金属离子选择性电极的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属一般以天然浓度广泛存在于自然界中,但随着人类对金属的开采、冶炼、加工及商业制造活动的日益增多,造成大量的金属如铅、汞、铬、钴等进入环境中。金属原本是水生生物及人体生长和发育不可缺少的生命元素,但是当其含量超过一定的界限时就会对生命体产生很强的毒害作用。因此,对环境样品中的金属的浓度进行测定在环境分析中尤为重要。目前,检测金属离子的方法主要有原子吸收光谱法、电感耦合原子发射光谱法、电感耦合等离子体质谱法等,但是这些方法涉及到复杂的样品处理,需要大的基层组织,并且对于大部分的分析实验室太昂贵了。因此,有必要发展一个简单的方法来对金属离子进行测定。离子选择电极由于在分析方面具有独特的优点,如适宜的选择性和灵敏性、宽的线性范围、低的检测限、快的响应时间,特别是容易准备和低的花费等优点而被广泛的应用于化学传感器中来测定各种离子型物种,在过去的几十年中研究出了大量的基于不同中性载体的离子选择电极。如今,对离子选择电极的载体的研究是离子选择性电极研究中比较活跃的一个方向。本论文着重于设计、合成不同的新型中性配体,将其作为载体用于PVC溶剂聚合膜金属离子选择性电极的研究中,采用电化学的方法和手段对这些离子选择性电极的性能进行表征,并将电极初步应用于实物样品分析。
     本文研究内容如下:
     1.氮-硫希夫碱配体在镍离子选择性电极中的应用
     以乙二醛双缩肼基双硫代甲酸苄酯(GBSB)为载体构建了高选择性PVC膜镍离子电极。用电导法研究了载体GBSB对不同金属离子的稳定性和选择性情况,对于Ni2+,摩尔电导在GBSB为1时产生了突变。而对于其它的金属离子,摩尔电导的变化很小。该电极对Ni(II)表现出了很好的电势响应性能,电极响应的线性范围近六个浓度的数量级,检测下限为1.0 x 10-7mol/L。在整个浓度范围内电极的响应时间小于30 s,电极至少能使用三个月,该电极适宜的pH值范围为4.0-7.5。用交流阻抗技术研究了电极膜表面的电化学行为。将该电极初步的运用于电位滴定镍离子时作为指示电极,以及测定牛奶和巧克力样品中的镍离子浓度,并与原子吸收光谱法测定的结果进行了比较。
     2.新的芳基氨基桥联配体在铬离子选择电极中的应用
     合成了一种新的芳基氨基桥联配体,2,2'-双{[(2”-苯甲基氨基甲酸基)苯基]甲基}-双-乙醚(BBPMD),以该化合物作为载体制备的聚合物膜电极对Cr3+呈现出高选择性。研究了增塑剂和离子添加剂对该电极的影响,优化了测量条件,得到的最佳电极对Cr3+电位响应的线性范围为2.8×10-6-1.0x10-1mol/L,检测下限8.6×10-7mol/L,响应斜率为19.5±0.2 mV/dec。电极适宜的pH范围为2.5-6.5。在整个浓度范围内电极的响应时间约为10 s。采用紫外-可见光谱滴定法测定了载体BBPMD对不同金属离子的缔合常数和配位数,载体对Cr3+的缔合常数远远大于其他的离子,并且随着溶液中Cr3+含量的增大,吸收峰强度逐渐增大,峰位置发生红移。用交流阻抗技术研究了电极表面的电化学行为。最后,将该电极初步的应用于测定实物样品中的Cr3+浓度以及作为指示电极滴定Cr3+。
     3.以大环化合物为中性载体的高选择性聚合物膜钡离子电极的研究
     用4,6-二乙酰基间苯二酚和乙二胺以1:1的比例反应,合成了大环化合物(H4L配体),将其作为载体的PVC膜电极对Ba2+表现出高的选择性,电极响应的线性范围为3.6×10-6-1.0×10-1mol/L,检测限为1.9×10-6mol/L,斜率为29.7±0.2 mV/dec。电极适宜的pH值范围为2.5-7.5。用分别溶液法测定了钡离子电极的选择性系数,除了镍离子外,其他离子的选择性系数都很小。因此,用混合溶液法研究了测定钡离子时,镍离子不干扰钡离子测定的最大浓度。当溶液中镍离子的浓度小于等于5.0x10-5mol/L时,不干扰钡离子的测定。用电导法测定了在DMSO溶液中H4L配体与金属离子络合的稳定常数。同时,用交流阻抗技术和紫外-可见光谱法研究了电极响应的机理。将该电极初步的应用于电位滴定中以及测定实物样品中的钡离子和硫酸根离子的浓度,并运用F-测试法和t-测试法对电极测定的结果与电感耦合原子发射光谱法测定的结果进行了统计比较。
     4.双穴二氧四胺配体在铝离子选择性电极研究中的应用
     合成了一种双穴二氧四胺配体,N,N’-双[水杨醛缩(2-氨乙基)]丙二酰胺(NPBS)。以该配体作为载体的电极对Al3+表现出高的选择性。在25℃,pH 3.0硝酸盐溶液中,电极响应的线性范围为7.9×10-7-1.0×10-1mol/L,检测限为4.6×10-7 mol/L,斜率为19.4±0.3 mV/dec.讨论了不同pH值下Al3+的存在状态,电极适宜的pH值范围为2.5-4.0。电极的响应时间约为8 s,该电极连续使用两个月其性能未见明显的下降。采用紫外-可见光谱滴定法测定了载体NPBS对不同金属离子的缔合常数和配位数,载体对Al3+的缔合常数远远大于其他的离子。用交流阻抗技术研究了电极表面的电化学行为,膜本体阻抗随着溶液中Al3+浓度的增加而减少,表明Al3+参与了传输,且载体携带Al3+通过膜相的传输过程为可逆的电极过程,受到扩散控制。该电极被初步的运用于测定实物样品中的铝离子,以及在电位滴定铝离子时作为指示电极。
The metal elements usually exist widely in nature with natural concentrations. But as mining, smelting, processing and commercial manufacturing activities increased, lots of metals such as lead, mercury, chromium, cobalt, etc. are discharged into the environment. Metals are the essential life elements of growth and development of aquatic biology and human. However, they will result in strong toxicity to the body when their concentration exceeds a certain limit. Therefore, the determination of metals in environmental samples is very important in the environmental analysis. At present, the main conventional methods for determination are flame and graphite furnace atomic absorption spectrometry, inductive coupled plasma atomic emission spectrometry, inductive coupled plasma mass spectrometry, etc. But these methods involve multiple sample manipulations and costly expenses for most analytical laboratories. Thus, it is necessary to develop a convenient method to determine metal ions. Ion selective electrodes (ISEs) that offer several advantages, such as adequate selectivity, wide linear range, low detection limit, fast response time, especially easy preparation and low cost, have inevitably been utilized for preparing sensors for several ionic species and the quantity of available electrodes has grown significantly over recent years. Nowdays, studies on the carrier of the ion selective electrode is a very active direction on the studies of the ion selective electrodes. In this thesis, a series of complexes are synthesized and used as carriers of the ion selective electrodes. The performance of the ion selective electrode is characterized by electrochemical methods and the proposed electrodes are applied to the detection of metal ions in real samples.
