黄河上游沉积物中磷形态分布及其对磷的吸附特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生源要素磷(P)在自然界中的循环主要是通过固体颗粒物与陆河海水体间的相互作用来完成,该过程对维持水体正常生态平衡起着举足轻重的作用,因此水体颗粒物对实现磷的地球化学循环具有重要影响。本文主要选取黄河上游不同段位表层沉积物,进行了以下两大方面研究工作:①沉积物样中磷的各种赋存形态及总磷(TP)、无机磷(IP)、有机磷(OP)、总氮(TN)、总碳(TC)的含量和分布特征,七种形态磷的含量与粒径的相关性分析;重点估算了沉积物中潜在的生物可利用磷(BP)的量;②沉积物对磷的吸附特征及吸附/解吸平衡质量浓度(EPC0值)。所得结论如下:
     1黄河上游表层沉积物中各形态磷、TP、TN、TC及BP的含量分布
     (1)采用改进的七步连续提取法将沉积物中磷的形态分为七种,即:可交换态磷(Ex-P)、铝结合态磷(Al-P)、铁结合态磷(Fe-P)、闭蓄态磷(Obs-P)、自生钙结合磷(Ca-P)、原生碎屑磷(De-P)、有机磷(OP)。在黄河上游所有不同粒径沉积物的各种形态磷中,De-P和Ca-P是沉积物磷的主要赋存形态,其含量范围分别为139.08~482.89 mg·kg-1和40.30~125.55 mg·kg-1,二者共占TP含量约86.72%;OP含量范围为6.14~36.74 mg·kg-1,占TP的3.90%;Ex-P、Al-P和Fe-P平均含量分别为7.53 mg·kg-1、25.85 mg·kg-1和5.05 mg·kg-1,三者共占TP含量约9.23%;在各形态磷中,Obs-P含量最低,平均值为0.64 mg·kg-1,约占TP的0.15%。其中Ex-P和Fe-P含量在黄河源头玛多段最高,Ca-P和De-P含量在青海贵德段最高,Al-P含量在内蒙古包头段最高,Obs-P含量在宁夏中卫段最高,而OP含量在内蒙古河口段最高。
     (2)样品中各种形态磷的含量分布直接与取样点及沉积物粒径有关。同一沉积物中不同形态磷含量随粒径的变化而不同;同一形态磷含量在不同沉积物中与粒径的关系也有所不同,如宁夏中卫段Ex-P含量随粒径的减小而降低,其余段位Ex-P含量随粒径的减小而增大。其中De-P与TP有极显著的正相关,因此De-P是TP的最大贡献者。
     (3)TP.TC和TN的平均含量分别为1249.24 mg.kg-1、62.14 mg·kg-1和324.98mg·kg-1。以上各项含量分布均随取样点的不同而异,但TC和TN最高值均出现在玛多段。
     (4)沉积物中潜在的生物可利用P(bioavailable phosphorus, BP)的量至少约占TP的5.91%~30.17%。根据每年黄河向渤海的输沙量(约按10亿吨计)可估算出泥沙入海后可提供潜在的BP的量约为3.21~8.92万吨。
     2黄河上游表层沉积物对磷的吸附特征研究
     探讨了黄河上游表层沉积物对磷的吸附动力学及其影响因素、等温吸附行为、吸附/解吸平衡质量浓度(EPC0值)及水体pH值对吸附的影响。研究结果如下:
     (1)吸附动力学研究表明所研究沉积物在相应上覆水体中对磷的吸附具有相同的变化趋势,即在0~8 h内进行较快,8~48 h内吸附速率逐渐变缓,48 h时基本达到吸附平衡,但对磷的吸附量随沉积物的不同而异。沉积物对磷的吸附动力学直接受时间、P初始浓度、沉积物含量和溶液pH值的影响。不同沉积物在不同起始P浓度下对P的吸附动力学均符合二级吸附动力学模型及Weber-Morris扩散方程,求得二级吸附速率常数和扩散速率常数分别在10.99~229.29 g·mg-1·h-1和0.0003~0.0020 mg/(g·h1/2)之间,吸附过程由P在沉积物内扩散控制。
     (2)沉积物对磷的等温吸附行为既很好的符合线性方程和Freundlich模型,也较好的符合Langmuir模型,不符合Temkim模型,但实验数据经此拟合后的变化趋势符合指数方程,相关性极好。不同pH值对沉积物吸附磷均有一定影响。当平衡质量浓度相同时,除青海贵德、内蒙古包头段外,其余各点样品均在接近中性时吸附量最大,pH值在增大或减小的条件下吸附量均表现为下降,不同pH值下各段位沉积物对磷的等温吸附行为均符合线性方程、Langmuir模型、Freundlich吸附及指数方程,并达到显著相关,不符合Temkim模型。
     (3)当水体中P浓度很低时,沉积物对磷的吸附量与P初始质量浓度之间呈很好的线性关系,由此获得了不同沉积物对磷的吸附/解吸平衡质量浓度(EPC0值)范围为0.002mg·L-1~0.013 mg·L-1,该值均高于目前上覆水体中P浓度,故沉积物有向上覆水释磷的趋势。
Phosphorus (P) is a vital element and its cycling in natural work(?) achieved by the interaction between particulate matters and water among earth-river-sea, which is significant to keep the balance of river-sea ecosystem therefore particulate matters in the waters have very important influences for phosphorus to achieve the cycle of the earth and chemistry. In this papo(?) surface sediments from the upper reaches of the Yellow River were studied by following parts:①The contents and their distribution characteristics of all kinds of phosphorus forms and totle