基于Zn(Ⅱ)-Ln(Ⅲ)的不对称希夫碱配合物的光致近红外发光及电致发光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土离子(4f)的近红外(NIR)特征发光近年来日一起了人们的广泛关注,主要是由于其在传感器、激光、光纤通讯、生物成像等方面具有显著的潜在应用价值。为了激发钕(Ⅲ)、铒(Ⅲ)、镱(Ⅲ)等镧系金属离子的近红外发光,克服镧系金属离子中宇称禁阻的f-f跃迁,人们设计了各种天线基团来敏化其特征发光。
     本论文采用Zn(Ⅱ)的不对称希夫碱化合物作为发色团来敏化稀土离子的近红外发光,合成了24个新的Zn-Ln二核或多核化合物,并系统研究了其光致发光性质;并用筛选得到的化合物作为近红外发光二极管(OLED)的发光层主体材料,初步考察了其电致发光性能。
     首先,用甲基-乙二胺与邻香草醛反应得到了不对称希夫碱(H2L1),以H2L1的Zn(Ⅱ)化合物[ZnL'Py](1)为前驱体,合成了Zn-Ln系列二核化合物[Zn(L1)Ln(N03)3Py](Ln=Nd,2;Ln=Yb,3;Ln=Er,4;Ln=Gd,5),确定了该系列化合物的的分子结构,并研究了其能量传递的规律;同时将重原子Br引入到H2L1得到H2L2,在此基础上合成了有重原子效应的Zn-Ln系列二核化合物[Zn(L2)Ln(N03)3Py](Ln=Nd,7;Ln=Yb,8;Ln=Er,9;Ln=Gd,10),并确定了其分子结构和光物理性质。
     第二,用3-苯甲酰基-邻苯二胺与邻香草醛或溴代邻香草醛反应而得到两个不对称希夫碱H2L3和H2L4,分别以Zn(Ⅱ)配合物[ZnL3Py](11)和[ZnL4Py](16)为前驱体,合成得到Zn-Ln系列配合物(化合物Ln=Nd,12;Ln=Yb,13;Ln=Er, 14;Ln=Gd,15;化合物Ln=Nd,17;Ln=Yb,18;Ln=Er,19;Ln=Gd,20),利用光谱学的手段对H2L3和H2L4的Zn(II)-Ln(III)配合物结构进行分析,确定其结构并且研究了其他们的光物理性质。
     第三,基于以上思考,用3-羟基-邻苯二胺而得到另外两个配体H3L5和H3L6,“一锅法”直接合成两者的锌-吡啶化合物[ZnHL5Py](21)和[ZnHL6Py](22),以此为前驱体合成他们的Zn-Ln配合物[Zn2(L5)Ln2(N03)4(Py)2(DMF)2](Ln=Nd, 23;Ln=Yb,24;Ln=Er,25;Ln=Gd,26)和[Zn2(L6)Ln2(N03)4(DMF)4](Ln=Nd, 27;Ln=Yb,28;Ln=Er,29;Ln=Gd,30),并确定了其分子结构、电子吸收光谱、电子发射光谱、量子产率及荧光寿命及天线基团对稀土离子的能量传递速率常数,并考察了重原子及吡啶对该体系化合物的红外发光性能的影响。
     第四,从以上系列化合物中选取代表性的化合物[Zn(L2)Yb(NO3)3Py] (8)掺杂CuPc作为发光层的主体材料制作红外发光器件。器件结构为ITO/TPD(40 nm)/CuPc(x%, x= 0,5,10,15):8 (30 nm)/TPBI/LiF:Al (1:150 nm),电致发光位置在λem= 980 nm,表明这类化合物在近红外有机发光二极管中具有潜在的应用价值。
Near-infrared (NIR) luminescence of 4f rare earth ions has increasingly attracted great interest over the last few years, because of the potential significant technical applications in sensor, laser system, optical telecommunications and fluorescent imaging. Till now, a variety of antenna groups have been designed to sensitize the NIR luminescence from Nd(III), Er(III), Yb(III) ions, overcoming very low extinction coefficients resulting from parity-forbidden f-f transitions of lanthanide ions.
     In this thesis, the NIR luminescence from the lanthanide(III) ions is sensitized from asymmetric Schiff base zinc compounds. Twenty four new compounds were synthesized, and their luminescent properties were also studied in detail. By selecting an obtained complex with preferable optical property as the host material, a NIR OLED was fabricated and its near-infrared electroluminescence was checked.