     1. Studies on the N-S Schiffbase ligand application on Ni (II) ion selective electrode
     Ni (II) ion-selective electrode is prepared by incorporating a new N-S Schiff base ligand, glyoxal-bis(S-benzyldithiocarbazate)(GBSB) as neutral carrier into the PVC matrix. The proposed electrode exhibits an excellent near-Nernstian response for Ni2+ion ranging from 2.8×10-7 to 1.0×10-1 mol/L with a detection limit of 1.2×10-7mol/Land a slope of 31.9±0.3 mV/dec in pH 4.0 nitrate solution at 25℃. It has an appropriate response time and suitable reproducibility, and can be used at least three months. The operational pH range of the proposed electrode is 4.0-7.5. In preliminary experiments, the complexation of GBSB with some cations was investigated conductometrically in a DMSO solution in order to obtain a clue about the stability and selectivity of the resulting complexes. The change in conductance of Ni2+ was larger than that for other cations. And the response mechanism is discussed in view of the alternating current (AC) impedance technique. In addition, the electrode is successfully used as an indicator electrode in potentiometric titration of Ni2+ion and in the direct determination of Ni2+ion in milk power and chocolate samples.
     2. Studies on a new aryl amide bifunctional bridging ligand application on Cr (III) ion selective electrode
     A novel Cr(III) ion-selective electrode is constructed by incorporating a new aryl amide bifunctional bridging ligand,2,2'-bis{[(2"-benzylaminoformyl)phenxoyl]methyl}-diethylether (BBPMD) as a neutral carrier into the PVC matrix. The proposed electrode, with optimum membrane composition, exhibits an excellent near-Nernstian response for Cr3+ion ranging from 2.8×10-6 to 1.0×10-1 mol/L with a detection limit of 8.6×10-7mol/Land a slope of 19.5±0.2 mV/dec in pH 3.0 nitrate solution at 25℃. It has an appropriate response time, suitable reproducibility, and good selectivity towards Cr3+ion. The operational pH range of the proposed electrode is 2.5-6.5. The coordination number and association constant of coordination reaction of the carrier towards different metal ions were measured by means of UV-vis spectra titration. The absorbance increases gradually and the peak has a considerable red shift. The A. C. impedance technique was used researching the electrochemical characteristics on the electrode surfance. The excellent analytical features of the proposed electrode could lead to its successful application as an indicator electrode in potentiometric titration of Cr3+ion and in the direct determination of Cr3+ion in tea leaves and coffee samples.
     3. Studies on macrocyclic tetrabasic ligand application on barium (II) ion selective electrode
     In this study, a novel barium (II) ion-selective polymeric membrane electrode based on macrocyclic tetrabasic ligand (H4L) that derived from the reaction of 4,6-diacetylresorcinol and ethylenediamine in the molar ratio 1:1 as a neutral carrier was described. The electrode containing 2.04 wt% ionophore,66.40 wt% o-NPOE,31.23 wt% PVC and 0.33 wt% HTAB displayed excellent potential response characteristics to Ba2+ion ranging from 3.6×10-6 to 1.0×10-1 mol/L, with a detection limit of 1.9×10"6 mol/L and a slope of 29.7±0.2 mV/dec in pH 4.0 nitrate solution at 25℃. The response time was about 10 s for Ba2+ion over the entire concentration range and the potentials stayed constant for more than 2 min. And the proposed electrode could be used two months and didn't show visible loss of response characteristics. The potential remains constant at pH range 2.5-7.5. The selectivity coefficients of Ba2+ion selective electrode were determined by the separate solution method (SSM). The electrode is selective towards Ba2+ion over a number of other cations except for Ni2+ion, as the selectivity coefficient value is slightly higher. To know the exact concentration of Ni2+ion that can be tolerated in the determination of Ba2+ion, some mixed run studies were carried out and the proposed electrode could tolerate Ni2+ion at the concentration≤5.0x10-5mol/L. The complexation of H4L with some metal ions was investigated conductometrically in a DMSO solution in order to obtain a clue about the stability and selectivity of the resulting complexes. Then, the response mechanism was discussed in view of UV-visible spectroscopy and the A.C. impedance technique. Finally, the proposed electrode was successfully applied to the detection of Ba2+ions in real samples as well as sulphate (Ⅱ) ions in water. The statistical comparison for the results of the proposed method and the reference one was carried out with regard to precision and accuracy by using F-test and t-test.
     4. Studies on the double-cavity dioxotetraamine ligand application on Al(III) ion selective electrode
     This work describes the fabrication of a selective polymeric membrane potentiometric sensor for Al3+ion based on N, N'-propanediamide bis (2-salicylideneimine) (NPBS) as a neutral carrier. The proposed sensor, with optimum membrane composition, exhibited an excellent near-Nernstian response for Al3+ion ranging from 7.9×10-7 to 1.0×10'1 mol/L with a detection limit of 4.6×10-7 mol/Land a slope of 19.4±0.3 mV/dec in pH 3.0 nitrate solution at 25℃. It showed a relatively fast response time (8 s), suitable reproducibility and stability, and good selectivity towards Al3+ion. The operational pH range of the proposed sensor was 2.5-4.0. The excellent selective response of the proposed electrode towards Al3+ions mainly resulted from the coordinate interaction between the carriers and Al3+ions. To confirm the interaction between the carriers and Al3+ions, the UV-visible spectroscopic experiments were carried out. The coordination number and association constant of coordination reaction of the carrier towards different metal ions were measured by means of UV-visible spectra titration. And the alternating current (A. C.) impedance technique was used researching the electrochemical characteristics on the electrode surfance. In addition, the proposed sensor was successfully used as an indicator electrode in potentiometric titration of Al3+ ion and in the direct determination of Al3+ion in real samples.
引文
[1]朱明华.仪器分析.第三版.北京:高等教育出版社,2000,107-142.
    [2]德斯特RA主编.殷晋尧、苏渝生等译.离子选择性电极.北京:科学出版社,1976,153-184.
    [3]谢声洛.离子选择电极分析技术.第一版.北京:化学工业出版社,1985,2-96.
    [4]高小霞等.电分析化学导论.第一版.北京:科学出版社,1986,122-132.
    [5]曾泳淮,林树昌.仪器分析部分.第二版.北京:高等教育出版社,2004,259-285.