phosphorus(TP), inorganic phosphorus(IP), organic phosphorus(OP), totle nitrogen(TN), totle carbon(TC) were investigated in the sediments, and the relativity between their contents and grain sizes was analyzed; The contents of potential bioavailable phosphorus(BP) in the sediments were estimated;②P adsorption characteristic in sediments and EPCo of P adsorption/desorption were researched. The results have shown that:
     1 Contents and distribution of TP, all foms phosphorus, TN, TC and BP(?) the sediments from the upper reaches of the Yellow River
     (1) Seven forms of P in sediments were investigated by using the improved seven-step sequential extraction method and distinguished (?) following:exchangeable+loosely bound P(Ex-P), aluminum-bound P(A1-P), iron-bound P(Fe-P), obstinate-bound P(Obs-P), anthigenic+biogenic apatite +calcium carbonate-bound P(Ca-P), Detrital apatite+other remaining inorganic P (De-P), organic P(OP). In all samples with different particle sizes from the upper reaches of the Yellow River, De-P and Ca-P were the major components and their contents ranged from 139.08 mg-kg-1 to 482.89 mg-kg-1 and from 40.30 mg-kg-1 to 125.55 mg-kg-1,respectively, both of them occupied about 86.72% of TP; OP contens ranged from 6.14 mg-kg-1 to 36.74 mg-kg-1 and was 3.90% of TP; the mean of Ex-P, Al-P and Fe-P was 7.53 mg·kg-1,25.85 mg-kg-1 and 5.05 mg-kg-1, respectively, all of there were about 9.23% of TP; Obs-P contents were the lowest in all form P, the average was 0.64 mg-kg-1, about 0.15% of TP; The maximum contents of Ex-P, Fe-P were appeared in sediments of Qinghai Maduo that is the source of the Yellow River, the maximum value of Ca-P, De-P were appeared at Qinghai Guide, the maximum contents of Al-P, Obs-P and OP were appeared in sediments of Inner Mongolia Baotou, Ningxia Zhongwei and Inner Mongolia Hekou, respectively.
     (2) The content distribution of various form P in studied sediments correlated with the grain size and the sampling sites directly. The relations between various form P of one kind of sediment and grain sizes and between one form P of different sediments and grain sizes were different, for example, the Ex-P contents in sediments of Zhongwei reduced with grain size minishing and in the other sediments were opposite. The positive correlation between the contents of De-P and TP was very remarkable, so De-P was the major contributor to TP.
     (3) The mean of TP.TC and TN was 1249.24 mg-kg-1、62.14 mg-kg-1 and 324.98 mg-kg-1, respectively. Their content distributions changed with the sampling sites. The maximum values of TC and TN all appeared in Maduo.