     Firstly, the asymmetric schiff-base ligand (H2L1) was obtained from the reaction of methyl-ethylenediamine and o-vanillin in good yield. With the [ZnL1Py] as the precursor, the series of Zn-Ln bimetallic compounds [Zn(L1)Ln(NO3)3Py] (Ln= Nd, 2; Ln=Yb,3; Ln= Er,4; Ln= Gd,5) were assembled. Their molecular structures were characterized and the intra-molecular energy transfer was also studied. Furthermore, another series of Zn-Ln bimetallic compounds [Zn(L2)Ln(NO3)3Py] (Ln= Nd,7; Ln=Yb,8; Ln=Er,9; Ln= Gd,10) based on the replacement of H2L2 with the heavy-atom (Br) effect. Their molecular structures and photophysical properties were also discussed.
     Secondly, two new asymmetric schiff-base ligands of H2L3 and H2L4 were obtained by the condensation reaction of 3-benzoyl-o-phenylenediamine with o-vanillin or 5-bromo-3-methoxy-benzaldehyde. Two series of bimetallic Zn-Ln compounds (complexes 12-15 and complexes 17-20) were obtained. Their structures were characterized by EA, FT-IR, UV-Visble absorption spectra, and the photophysical properties were discussed.
     Two series of cyclic tetranuclear Zn2-Ln2 compounds (complexes 12-15 and complexes 17-20) were obtained. Their structures were characterized by EA, FT-IR, UV-Visble absorption spectra, and the photophysical properties were discussed.
     Thirdly, two asymmetrical Schiff base ligands H2L5 and H2L6 were designed and in situ synthesized on the basis of above idea with the use of using 2,3-diaminophenol to obtain the two precursors [ZnHL5Py] (21) and [ZnHL6Py] (22). From the further self-assembly, two series of cyclic tetranuclear Zn2-Ln2 compounds [Zn2(L5)Ln2(NO3)4(Py)2(DMF)2] (Ln= Nd,23; Ln=Yb,24; Ln= Er,25; Ln= Gd, 26) and [Zn2(L6)Ln2(NO3)4(DMF)4] (Ln= Nd,27; Ln=Yb,28; Ln= Er,29; Ln= Gd, 30) were obtained.Their luminescent properties were examined, and the affect of heavy atom (Br) and the axial occupation of Py groups on the 3d Zn(II) ions was also analysized.
     Finally, a NIR OLED device was fabricated by doping the selected complex 8 and CuPc as the host material of the emitting layer. The structure of device was ITO/TPD(40 nm)/CuPc(x%, x= 0,5,10,15):8 (30 nm)/TPBI/LiF:Al (1:150 nm). The solid NIR EL spectra showed that theλem lies at 980 nm, similar to that of solution, which validates the potential applications on NIR OLED.
引文
[1]Suzuki H.Infrared electroluminescence from an organic ionic dye containing no rare-earth ions.Applied.Physics.Letters.,2002,80(18):3256-3258.
    [2]Tessler N, MedvedevV, Kazes M et al Effieient near-infrared polymer nanocrystal light-emitting diodes. Science.2002,295:1506-1508.
    [3]何为,程传辉,于书坤,杜锡光,杜国同.2(3)-四-(2-异丙基-5-甲基苯氧基)钛氧酞菁的合成及其近红外发光特性.发光学报Vol.29, No.4 Aug,2008, 770-773
    [4]Kido J.Eleetroluminescence of rare earth complexes in organic matrices.Proc. of 8th Inter.workshop on Inorg.Organic EL,Berlin,1996.