    [6]吴守国,袁倬斌.电分析化学原理.合肥:中国科学技术大学出版社,2006,8-145.
    [7]Stefanace Z, Simon W. Ion specific electrochemical behavior of macrotetrolides in membranes. Microchem J,1967,12:125-132.
    [8]Pioda L A R, Stankova V, Simon W. Highly selective potassium ion responsive liquid-membrane electrode. Anal Lett,1969,2:665-674.
    [9]Wieland T, Luben G, Ottenheym H, Faesel J, Vries J X, Konz W, Prox A, Schmicl J. Antamanid, seine entdeckung, isolierung, strukturaufklarung and synthese. Angew Chem, 1968,80:209-213.
    [10]Childs R F, Taguchi V. The photoisomerization of some tropylium cations and protonated tropone. J Chem Soc D:Chem Commun,1970,11:695-696.
    [11]Gachon P, Kergomard A, Veschambre H, Esteve C, Staron T. Grisorixin, a new antibiotic related to nigericin. J Chem Soc D:Chem Commun,1970,21:1421-1422.
    [12]Agtarap A, Chamberlin J W, Pinkerton M, Steinrauf L K. Structure of monensic acid, a new biologically active compound. J Am Chem Soc,1967,89:5737-5739.
    [13]Barsoum B N, Khella S K, Elwaby A H M, Abbas A A, Ibrahim Y A. Evaluation of some new 14-and 15-crown-formazans as carriers in cesium ion selective electrode. Talanta,1998,47: 1215-1222.
    [14]Sheu H C, Shih J S. Organic ammonium ion selective electrode based on 18-crown-6-phosphotungstic acid precipitates. Anal Chim Acta,1996,324:125-134.
    [15]Chandra S, Buschbeck R, Lang H. A 15-crown-5-functionalized carbosilane dendrimeras ionophore for ammonium selective electrodes. Talanta,2006,70:1087-1093.
    [16]Shamsipur M, Javanbakht M, Mousavi M F, Ganjali M R, Lippolis V, Garau A, Tei L. Copper(Ⅱ)-selective membrane electrodes based on some recently synthesized mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit. Talanta,2001,55: 1047-1054.
    [17]Ekmekci G, Uzun D, Somer G, Kalayci S. A novel iron (Ⅲ) selective membrane electrode based on benzo-18-crown-6 crown ether and its applications. J Menbrane Sci,2007,288: 36-40.
    [18]Mousavi M F, Alizadeh N, Shamsipur M, Zohari N. A new PVC-based 1,10-dibenzyl-1, 10-diaza-18-crown-6 selective electrode for detecting nickel (II) ion. Sens Actuat B,2000,66: 98-100.
    [19]Ganjali M R, Hosseini M, Basiripour F, Javanbakht M, Hashemi O R, Rastegar M F, Shamsipur M, Buchanen G W. Novel coated-graphite membrane sensor based on N,N'-dimethylcyanodiaza-18-crown-6 for the determination of ultra-trace amounts of lead. Anal Chim Acta,2002,464:181-186.
    [20]Suzuki K, Yamada H, Sato K, Watanabe K, Hisamoto H, Tobe Y, Kobiro K. Design and synthesis of highly selective ionophores for lithium ion based on 14-crown-4 derivatives for an ion-selective electrode. Anal Chem,1993,65:3404-3410.
    [21]Takayo M K, Rie A, Kazuhiro M, Haruhisa T, Keiichi F, Yasuhiko S, Toshiyuki S. Conformational analysis of 12-crown-3 and sodium ion selectivity of electrodes based on bis(12-crown-3) derivatives with malonate spacers. Anal Chim Acta,2003,480:291-298.
    [22]Aghaie M, Giahi M, Aghaie H, Arvand M, Pournaghdy M, Yavari F. New Fe (II) ion-selective electrode based on N-pjenylaza-15-crown-5 as neutral carrier in PVC matrix. Desalination, 2009,247:346-354.
    [23]张来新,高均科,李少琴,杨琼.杯芳烃的产生发展及应用.宝鸡文理学院学报(自然科学版),1998,18:32-36.
    [24]郭兵,冯亚青,周守山,洪学传.新型主体分子—杯芳烃的研究进展.合成化学,2000,8:395-399.
    [25]Diamond D, in:M.R.Smyth, J.G. Vos (Eds.), Electrochemistry, Sensors and Analysis, Anal Chem, Symp Ser,1986,25:155.
    [26]Kim S, Kim H, Noh K H, Lee S H, Kim S K, Kim J S. Potassium ion-selective membrane electrodes based on 1,3-alternate calix[4]crown-5-azacrown-5. Talanta,2003,61:709-716.
    [27]Oh H, Choi E M, Jeong H, Nam K C, Jeon N S. Poly(vinylchloride) membrane cesium ion-selective electrodes based on lipophilic calix[6]arene tetraester derivatives. Talanta,2000, 53:535-542.
    [28]Perez-Jimenez C, Escriche L, Casabo J. Poly(vinyl) chloride membrane caesium-selective electrodes based on doubly crowned 1,3-calix[4]arenes. Anal Chim Acta,1998,371:155-162.
    [29]Ngeontae W, Janrungroatsakul W, Morakot N, Aeungmaitrepirom W, Tuntulani T. New silver selective electrode fabricated from benzothiazole calyx[4]arene:Speciation analysis of silver nanoparticles. Sens Actuat B,2008,134:377-385.
    [30]Mahajan R H, Kaur R, Bhalla V, Kumar M, Hattori T, Miyano S. Mercury(II) sensors based on calix[4]arene derivatives as receptor molecules. Sens Actuat B,2008,130:290-294.
    [31]Lu J Q, Chen R, He X W. A lead ion-selective electrode based on acalixarene carboxyphenyl azo derivative. J Electroanal Chem,2002,528:33-38.
    [32]Duncan D M, Cockayne J S. Application of calixarene ionophores in PVC based ISEs for uranium detection. Sens Actuat B,2001,73:228-235.
    [33]郭斌,徐伟,刘冬,黄载福,湛了蓉,罗宝生.冠醚化合物的合成(XXI)-开链酰胺型冠醚的合成及其钙离子选择电极的性能.高等学校化学学报,1993,14:630-633.
    [34]Guggi M, Pretsch E, Simon W. A barium ion-selective electrode based on the neutral carrier N, N, N',N'-tetraphenyl-3,6,9-trioxaundecane diamide.Anal Chim Acta,1977,91:107-112.
    [35]Gupta V K, Agarwal S, Jakob A, Lang H. A zinc-selective electrode based on N, N'-bis(acetylaceyone)ethylenediimine. Sens Actuat B,2006,114:812-818.
    [36]Gupta V K, Goyal R N, Bachheti N, Singh L P, Agarwal S. A copper-selective electrode based on bis(acetylacetone)propylenediimine. Talanta,2005,68:193-197.