     (4) In all studied samples, the contents of potential bioavailable phosphorus (BP) were at least about 5.91%~30.17% of TP. Based on the quantity of paticulates transported from the Yellow River to the Bohai Sea and the above results, the amount of potential BP was estimated approximately 32.1~89.2 thousand ton.
     2 Adsorption charicterristics of P onto sediments from the upper reaches of the Yellow River
     P adsorption kinetics and its influence factors, adsorption isotherm behavior and adsorption/desorption EPC0 and the influence of pH on adsorption in surface sediments from the upper reaches of the Yellow River were researched and the results indicated that:
     (1) The research on P adsorption kinetics indicates that the adsorption of sediments to P in their overlying water had same tendency, it was faster in 0~8 h, gradually slower in 8~48 h and after 48 h was basically balanceable, but adsorption amount of P on various sediments were different. Time, the initi(?) P concentration, sediment concentration and PH in solution had direct impac(?) on P adsorption. At different initial P concentration, P adsorption kinetics on(?) different sediments all followed second-order adsorption kinetic model and Webber-Morris diffusion equation which second-order adsorption rate constants and diffusion rate constants obtained were in range of 10.99~229.29 g·mg-1·h-1 and 0.0003~0.0020 mg/(g·h1/2), respectively. The P adsorption process was controlled by the intra-particle diffusion.
     (2) Adsorption isotherms of sediments to P indicated that isotherms for P sorption were well fitted to linear equation and Freundlich equation, as well as Langmuir equation, not fitted to Temkim equation, but the change tendency of experiment data fitted by Temkim equation were well fitted index equation and the relativities were very remarkable. Different pH values had different impacts on P adsoption isotherms. When equilibrium quality concentrations were the same, the absorption amount of phosphate onto other sediments was biggest near neutral condition, and was descended in acid and alkaline conditions except Guide or Baotou.
     (3) The correlation between the adsorption amount of sediments to P and initial P concentration had good linear relationship when P concentration in the overlying water was very low. According to the linear equation, adsoption-desorption equilibrium concentrations(EPC0 value) of different sediments to P were found and ranged from 0.002 mg·L-1 to 0.013 mg·L-1, which were all higher than P concentrations in waters, so the sediments had the trend of releasing P to overlying waters.
引文
[1]Compton J S, Mallinson D J, Glenn C R, et al. Variation in the global phosphorus cycle. In:Glenn CR. ed. Marine Authigenesis:From Global to Microbial. Society of Sedimentary Geology, Special Publition Number,2000,66:21-33
    [2]Kellog L E, Bridgham S D. Phosphorus retention and movement across an ombrotrophic-minerotrophic peatland gradient [J]. Biogeochemistry,2003,63:299-315
    [3]云南省环境科学研究院,中国市政工程中南设计研究院等.滇池草海水污染综合治理规划(2006-2015年)[R],2006.
    [4]Li T, Wang D, Zhang B, et al. Characterization of the phosphate adsorption and morphology of sediment particles under simulative disturbing conditions [J]. Journal ofHazardousMaterials B, 2006,137:1624-1630.
    [5]毛建忠,王雨春,赵琼美等.滇池沉积物内源磷释放初步研究[J].中国水利水电科学研究院学报,2005,3(3):229-233.
    [6]Falkowski P, Scholes R J, Boyle E, et al. The Global Carbon Cycle:ATest of Our Knowledge of Earth as a System [J]. Science.2000,290:291-296.
    [7]Walbridge R. Phosphorus biogeochemistry [J]. Ecology,2000,81:1474-1475
    [8]Friedl G C, Dinkel B, Wehrli. Benthic Fluxes of nutrients in the northwestern Black Sea [J]. Marine Chemistry 1998,62:77-88
    [9]Froelich P N. Kinetic control of dissolved phosphorus in natural rivers and estuaries; A primer on the phosphate buffer mechanism [J]. Limnol Oceanogr,1988,33(4):649-668
    [10]李敏,韦鹤平,王光谦等.长江口、杭州湾水域沉积物对磷吸附行为的研究[J].海洋学报,2004,26(1):132-136
    [11]Filippelli G. Carbon and phosphorus cycling in anoxic sediments of the Saanich Inlet, British Columbia[J]. Marine Geology,2001,174:307-321.