    [5]Klink S. I., Alink P. O., Grave L. et al Fluorescent dyes as efficient photosensitizers for near-infrared Nd3+ emission[J]. Journal of The Chemical Society Perkin Transactions 2,2001,363-372
    [6]Olbers M. P. O., van Veggel F. C. J. M., Snellink B. H. M. et al Photophysical studies of m-terphenyl-sensitized visible and near-infrared emission from organic 1:1 lanthanide ion complexes in methanol solutions[J]. Journal of The Chemical Society Perkin Transactions 2,1998,2141-2150
    [7]Tang C. W, van Slyke S. A. Organic electroluminescent diodes[J].1987,51(12): 913-915
    [8]Iwamuro.M, Adachi.T, Wada Y. et al Remarkable Photosensitized Luminescence of Neodymium(III) Complexes with Halogenated 8-Quinolinol Derivatives [J]. Chemistry Letters,1999,28(7):539-541
    [9]Iwamuro.M, Adachi.T, Wada Y. et al Photosensitized Luminescence of Neodymium(III) Coordinated with 8-Quinolinolates in DMSO-d6[J]. Bulletin of The Chemical Society of Japan,2000,73(6):1359-1363
    [10]Imbert D., Comby S., Chauvin A.S. Lanthanide 8-hydroxyquinoline-based podateswith efficient emission in the NIR range[J]. Chemical Communications, 2005,1432-1435
    [11]Comby.S, Imbert.D, Vanderyver C. et al A Novel Strategy for the Design of 8-Hydroxyquinolinate-Based Lanthanide Bioprobes That Emit in the Near Infrared Range[J]. Chemistry-A European Journal,2007,13(3):936-944
    [12]Bauer.H, Blanc. J, Ross D. L.et al'Octacoordinate Chelates of Lanthanides. Two Series of Compounds [J]. Journal of The Americal Chemical Society,1964, 86(23):5125-5131
    [13]Yang L., Gong Z., Nie D. et al Promoting near-infrared emission of neodymium complexes by tuning the singlet and triplet energy levels of β-diketonates[J]. New Journal of Chemistry,2006,30:791-796
    [14]Yang X. P., Jones R. A., Oye M. M. Near Infrared Luminescence Structure of a Helical triple-Decker Yb(III) Schiff Base Cluster [J]. Crystal Growth& Design, 2006,6(9):2122-2125
    [15]Klink S. I., Keizer H., van Veggel F. C. J. M. et al Transition Metal Complexes as Photosensitisers for Near-Infrared Lanthanide Luminescence [J]. Angewandte Chemie International Edition,2000,39(23):4319-4321
    [16]Lazarides T., Adams H., Sykes D. et al Heteronuclear bipyrimidine-bridged Ru-Ln and Os-Ln dyads:low-energy 3MLCT states as energy-donors to Yb(III) and Nd(Ⅲ)[J]. Dalton Tranctions,2008,691-699
    [17]Shavaleev N. M., Moorcraft L. P., Pope S. J. A. et al Sensitised near-infrared emission from lanthanides using a covalently-attached Pt(II) fragment as an antenna group [J]. Chemical Communications,2003,1134-1136
    [18]Shavaleev N. M., Moorcraft L. P., Pope S. J. A. et al Sensitized Near-Infrared Emission from Complexes of YbⅢ, NdⅢ and ErIII by Energy-Transfer from Covalently Attached PtII-Based Antenna Units[J]. Chemistry-A European Journal,2003,9(21):5283-5291
    [19]Xu.H.-B, Shi L.-X, Ma E. et al Diplatinum alkynyl chromophores as sensitisers for lanthanide luminescence in Pt2Ln2 and Pt2Ln4 (Ln= Eu, Nd, Yb) arrays with cetylide-functionalized bipyridine/phenanthroline[J]. Chemical Communications, 2006,1601-1604
    [20]Wong.W.-K, Liang.H.,Wong W.-Y et al Synthesis and near-infrared luminescence
    of 3d-4f bi-metallic Schiff base complexes [J]. New Journal of Chemistry,2002, 26(3):275-279
    [21]Imbert.D,Cantuel.M.,Bunzli.J.-C.G.etal Extending Lifetimes of Lanthanide-Based Near-Infrared Emitters (Nd, Yb) in the Millisecond Range through Cr(III) Sensitization in Discrete Bimetallic Edifices[J]. Journal of The American Chemical Society,2003,125(51):15698-15699