    [37]Mashhadizadeh M H, Mostafavi A, Allah-Abadi H, Sheikhshoai I. New schiff base modified carbon paste and coated wire PVC membrane electrode for silver ion. Sens Actuat B,2006, 113:930-936.
    [38]张丽娜,柴雅琴,袁若,李艳,叶光荣.基于2,3-丁二酮双缩氨基硫脲为中性载体的新型银离子选择性电极的研究.化学学报,2007,65:537-541.
    [39]Gupta V K, Pal M K, Singh A K. Comparative study of Ag(I) selective poly(vinylchloride) membrane sensors based on newly developed Schiff-base lariat ethers derived from 4,13-diaza-18-crown-6. Anal Chim Acta,2009,631:161-169.
    [40]Hassouna M E M, Elsuccary S A A, Graham J P. N,N'-bis(3-methyl-l-phenyl-4-benzylidine-5-pyrazolone)propylenediamine schiff base as an eutral carrier for silver(I) ion-selective electrodes. Sens Actuat B,2010.
    [41]Ganjali M R, Poursaberi T, Babaei L H, Rouhani S, Yousefi M, Kargar-Razi M, Moghimi A, Aghabozorg H, Shamsipur M. Highly selective and sensitive copper(II) membrane coated graphite electrode based on a recently synthesized schiff's base. Anal Chim Acta,2001,440: 81-87.
    [42]Gupta V K, Singh A K, Gupta B. Schiff bases as cadmium(II) selective ion ophores in polymeric membrane electrodes. Anal Chim Acta,2007,583:340-348.
    [43]Mashhadizadeh M H, Sheikhshoaie I, Saeid-Nia S. Asymmetrical schiff bases as carriers in PVC membrane electrodes for cadmium (II) ions. Electroanalysis,2005,17:648-654.
    [44]Ardakani M M, Kashani M K, Salavati-Niasari M, Ensafi A A. Lead ion-selective electrode prepared by sol-gel and PVC membrane techniques. Sens Actuat B,2005,107:438-445.
    [45]Ardakany M M, Ensafi A A, Naeimi H, Dastanpour A, Shamlli A. Highly selective lead(II) coated-wire electrode based on a new schiff base. Sens Actuat B,2003,96:441-445.
    [46]Gupta V K, Agarwal S, Jakob A, Lang H. A zinc-selective electrode based on N, N'-bis(acetylacetone)ethylenediimine. Sens Actuat B,2006,114:812-818.
    [47]Singh A K, Singh R, Saxena P. Tetraazacyclohexadeca macrocyclic ligand as a neutral carrier in a Cr ion-selective electrode. Sensors,2004,4:187-195.
    [48]Singh A K, Panwar A, Singh R. A new macrocyclic polystyrene-based sensor for chromium (Ⅲ) ions. Anal Bioanal Chem,2002,372:506-510.
    [49]Shamsipur M, Soleymanpour A, Akhond M, Sharghi H, Sarvari M H. Highly selective chromium(III) PVC-membrane electrodes based on some recently synthesized schiff s bases. Electroanalysis,2005,17:776-782.
    [50]Mashhadizadeh M H, Shoaei I S, Monadi N. A novel ion selective membrane potentiometric sensor for direct determination of Fe (III) in the presence of Fe (II). Talanta,2004,64: 1048-1052.
    [51]Gupta V K, Goyal R N, Pal M K, Sharma R A. Comparative studies of praseodymium (III) selective sensors based on newly synthesized schiff's bases. Anal Chim Acta,2009,653: 161-166.
    [52]Zamani H A, Ganjali M R, Adib M. Construction of a highly selective PVC-based membrane sensor for Ce (III) ions. Sens Actuat B,2007,120:545-550.
    [53]Gupta V K, Singh A K, Gupta B. A cerium (III) selective polyvinyl chloride membrane sensor based on a schiff base complex of N, N'-bis [2-(salicylideneamino)ethyl]ethane-1,2-diamine. Anal Chim Acta,2006,575:198-204.
    [54]Ganjali M R, Tamaddon A, Norouzi P, Adib M. Novel Lu (III) membrane sensor based on a new asymmetrically S-N schiff's base. Sens Actuat B,2006,120:194-199.
    [55]Ganjali M R, Mirnaghi F S, Norouzi P, Adib M. Novel Pr(III)-selective membrane sensor based on a new hydrazide derivative. Sens Actuat B,2006,115:374-378.
    [56]Ganjali M R, Norouzi P, Daftari A, Faridbod F, Salavati-Niasari M. Fabrication of a highly selective Eu (Ⅲ) membrane sensor based on a new S-N hexadentates schiff's base. Sens Actuat B,2007,120:673-678.
    [57]Ganjali M R, Norouzi P, Akbari-Adergani B. Thulium (III) ions monitoring by a novel Thulium (Ⅲ) microelectrode based on a S-N schiff base. Electroanalysis,2007,19: 1145-1151.
    [58]Ganjali M R, Rezapour M, Norouzi P, Salavati-Niasari M. Anew pentadentate S-N schiff base as a novel ionophore in construction of a novel Gd (Ⅲ) membrane sensor. Electroanalysis, 2005,17:2032-2036.
    [59]Chandra S, Singh D R. Polymeric membrane neodymium (Ⅲ)-selective electrode based on 11, 13-diaza-4,7,12-trioxo-2(3),8(9)-dibenzoyl-cyclotetridecane-1,11-diene. Mater Sci Eng A, 2009,502:107-110.
    [60]Gupta V K, Pal M K, Singh A K. Comparative evaluation of Dy (Ⅲ) selective poly(vinyl)chloride based membrane electrodes of macrocyclic tetraimine schiff's bases. Talanta,2009,79:528-533.
    [61]Istvan Pais Jr J, Jones B. The Handbook of Trace Elements, St Lucie Press, Florida,1997, pp. 124-125.
    [62]Bakker E, Buhlmann P, Pretch E. Carrier based ion-selective electrodes and bulk optodes. Part 2. Ionophores for potentiometric and optical sensors. Chem Rev,1998,98:1593-1687.
    [63]Moody G J, Saad B B, Thomas J D R. Development of polymer matrix membranes for ion-selective electrodes. Sel Electrode Rev,1988,10:71-105.
    [64]Zamani H A, Ganjali M R, Norouzi P, Adib M. Application of novel praseodymium(III) PVC-membrane electrode for determination of Pr(Ⅲ) ions in soil and sediment samples. Anal Lett,2008,41:902-916.
    [65]Ganjali M R, Norouzi P, Akabri-Adergani B, Riahi S, Larijani B. An asymetric lutetium (III) microsensor based on N-(2-furylmethylene) pyridine-2,6-diamine for determination of lutetium(III) ions. Anal Lett,2007,40:1923-1938.