    [12]宋金明.中国近海沉积物-海水界面化学[M].北京:海洋出版社,1997.
    [13]Mcdowell R, Sharpley A, Withers P. Indicator to predict the movement of phosphorus from soil to subsurface flow[J]. Environ Sci Technol,2002,36(7):1505-1509.
    [14]Herut B, Zohary T, Robarts R D, et al. Adsorption of dissolved phosphate onto loess particles in surface and deep Eastern Mediterraneanwater [J]. Marine Chemistry,1999,64(4):253-265.
    [15]Zhou A, Tang H, Wang D. Phosphorus adsorption on natura sediments:Modeling and effects of pH and sediment composition[J]. Water Research,2005,39(7):1245-1254.
    [16]金丹越,王圣瑞,步青云.长江中下游浅水湖泊沉积物磷释放动力学[J].生态环境,2007,16(3):725-729
    [17]Bruland G L, Richardson C J. An Assessment of the Phosphorus Retention Capacity of Wetlands in the Painter Creek Watershed, Minnesota, USA [J]. Water Air and Soil Pollution,2006,171(1): 169-184
    [18]Zohary T, Robarts R D. Experimental Study of Microbial P Limitation in the Eastern Mediterranean [J]. Limnol Oceanogr.,1998,43(3):387-395
    [19]House W A, Denison F K.Exchange of inorganic phosphate between river waters and bed-sediments [J]. Environ Sci Technol,2002,36 (20):4295-4301.
    [20]宋金明.中国近海沉积物-海水界面化学[M].北京:海洋出版社,1997
    [21]宋金明.黄河口邻近海域沉积物中可转化的磷[J].海洋科学,2000,24(7):4245
    [22]石晓勇,史致丽,于恒等.黄河口磷酸盐缓冲机制的探讨-Ⅰ.黄河口悬浮物对磷酸盐的吸附-解析研究[J].海洋与湖沼,1993,30(2):192-198
    [23]林荣根,吴景阳.黄河口沉积物对磷酸盐的吸附与释放[J].海洋学报,1994,16(4):82-90
    [24]董浩平,姚琪.水体沉积物磷释放及控制[J].水资源保护,2004,(6):20-23,69
    [25]翁焕新.海陆边缘沉积磷在全球变化研究中的意义[J].地球科学进展,1999,14(5):524-528
    [26]李泽刚.黄河口附近海区水文要素基本特征[J].黄渤海海洋,2000,18(3):20-28
    [27]赵文林.黄河泥沙[M].郑州:黄河水利出版社,1996
    [28]Aller R C. Diagenetic processes near the sediment-water interface of Long Island Sound. Ⅰ. Decomposition and nutrient element geochemistry (S, N, P) [J]. Adv. Geophys.,1980b,22: 237-350
    [29]Lerman A. Maintenance of steady state in oceanic sediments [J]. American Journal of Science, 1975,175:609-635
    [30]王雨春,万国江等.湖泊现代化沉积物中磷的地球化学作用及环境效应[J].重庆环境科学,2000,22(4):39-41
    [31]Chang S C, Jackson M L. Fractionation of soil phosphorus [J]. Soil Science,1957,84:133-134
    [32]Williams J D H, et al. Forms of phosphorus in surficial sediments of Lake Erie [J]. Fish Res Bd Can.1976,33:413-429
    [33]Hielties A H M, L Lijklema. Fractionation of inorganic phosphates in calcareous sediments [J]. Environ Qual,1980,9:405-407
    [34]Psenner R, Pucskso, M Sager. Fraktionierung organoishcher and anorganischer Phosphor verbindungen von Sedimenten. Versuch einer Definition okologschwichtiger Fractionen [J]. Arch Hydrobiol/Suppl,1985,70:111-115
    [35]Golterman H L. Sediments as a source of phosphorus for algal growth. In:H L Golterman Interaction between sediments and fresh water. The Hague:Dr W Junk,1977,286-293
    [36]Golterman H L. Differential extraction of sediment phosphates with NTA solution [J]. Hycfrobilogia,1982,92:683-687
    [37]Golterman H L. Sediments, modifying and equilibrating factors in the chemistry of freshwater [J]. Verh Int Ver Limnol,1984,22:23-59
