛丙氨酸席夫碱及其3d–过渡金属配合物的合成与表征.湖北大学学报. 2001, 23(1): 57~61.
    [1] Sheldrick, G.M. SHELXS 97, Program for Crystal Structure Refinement; University of G?ttingen: G?ttingen, Germany, 1997.
    [2] Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. [J]. European Journal of Biochemistry. 1974, 47: 469~474.
    [1] Ying S M, Mao J G, Sun Y Q, Zeng H Y, Dong Z C. Polyhedron, 2003, 22: 3097.
    [2] Cui S X, Zhao Y L, Li B, Zhang J P, Liu Q, Zhang Y. Polyhedron, 2008, 27: 671.
    [3] Addison A W, Rao T N, Reedijik J, van Rijn J, Verschoor C G. Dalton Trans. 1984, 1349~1356.
    [1] Xiueen Y, Harry G. Evidence for Schiff base in the addition of amino alcohols to the Eu(III) chelates of benzoylaeetone and dibenzoyl–methane. Inorg.Chim.Aeta.1982, 59(2): 261~268.
    [2] Nelson S M. Developments in the synthesis and coordination chemistry of macrocyclic Schiff base ligands Pure Appl. Chem.1980, 52(11): 2461~2476.
    [3] Karn, J L, Busch D H. Nickel(n) Complexes of the Tetradentate Macrocycle 2,12–Dimethyl–3,7,ll,17–Tetrazabicyclo (11.3.1) Heptadeca–1 (17), 2, 11,13,14-Pentaene. Nature.1966, 211(5054): 160~162.
    [4] Herrera A M, Kalayda G V, Disch J S, Wikstrom J P, Korendovych I V, Staples R J, Campana C F, Nazarenko A Y, Haas T E, Rybak-Akimova E V. Reactions at the azomethine C=N bonds in the nickel(II) and copper(II) complexes of pyridine-containing Schiff-base macrocyclic ligands J. C. S. Dalton Trans. 2003, 23: 4482~4492.
    [5] Agarwala R G. Acyl Hydrazine Complexes of titanium and zirconium tetrachlorides[J]. J Inorg Nucl Chem. 1973, 35: 653~655.
    [6] Liu G, Cogan D A, Ellman J. Catalytic Asymmetric Synthesis of tert-Butanesulfinamide. Application to the Asymmetric Synthesis of Amines J. Am. Chem. Soc. 1997, 119(41): 9913~9914.
    [7] Velter A H, Berkessel A. Schiff-base ligands carrying two elements of chirality: Matched–mismatched effects in the vanadium–catalyzed sulfoxidation of thioethers with hydrogen peroxide. Tetra. Lett, 1998, 39(13): 1741~1744.
    [8] Mccord J M. superoxide Dismutase, An Enzymic Function for Erythrocuprein (hemocuprein). J. Biol.Chem. 1969, 244(22): 6049~6052.
    [9] Bull C R, Fisher C, M.Hoffman B. Manganese hemoglobin: Allosteric effec ts inredox and ligation equilibria Biochem. Biophys. Res. Comnnun.1974, 59(1): 140~145.
    [10] Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas J. Biol. Chem. 1989, 264:7761~7764.
    [11] McCord J M, Fridovich I. Superoxide Dismutase. An enzymatic function for erythocuprein (hemocuprein). J. Biol. Chem. 1969, 244: 6049~6055.
    [12] Yu S B, Wang C P, Day E P, Holm R H. A binuclear manganese system with three isolated oxidation states: synthesis, structures, and properties of molecules with a Mn2(OR)2 bridge unit containing MnIIIMnIII, MnIIIMnII, and MnIIMnII Inorg. Chem. 1991, 30(21): 4067~4074.
    [13] Matsumoto N, Zhuang J, Okawa H, Kida S. Crystal structure and magnetic property of the binuclear manganese(III) complex [Mn(L)H2O]2(ClO4)2(L = N-(acetylaceto nylidene)-N′-(α-methylsalicylidene)-ethylenediamine) Inorg. Chim. Acta. 1989, 160(2): 153~157.
    [14] McCord J M, Fridovich L. "An enzyme based theory of obligate anaerobiosic: the physiological function of superoxide Dismutase." Proc.Natl. Acad.Sci. USA.1971, 68: 5~37.
    [15] Marklund S L. "Role of toxic effects of oxygen in reperfusion damage." J. Mol. Celd Cardio.1988, 20: 23~30.
    [16] Muller F. "Rractive oxygen intermediates and human immunodeficiacy virus infection." Free Radical Biol. Med.1992, 13(6): 651~657.
    [17] Roxin L E. "Muscle cell leakage of myoglobin after long-term exercise and rolation to the individual pergormance." Intl. J. Sports Med. 1986, 7: 259~263.
    [18]熊云,李东风,郑雪峰等.几种SOD模型化合物的合成、性质及活性.华中师范大学学报(自然科学版).1997, 31(2): 179~81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700