    [66]Liu L, Wang L, Yin H, Li Y, He X. The preparation and application of bismuth (III) ion-selective electrode based on nanoparticles of bismuth sulfide. Anal Lett,2006,39: 879-890.
    [67]Pooyamanesh M J, Zamani H A, Rajabzadeh G, Ganjali M R, Norouzi P. Ion-selective membrane electrode based on 4-Amino-6-methyl-3-methylmercapto-1,2,4-Fe(III)triazin-5-one. Anal Lett,2007,40:1596-1609.
    [68]Saleh M B, Abdel-Gaber A A, Khalaf M M R, Tawfeek A M. Novel Sm(III) ion-selective polymeric membrane sensor based on spiro[oxirane-pyrazolidinedione] derivative ionophore. Anal Lett,2006,39:17-31.
    [69]Gupta V K, Goyal R N, Agarwal S, Kumar P, Bachheti N. Nickel(II)-selective based on dibenzo-18-crown-6 in PVC matrix. Talanta,2007,71:795-800.
    [70]Singh L P, Bhatnagar J M. PVC based selective sensors for Ni2+ ions using carboxylated and methylated porphine. Sensors,2003,3:393-403.
    [71]Gupta V K, Jain A K, Singh L P, Khurana U. Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel (Ⅱ). Anal Chim Acta,1997,355:33-41.
    [72]Gupta V K, Jain A K, Ishtaiwi Z, Lang H, Maheshwari G. Ni2+ selective sensors based on meso-tetrakis-{4-[tris-(4-allyldimethyl-silyphenyl)-silyl]-phenyl} porphyrin and (sal)2trien in poly(vinylchloride) matrix. Talanta,2007,73:803-811.
    [73]Mousavi M F, Alizadeh N, Shamsipur M, Zohari N. A new PVC-based 1,10-dibenzyl-1, 10-diaza-18-crown-6 selective electrode for detecting nickel (II) ion. Sens Actuat B,2000,66: 98-100.
    [74]Shamsipur M, Kazemi S Y. A PVC-based dibenzodiaza-15-crown-4 membrane potentiometric sensor for nickel (II) ion. Electroanalysis,2000,12:1472-1475.
    [75]Rao G N, Srivastava S, Srivastava S K, Singh M. Chelating ion-exchange resin membrane sensor for nickel (Ⅱ) ions. Talanta,1996,43:1821-1825.
    [76]Buchanan E B, Seago J L. Study of impregnated silicone rubber membranes for potential indicating electrodes. Anal Chem,1968,40:517-521.
    [77]Yari A, Azizi S, Kakanejadifard A. An electrochemical Ni (Ⅱ)-selective sensor based on a newly synthesized dioxime derivative as a neutral ionophore. Sens Actuat B,2006,119: 167-173.
    [78]Mashhadizadeh M H, Momeni A. Nickel (Ⅱ) selective membrane potentiometric sensor using a recently synthesized mercapto compound as neutral carrier. Talanta,2003,59:47-53.
    [79]袁若,吴海龙,俞汝勤,章咏华,吴金兰.异菸酸十六烷酯作中性载体的镍离子选择电极.1992,1:27-30.
    [80]Belhamel K, Ludwig R, Benamore M. Nickel ion-selective PVC membrane electrode based on a new t-octyl-calix[6]arene derivative. Microchim Acta,2005,149:145-150.
    [81]Singh A K, Saxena P. A PVC-based membrane electrode for nickel (Ⅱ) ions incorporating a tetraazamacrocycle as an ionophore. Sens Actuat B,2007,121:349-355.
    [82]Mazloum M, Niassary M S, Amini M K. Pentacyclooctaaza as a neutral carrier in coated-wire ion-selective electrode for nickel (Ⅱ). Sens Actuat B,2002,82:259-264.
    [83]Ganjali M R, Dodangeh M, Ghorbani H, Norouzi P, Adib M. PPb level monitoring of dy(Ⅲ) ions by a highly sensitive and selective dy(Ⅲ) sensor based on a new asymmetrical schiff' base. Anal Lett,2006,39:495-506.
    [84]Abbaspour A, Esmaeilbeig A R, Jarrahpour A A, Khajeh B, Kia R. Aluminium(Ⅲ)-selective electrode based on a newly synthesized tetradentate schiff base. Talanta,2002,58:397-403.
    [85]Gupta V K, Agarwal S, Jakob A, Lang H. A zinc-selective electrode based on N, N'-bis (acetylacetone)ethylenediimine. Sens Actuat B,2006,114:812-818.
    [86]Gholivand M B, Rahimi-Nasrabadi M, Ganjali M R, Salavati-Niasari M. Highly selective and sensitive copper membrane electrode based on a new synthesized schiff base. Talanta,2007, 73:553-560.
    [87]Ganjahi M R, Daftari A, Norouzi P, Salavati-Niasari M. Novel Y(Ⅲ) PVC-based membrane microelectrode based on a new S-N schiff'base. Anal Lett.2003,36:1511-1522.
    [88]Behmadi H, Zamani H A, Ganjali M R, Norouzi R. Determination of neodymium(Ⅲ) ions in soil and sediment samples by a novel neodymium(Ⅲ) sensor based on benzyl bisthosemicarbazone. Electrochim Acta,2007,53:1870-1876.
    [89]Mashhadizadeh M H, Taheri E P, Sheikhshoaie I. A novel Mn2- PVC membrane electrode based on recently synthesized schiff base. Talanta,2007,72:1088-1092.
    [90]Kim D W, Park K W, Yang M H, Kim T H, Mahajan R K, Kim J S. Selectrodes based on salphenH2 derivatives. Talanta,2007,74:223-228.
    [91]Saleh M B, Soliman E M, Abdel G A A, Ahmed S A. A novel Hg (II) PVC membrane sensor based on simple ionophore ethylenediamine bis-thiophenecarbox-aldehyde. Anal Lett,2006, 39:659-673.
    [92]Xu L, Yuan R, Chai Y Q. Mercury (II) ion potentiometric sensor based on a sulfur schiff'base 1-(2-hydroxy-1,2-diphenylidene)thiosemicarbazide as ionophore. Chem Lett,2005,34:440-441.
    [93]Ye G R, Chai Y Q, Yuan R, Dai J Y. A mercury (II) ion-selective electrode based on N, N-dimethyl-formamide-salicylacylhydrazone as a neutral carrier. Anal Sci,2006,22:579-582.
    [94]Wang F C, Chai Y Q, Yuan R. A novel tetraiodocadmate (II)-PVC membrane electrode for the potentiometric determination of cadmium (Ⅱ). Chin Chem Lett,2006,17:941-944.
    [95]Horning E C.1955. Organic Syntheses; Vol.Ⅲ. Collect, John Wiley:NewYork,140-141.