    [22]Torell.S, Imbert.D, Cantuel M. et al Tuning the Decay Time of Lanthanide-Based Near Infrared Luminescence from Micro-to Milliseconds through d→f Energy Transfer in Discrete Heterobimetallic Complexes[J]. Chemistry-A European Journal,2005,11(11):3228-3242
    [23]Chen F, Bian Z., Lou B. et al Sensitised near-infrared emission from lanthanides using an iridium complex as a ligand in heteronuclear Ir2Ln arrays [J]. Dalton Transactions,2008,5577-5583
    [24]Fang-Fang Chen, Zhu-Qi Chen, Zu-Qiang Bian, Chun-Hui Huang, Sensitized luminescence from lanthanides in d-f bimetallic complexes, Coordination Chemistry Reviews 254,2010,991-1010
    [25]Turro. N.J,Molecular Photochemistry,Benjamin,New York,1967
    [26]曹瑾编,光化学原理,高等教育出版社
    [27]姚绍明等译,蒋丽金,张俊逸等校,现代分子光化学,科学出版社,1987
    [28]Forster T. Transfer Mechanisms of Electronic Excitation[J]. Discussions of the Faraday Society,1959,28(27):7-17
    [29]Forster T. Zwischenmolekulare Energiewanderung und Fluoreszenz[J]. Annalen der Physik,1948,437(1-2):55-75
    [30]Zhang. H.J, Fu L.S, Wang S.B, Meng.Q.G, Yang.K.Y, Ni J.Z, Luminescen ce Characteristics of europium and terbium complexes with 1,10-Phenanthroli nein in-situ synthesized in a silica matrix by a two-step sol-gel Process.Mater. Letters.1999,38:260
    [31]M.Inokuti, F.Hirayama, Infiuence of Eergy Transfer by the Exchange Mecha nism on Donor Lumineseenee, Journal of ChemicalPhysics 1965,43:1978
    [32]Dexter D. L. A Theory of Sensitized Luminescence in Solids[J]. Journal of
    Chemical Physics,1953,21(5):836-850
    [33]Desa G. F. Malta O. L. Donoga et al Spectroscopic properties and design of highlyluminescent lanthanide coordination complexes [J]. Coordination Chemi stry Reviews,2000,196(1):165-195
    [34]Silva G., Malta O. L., Reinhard C. et al Visible and Near-Infrared Luminescence of Lanthanide-Containing Dimetallic Triple-Stranded Helicates:Energy Transfer Mechnisms in the SmIII and YbⅢ Molecular Edifices[J]. The Journal of Physical Chemistry A,2002,106(9):1670-1677
    [35]Weissman S. I. Intramolecular Energy Transfer The Fluorescence of Complexes of Euro-pium[J]. Journal of Chemical Physics,1942,10(4):214-217
    [36]_Hebbink G. A., Klink S. I., Grave L. Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes[J]. CHEMPHYSCHEM,2002,3(12):1014-1018
    [37]_Yang C, Fu L.-M., Wang Y. et al A Highly Luminescent Europium Complex Showing Visible Light-Sensitized Red Emission:Direct Observation of the Singlet Pathway[J]. Angewandte Chemie International Edition,2004,43(38): 5010-5013
    [38]Ward M. D. Transition-metal sensitized near-infrared luminescence from lanthanides in d-f heteronuclear arrays [J]. Coordination Chemistry Reviews, 2007,251:1663-1677
    [39]Hayes A. V., Drickamer H. G High pressure luminescence studies of energy transfer in rare earth chelates[J]. Journal of Chemical Physics,1982,76(1): 114-125
    [40]Sato S., Wada M. Relations between Intramolecular Energy Transfer Efficiencies and Triplet State Energies in Rare Earth β-diketone Chelates[J]. Bulletin of the Chemical Society of Japan,1970,43(7):1955-
    [41]A.Bernanose et al.Journal of ChemicalPhysics.1955,39:326
    [42]Pope.M,Kallmann.H,MagnanteP.J,Electroluminescence in organic crystals. Journal of ChemicalPhysics,38(1963)2042
    [43]Dresner. J,RCA Reviews,1969,30:322
    [44]Vityuk. N.V and Mikho.V.V.Soc.Physics.Semicond,1973,6:1479
    [45]Vincett. P.S, Barlow. W.A, Hann. R.A, Roberts. GQThin Solid Films,1982,94 :171
    [46]Tang. C.W, U.S.Patent-4.(1982)356.