    [96]郑启升,赵吉寿,王金城,侯俭秋.含硫双Schiff碱及其金属配合物的合成、表征与生物活性研究.化学试剂,2007,29:415-417.
    [97]Moody G L, Oke R B, Thomas J D R.A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst,1970,95:910-918.
    [98]Ammann D, Pretsch E, Simon W, Linder E, Bezegh A, Punger E. Lipophilic salts as membrane additives and their influence on the properties of macro-and micro-electrodes based on neutral carriers. Anal Chim Acta,1985,171:119-129.
    [99]Rosatzin T, Bakker E, Simon W, Suzuki K. Lipophilic, immobilized anionic additives in solvent polymeric membranes of cation-selective chemical sensors. Anal Chim Acta,1993, 280:197-208.
    [100]Shamsipur M, Soleymanpour A, Akhond M, Sharghi H, Massah A R. Uranyl-selective electrodes based on some recently synthesized benzo-substituted macrocyclic diamides. Talanta,2002,58:237-246.
    [101]Soleymanpour A, Rad N A, Niknam K. New diamino compound as neutral ionophore for highly selective and sensitive PVC membrane electrode for Be2+ ion. Sens Actuat B,2006, 114:740-746.
    [102]Umezawa Y, Umezawa K, Sato H. Recommended methods for reporting K_(A,B)~(pot) values commission on analytical nomenclature. Pure Appl Chem,1995,67:507-518.
    [103]Mcnaughtan A, Meney K, Grieve B. Electrochemical issues in impedance tomography. Chem Eng J,2000,77:17-30.
    [104]Gomez V, Callao M P. Chromium determination and speciation since 2000.2006,25: 1006-1015.
    [105]Bahijri S M. Effect of chromium supplementation on glucose tolerance and lipid profile. Saudi Med J,2000,21:45-50.
    [106]Anderson R A. Chromium metabolism and its role in disease process in man. Clin Physiol Biochem,1986,4:31-41.
    [107]Schroeder H A. The role of trace elements in cardiovascular disease. Med Clin North Am, 1974,58:381-396.
    [108]Zhu W W, Li N B, Luo H Q. Simultaneous determination of chromium (Ⅲ) and cadmium (Ⅱ) by differental pulse anodic stripping voltammetry on a stannum film electrode. Talanta, 2007,72:1733-1737.
    [109]Kaneko M, Kurihara M, Nakano S, Kawashima T. Flow-injection determination of chromium(III) by its catalysis on the oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methoxyaniline. Anal Chim Acta, 2002,474:167-176.
    [110]Eiras S D P, Custodio U M, Pavanim L A. Determination of chromium(III) using a homogenous mixture of water-ethanol-methylisobutylketone solvents. Talanta,2003,59: 621-625.
    [111]Bag H, Turker A R, Lale M, Tunceli A. Separation and speciation of Cr(Ⅲ) and Cr(VI) with saccharomyces cerevisiae immobilized on sepiolite and determination of both species in water by FAAS. Talanta,2000,51:895-902.
    [112]Hirata S, Honda K, Shikino O, Maekawa N, Aihara M. Determination of chromium(III) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry. Spectrochim Acta Part B,2000,55:1089-1099.
    [113]Menegario A A, Smichowski P, Polla G. On-line preconcentration and speciation analysis of Cr (III) and Cr (VI) using baker's yeast cells immobilised on controlled pore glass. Anal Chim Acta,2005,546:244-250.
    [114]Parsa M, Yaftian M R, Matt D. A silver (I) potentiometric sensor based on a calyx [4]arene substituted at the narrow rim by amide/phosphoryl groups. J Chin Chem Soc,2007,54: 1529-1534.
    [115]Maleki R, Hosseinzadeh R, Matin A A, Farhadi K. Ketoconazol-triiodide ion pair complex as a suitable carier in an iodide selective membrane electrode. J Chin Chem Soc,2007,54: 699-704.
    [116]Ganjali M R, Norouzi P, Emami M, Golmhammadi M, Mouradzaegun A. Novel cesium membrane sensor based on a cavitand. J Chin Chem Soc,2006,53:1209-1214.
    [117]Hassanzadeh P, Yaftian M R, Bahari Z, Matt D. A coated graphite thorium-ion selective potentiometric sensor based on a calyx[4]arene bearing phosphoryl groups. J Chin Chem Soc, 2006,53:1113-1118.
    [118]Sil A, Ijeri V S, Srivastava A K. Coated wire chromium (Ⅲ) ion-selective electrode based on azamacrocycles. Anal Bioanal Chem,2004,378:1666-1669.
    [119]Khalil S, Wassel A A, Belal F F. Coated graphite-epoxy ion-selective electrode for the determination of chromium (Ⅲ) in oxalic medium. Talanta,2004,63:303-307.
    [120]Singh A K, Singh R, Saxena P. Tetraazacyclohexadeca macrocyclic ligand as a neutral carrier in a Cr ion-selective electrode. Sensors,2004,4:187-195.
    [121]Sharma R K, Goel A. Development of a Cr (Ⅲ)-specific potentiometric sensor using aurin tricarboxylic acid modified silica. Anal Chim Acta,2005,534:137-142.
    [122]Abdolkarim A, Izadyar A. Carbon nanotube composite coated platinum electrode for detection of Cr (III) in real samples. Talanta,2007,71:887-892.
    [123]Zamani H A, Rajabzadeh G, Ganjali M R. Highly selective and sensitive chromium(Ⅲ) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1,2,4-triazin-5-one as a new neutral ionophore. Sens Actuat B,2006,119:41-46.
    [124]Gupta V K, Jain A K, Kumar P, Agarwal S, Maheshwari G Chromium(Ⅲ)-selective sensor based on tri-o-thymotide in PVC matrix. Sens Actuat B,2006,113:182-186.
    [125]Akl M A, Ghoneim A K, Abd El-Aziz M H. Novel plastic chromium(III)-ion selective electrodes based on different ionophoric species and plasticizing solvent mediators. Electroanalysis,2006,18:299-306.
    [126]Gholivand M B, Sharifpour F. Chromium (Ⅲ) ion selective electrode based on glyoxal bis(2-hydroxyanil). Talanta,2003,60:707-713.
    [127]Singh A K, Panwar A, Baniwal S. Chromium (Ⅲ)-selective electrode based on a macrocyclic compound. Analyst,1999,124:521-525.
    [128]Kumar P, Shim Y B. Chromium (Ⅲ)-selective electrod using p-(4-acetanilidazo) calyx [4] arene as an ionophore in PVC matrix. Bull Korean Chem Soc,2008,29:2471-2476.
    [129]Zhang M, Wu X, Chai Y Q, Yuan R, Ye G R. A novel ion-selective electrode for determination of the mercury (II) ion based on schiff base as a carrier. J Chin Chem Soc, 2008,55:1345-1350.
    [130]Song Y L, Tang Y, Liu W S, Tan M Y. Synthesis and luminescence properties of lanthanide complexes with a new aryl amide bifuntional bridging ligand. Spectrochim Acta Part A,2006, 64:595-599.
    [131]Buhlmann P, Bakker E. Carrier-based ion-selective electrodes and bulk optodes. Part 1. General characteristics. Chem Rev,1997,97:3083-3132.
    [132]Amarchand S, Menon S K, Agrawal Y K. Rare-Earth hydroxamate complexes as sensor materials for ion-selective electrodes. Electroanalysis,2000,12:522-526.
    [133]Cobben P L H M, Egberink R J M, Bomer J B, Bergveld P, Verboom W, Reinhoudt D N. Transduction of selective recognition of heavy metal ions by chemically modified field effect transistors (CHEMFETs). J Am Chem Soc,1992,114:10573-10582.
    [134]朱必学,阮文娟,高峰,曹小辉,朱志昂.双核Salen锌配合物对含氮小分子的分子识别研究.高等学校化学学报,2005,26:412-417.
    [135]Johnson C H, VanTassell V J. Acute barium poisoning with respiratory failure and rhabdomyolysis. Ann Emer Med,1991,20:1138-1142.
    [136]Newton D, Harrison G E, Kang C. Metabolism of injected barium in sex healthy men. Health Physics,1991,61:191-201.
    [137]Penington G R. Severe complications following a "barium swallow" investigation for dysphagia. Med J Aust,1993,159:764-765.
    [138]Tarasenko M, Promin 0, Silayev A. Barium compounds as industrial poisons (an experimental study). J Hyg Epidem Microbiol Immunol,1977,21:361-373.
    [139]Tardiff R G, Robinson M, Ulmer N S. Subchronic oral toxicity of barium chloride in rats. J Environ Pathol Toxicol,1980,4:267-276.
    [140]Wones R G, Stadler B L, Frohman L A. Lack of effect of drinking water barium on cardiovascular risk factor. Environ Health Perspect,1990,85:1-13.
    [141]Bishop J K B. Determination of barium in seawater using vanadium/silicon modifier and direct injection graphite furnace atomic absorption s(?)ctrometry. Anal Chem,1990,62: 553-557.
    [142]Jerrow M, Marr I, Cresser M. Magnesium as a modifier for the determination of barium in offshore oil-well waters by direct current plasma atomic emission spectrometry and flame atomic absorption spectrometry. Analyst,1991,116:141-144.
    [143]Anderson D L, Cunningham W C. Nondestructive determination of lead, cadmium, tin, antimony, and barium in ceramic glazes by radioisotope X-ray fluorescene spectrometry. J AOAC Int,1996,79:1141-1157.
    [144]Othman A M, El-Shahawi M S, Abdel-Azeem M. A novel barium polymetric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium (Ⅱ)-rose bengal as neutral ionophore. Anal Chim Acta,2006,555:322-328.
    [145]Singh A K, Singh R, Singh R P, Saxena P. Novel potentiometric sensor for monitoring barium(II) based on 2,3,4-pyridine-1,3,5,7,12-pentaazacyclopenta-deca-3-ene. Sens Actuat B, 2005,106:779-783.
    [146]Saleh M B. Neutral bidentate organophosphorus compounds as novel ionophores for potentiometric membrane sensors for barium (II). Fresenius J Anal Chem,2000,367: 530-534.
    [147]Gupta V K, Jain A K, Khurana U, Singh L P. PVC-based neutral carrier and organic exchanger membranes as sensors for the determination of Ba2+ and Sr2+. Sens Actuat B,1999, 55:201-211.
    [148]Nakamura T, Rechnitz G A. Barium ion selective membrane electrode for use in acetonitrile. Anal Chem,1985,57:393-394.
    [149]Zamani H A, Abedini-Torghabeh J, Ganjali M R. A highly selective and sensitive barium (Ⅱ)-selective PVC membrane based on dimethyl 1-acetyl-8-oxo-2,8-dihydro-lH-pyra-zolo[5,1-a]isoindole-2,3-dicarboxylate. Electroanalysis,2006,9:888-893.
    [150]Abedi M R, Zamani H A. Barium(II)-PVC membrane sensor based on 4, 4'-methylenediantipyrine as a neutral carrier. Anal Lett,2008,12:2251-2266.
    [151]Feng Y P, Goodlet G, Harris N K, Islam M M, Moody G J, Thomas J D R. Comparative barium ion sensing qualities of planar and tetrahedral tripodal receptor molecules. Analyst, 1991,116:469-472.
    [152]Jones D L, Moody G J, Thomas J D R, Magdolna H. Interferences of a barium ion-selective electrode used for the potentiometric titration of sulphate. Analyst,1979,104:973-976.
    [153]Jaber A M Y, Moody G J, Thomas J D R. Solvent mediator studies on barium ion-selective electrodes based on a sensor of the tetraphenylborate salt of the barium complex of a nonylphenoxypoly-(ethyleneoxy)ethanol. Analyst,1976,101:179-186.
    [154]Moody G J, Thomas J D R, Lima J L F C, Machado A A S C. Characterisation of poly(vinyl chloride) barium ion-selective electrodes without an internal reference solution. Analyst, 1988,113:1023-1027.
    [155]Jones D L, Moody G J, Thomas J D R, Birch B J. Barium-polyethoxylate complexes as potentiometric sensors and their application to the determination of non-ionic surfactants. Analyst,1981,106:974-984.
    [156]Jones D L, Moody G J, Thomas J D R. Potentiometry of alkoxylates. Analyst,1981,106: 439-447.
    [157]Gadzekpo V P Y, Moody G J, Thomas J D R. Problems in the application of ion-selective electrodes to serum lithium analysis. Analyst,1986,111:567-570.
    [158]Liu D, Liu J, Tian D, Hong W, Zhou X, Yu J C. Polymeric membrane silver-ion selective electrodes based on bis(dialkyldithiophosphates). Anal Chim Acta,2000,416:139-144.
    [159]Emara A A A, Abou-Hussen A A A. Spectroscopic studies of bimetallic complexes derived from tridentate or tetradentate schiff bases of some di-and tri-valent transition metals. Spectrochim Acta Part A,2006,64:1010-1024.
    [160]Ganjali M R, Rasoolipour S, Rezapour M, Norouzi P, Tajarodi A, Hanifehpour Y. Novel ytterbium(III) selective membrane sensor based on N-(2-pyridyl)-N'-(2-methoxyphenyl)-thiourea as an excellent carrier and its application to determination of fluoride in mouth wash preparation samples. Electroanalysis,2005,17:1534-1539.