    [47]Tang.C W, VanSlyke S A. Organic electroluminescent diodes[J]. A[[l. Physics. Letters,1987,51(12):913~915
    [48]Curry R. J., Gillin W. P. First report of an infra-red emitting OLED suggesting that applications for such devices may be found outside that of displays and lighting[J]. MRS Abstract, F97/B16.7, Spring Meeting,1999
    [49]Curry R. J., Gillin W. P. Infra-red and visible electroluminescence from ErQ based OLEDs[J]. Synthetic Metals,1999,111-112(1):35-38
    [50]Khreis O. M., Curry R. J., Somerton M. et al Infrared organic light emitting diodes using neodymium tris-(8-hydroxyquinoline)[J]. Journal of Applied Physics,2000,88(2):777-780
    [51]Khreis O. M., Gillin W. P., Somerton M. et al 980 nm electroluminescence from ytterbium tris (8-hydroxyquinoline)[J]. Organic Eletronics,2001,2(1):45-51
    [52]Schanze K. S., Reynolds J R., Boncella J. M. et al Near-infrared organic light emitting diodes[J]. Synthetic Metals,2003,137:1013-1014
    [53]Hebbink GA., Stauwdam J.W., Reinboudt D.N. et al Lanthanide(III)-Doped Nanopar-ticles That Emit in the Near-Infrared [J]. Advanced Materials,2002,14 (16):1147-1150
    [54]Sloof L. H., Polman A. Wolbers M. P. O. et al Optical properties of erbium-dop ed organic polydentate cage complexes[J]. Journal of Applied Physics,1998, 83(1):497-503
    [55]Wolbers M. P. O., van Veggel F. C. J. M., Snellink B. H. M. et al Novel Preorganized Hemispherands To Encapsulate Rare Earth Ions:Shielding and Ligand Deuteration for Prolonged Lifetimes of Excited Eu3+Ions[J].1997, 119(1):138-144
    [56]Wolbers M. P. O., van Veggel F. C. J. M., Peters F. G A. et al Sensitized near-infraredemission from Nd3+ and Er3+ complexes of fluorescein-bearing
    calix[4]arene cages[J].Chemistry-A European Journal,1998,4(5):772-780
    [57]Kido. J, Shionoga. H,Appl.Phys.Lett,1995,67:2281
    [58]Johnson.GE, McGrane. K.M, Stolka.M,Pure Applied.Chemistry,1995,67:175
    [59]Zhang. C, Vonseggem. H, Kraakel. B, Synthetic Metals,1995,72:185
    [60]Tsutsui.T,Aminaka.E,Lin.C.P,Saito.S,Proc.1994,International Workshopon Elect roluminescence,Beij ing,135.
    [61]Hamada. H, Adachi. C, Tsutsui. T, Saito. S,Optoelectronics Devices and Techno logies,(1992)7,83.
    [62]Adachi.C, Tsutsui.T, Saito.S,Confinement of charge carriers and molecular excitons within 5-nm-thick emitter layer in organicelectroluminescent devices with a double heterostructure Applied. Physics.Letter.(1990)57,531.
    [63]Hamada Y., Sano T., Fujita M. et al Blue electroluminescence in thin films of azomethin-zinc complexes[J]. Japanese Journal of Applied Physics,1993,32: 511-513
    [64]Yang X.-P., Jones R. A., Wong W.-K. et al Design and synthesis of a near infra-red luminescent hexanuclear Zn-Nd prism[J]. Chemical Communications, 2006,1836-1838
    [65]Lu. X.-Q, Bi. W.-Y, Chai.W.-L, Song. J.-R, Meng.J.-X, Wong.W.-Y, Wong.W.-K andJones. R.-A. Tetranuclear NIR luminescent Schiff-base Zn-Nd complexes, New Journal of Chemisty,2009,
    [66]Bi. W.-Y, Wei. T, Lu. X.-Q, Hui. Y.-N, Song. J.-R, Zhao. S.-S, Wong. W.-K and Jones. R. A, Hetero-trinuclear near-infrared (NIR) luminescent Zn2Ln complexes from Salen-type Schiff-base Ligands, New Journal of Chemisty,2009,33, 2326-2334
    [67]常建华、董绮功,波普原理及解析,科学出版社,2005
    [68]A.A. Ahmed, S. A. BenGuzzi and O. M. Ahshad Synthesis and Characterization of Some vanadyl Schiff bases complexes. [J]RASAYAN J.Chemistry.Vol.2, No.4,2009,781-785
    [69]a) Kido. T, Ikuta. Y, Sunatsuki. Y, Ogawa.Y, Matsumoto. N, Inorgic. Chemistry. 2003,42,398-408; b) Osa.S, Kido. T, Matsumoto. N, Re, A. Pochaba. N, Mrozinski. J, Journal of American Chemical Society.2004,126,420-421; c) Costes. J.-P, Auchel. M, Dahan. F, Peyrou. V, Shova. S, Wernsdorfer. W, Inorgic. Chemistry.2006,45,1924-1934; d) Costes. J.-P, Shova. S, Wernsdorfer. W, Dalton Transactions,2008,1843-1849.
    [70]_Iglesias C. P., Elhabiri M., Hollenstein M. et al Effect of a halogenide substituent on the stability and photophysical properties of lanthanide triple-stranded helicates with ditopic ligands derived from bis(benzimidazolyl)pyridine[J]. Journal of Chemical Society, Dalton Transactions,2000,2031-2043

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700