    [161]Shamsipur M, Soleymanpour A, Akhond M, Sharghi H, Massah A R. Uranyl-selective electrodes based on some recently synthesized benzo-substituted macrocyclic diamides. Talanta,2002,58:237-246. [162]Javanbakht M, Ganjali M R, Eshghi H, Shamsipur M. Mercury (II) ion-selective electrode based on dibenzodiazathia-18-crown-6 dione. Electroanalysis,1999,11:81-94. [163] Yang Y X, Kumar N, Chi H, Hibbert D D, Alexander P N W. Lead selective membrane electrodes based on dithiophenedizacrown ether derivatives. Electroanalysis,1997,9: 549-553. [164]Fakhari A, Ganjali M R, Shamsipur M. PVC-based bexathia-18-crown-6-tetrone sensor for mercury (II) ions. Anal Chem,1997,99:3693-3696. [165]Ammann D, Pretsch E, Simon W, Linder E, Bezegh A, Punger E. Lipophilic salts as membrane additives and their influence on the properties of macro-and micro-electrodes based on neutral carriers. Anal Chim Acta,1985,171:119-129. [166] Good P F, Olanow C W, Perl D P. Neuromelanin-containing neurons of the substatia nigra accumulate iron and aluminum in Parkinson's disease:a LAMMA study. Brain Res,1992, 593:343-346. [167] Parkinson I S, Ward M K. Dialysis encephalopathy, bone disease and anaemia:the aluminum intoxication syndrome during regular haemodialysis. J Clin Pathol,1981,34: 1285-1294. [168] Lin J L, Kou M T, Leu M L. Effect of long-term low-dose aluminum-containing agents on hemoglobin synthesis in patients with chronic renal insufficiency. Nephron,1996,74:33-38. [169]Paik S R, Lee J H, Kim D H, Chang C S, Kim J. Aluminum-induced structural alterations of the precursor of the non-abeta component of Alzheimer's disease amyloid. Arch Biochem Biophys,1997,344:325-334. [170]Hoch R L. Determination of aluminum in beverages by automated non-segmented continuous flow analysis with fluorescent determination of the lumogallion complex. Analyst, 1999,124:793-796. [171] Johansson C G. Determination of aluminum in beer by GF-AAS. J Inst Brew,1994,100:255.[172]Craney C L, Kurt S F, Smith W, West C D. Improvement of trace aluminum determination by electrothermal atomic absorption spectrophotometry using phosphoric acid. Anal Chem, 1986,58:656-658. [173] Alfredo Sanz-Medel A B, Soldado C, Radmila M, Tjasa B P. The chemical speciation of aluminium in human serum. Coordin Chem Revi,2002,228:373-383. [174]Faridbod F, Ganjali M R, Dinarvand R, Norouzi P, Riahi S. Schiff's bases and crown ethers as supramolecular sensing matericals in the construction of potentiometric membrane sensors. Sensors,2008,8:1645-1703. [175]Faridbod F, Ganjali M R, Dinarvand R, Norouzi P. Ion recognition:application of symmetric and asymmetric schiff bases and their complexes for the fabrication of cationic and anionic membrane sensors to determine ions in real samples. Comb Chem High T Scr,2007,10: 527-546.
    [176]Faridbod F, Ganjali M R, Dinarvand R, Norouzi P. Developments in the field of conducting and non-conducting polymer based potentiometric membrane sensors for ions over the past decade. Sensors,2008,8:2331-2412.
    [177]Szymanska I, Ocicka K, Radecka H, Radecki J, Geise H J, Dieltiens P, Aleksandrzak K. Methoxy-substituted derivatives of 1,4-bis(2-phenylethe-nyl)benzene and 1,4-bis(2-Phenylethyl)benzene as ligands in ion-selective electrodes for lead ions. Mater Sci Eng C, 2001,18:171-176.
    [178]Zamani H A, Hamed-Mosavian M T, Hamidfar E, Ganjali M R, Norouzi P. A novel iron (III)-PVC membrane potentiometric sensor based on N-(2-hydroxyethyl)ethylenediamine-N,N',N"-triacetic acid. Mater Sci Eng C,2008,28:1551-1555.
    [179]Yari A, Darvishi L, Shamsipur M. Al (Ⅲ)-selective electrode based on newly synthesized xanthone derivative as neutral ionophore. Anal Chim Acta,2006,555:329-335.
    [180]Saleh M B, Hassan S S M, Abdel G A A, Kream N A A. Novel potentiometric membrane sensor for selective determination of aluminum (III) ions. Anal Chim Acta,2001,434: 247-253.
    [181]Gupta V K, Goyal R N, Jain A K, Sharma R A. Aluminium (Ⅲ)-selective PVC membrane sensor based on a schiff base complex of N,N-bis (salicylidene)-1,2-cyclohexanediamine. Electrochim Acta,2009,54:3218-3224.
    [182]Gupta V K, Jain A K, Maheshwari G. Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix. Talanta,2007,72:1469-1473.
    [183]Gholivand M B, Ahmadi F, Rafiee E. A Novel Al (Ⅲ)-selective electrochemical sensor based on N, N'-bis(salicylidene)-1,2-phenylenediamine complexes. Electroanalysis,2006,16: 1620-1626.
    [184]Arvand M, Asadollahzadeh S A. Ion-selective electrode for aluminum determination in pharmaceutical substances, tea leaves and water samples. Talanta,2008,75:1046-1054.
    [185]Shamsipur M, Ershad S, Yari A, Sharghi H, Salimi A R. Hydroxy-thioxanthones as suitable neutral ionophore for the preparation of PVC-membrane potentiometric sensors for Al(III) ion. Anal Sci,2004,20:301-306.
    [186]Mousavi M F, Arvand-Barmchi M, Zanjanchi M A. Al (Ⅲ)-selective electrode based on furil as neutral carrier. Electroanalysis,2001,13:1125-1128.
    [187]Bi S P, Chen G. Indirect differential pulse voltammetric determination of aluminum by a pyrocatechol violet-modified electrode. Chin Chem Lett,1999,10:247-250.
    [188]Agarwal H, Singh C K, Chandra S. A potentiometric sensor based on heterogeneous inorganic chelating ion exchanger for the determination of Al-III ions. J Indian Chem Soc, 2005,82:507-510.
    [189]牛得仲,朱守荣,罗勤慧.双穴二氧四胺Cu(Ⅱ)和Ni(Ⅱ)配合物的合成和性质.无机化学学报,1994,10:1-5.
    [190]Oesch U. Simon W. Lifetime of neutral-carrier-based ion-selective liquid-membrane electrodes. Anal Chem,1980,52:692-700.
    [191]Rosatzin T, Bakker E, Simon W, Suzuki K. Lipophilic, immobilized anionic additives in solvent polymeric membranes of cation-selective chemical sensors. Anal Chim Acta,1993, 280:197-208.
    [192]Perez M, Marin L, Quintana J, Pedram M. Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination. Sens Actuat B,2003,89:262-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700