    [38]Golterman H L. Fractionation of sediment phosphate with chelating compounds:a simplification, and comparison with other methods [J]. Hydrobiologia,1996,335:87-95
    [39]顾益初.石灰性无机磷分级测定的方法[J].土壤,1990,22(2):101-102
    [40]Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanogerphy,1992,37(7):1460-1482
    [41]Bermer R A, Rao J L. Phosphorus in sediments of the Amazon River and estuary:Implication for the global flux of phosphorus to the sea [J]. Geochim Cosmochim Acta,1994,58(10):2333-2340
    [42]Ruttenberg K C, Berner R A, et al. Authigenic apatite form ation and burial in sediments from non-upwelling continental margin environments [J]. Geochim Cosmochim Acta,1993,57(5): 991-1007
    [43]Brinkman A G. A double-layer model for ion adsorption onto metal oxides, applied to experimental Hydrobiologiadata and to natural sediments of Lake Veluwe [J]. The Nether Lands, 1993,253-315
    [44]李悦,乌大年,薛永先.沉积物中不同形态磷提取方法的改进及其环境地球化学意义[J].海洋环境科学,1998,17(1):15-20
    [45]朱广伟,秦伯强.沉积物中磷形态的化学连续提取法应用研究[J].农业环境科学学报,2003,22(3):349-352
    [46]Ruban V, et al. Selection and evaluation of sequential extraction procedurea for the determination of phosphorus forms in lake sediment [J]. Journal of Environmental Monitoring,1999,1:51-56
    [47]Andrieux F, Amlnot A. A two-year of phosphorus section in the sedments of the bay of Seine(France) [J]. Continental Shelf Research.1997,17(10):1229-1245
    [48]Lee-Hyung Kim, Euiso Cho, MichaelK Stenstrom. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments [J]. Chemo Sphere,2003,50:53-61
    [49]Nurnberg G K. Comment phosphorus budgets and stoichiom-etry during the open-water season in two unmanipulated lakes in the experimental lakes area, Northwestern Ontario [J]. Canadian Journal of Fisheries and Aquatic Sciences,1996,53:1469-1471
    [50]Berelson W M, Heggie D, et al., Benthic Nutrient Recycling in Port Phillip Bay, Australia [J]. Esturine, Coastal and Shelf Science,1998,46:917-934
    [51]Boynton W R, Kemp W M. Nutrient regeneration and oxygen consumption by sediment along an estuarine salinity gradient [J]. Marine Ecology Progress Series,1985,23:45-55
    [52]徐轶群.重庆龙水湖底泥磷的吸附与释放特征研究[D].西南农业大学,2004
    [53]玉坤宇,刘素美,张经等.海洋沉积物—水界面营养盐交换过程的研究环境化学2001,20(5):425-431
    [54]安文超,李小明.南四湖及主要入湖河流表层沉积物对磷酸盐的吸附特征[J].环境科学,2008,29(5):1296-1302
    [55]Jin X C, Wang S R, PangY, et al. The adsorption of phosphate on different trophic lake sediments [J]. Colloids and Surfaces,2005,254:241-248
    [56]王圣瑞,金相灿,庞燕.不同营养水平沉积物在不同pH下对磷酸盐的等温吸附特征[J].环境科学研究,2005,18(1):53-57
    [57]李敏,王光谦,倪晋仁等.长江口沉积物对磷酸盐吸附的等温模型[J].清华大学学报,2005,45(9):1206-1208,1212
    [58]宋智香,刘晓黎,周新革等.黄河下游悬浮颗粒物和沉积物对磷的吸附[J].人民黄河,2009,31(12):45-47
    [59]叶琳琳.瓦埠湖沉积物内源磷的赋存、释放及其控制研究[D].安徽:合肥工业大学,2006
    [60]金相灿,姜霞,王琦等.太湖梅梁湾沉积物中磷吸附/解吸平衡特征的季节性变化[J].环境科学学报,2008,28(1):24-30
    [61]刘素美.黄、渤海沉积物—水界面营养盐的交换及其质量平衡[D].山东:青岛海洋大学,2000
    [62]萨茹莉.黄河包头段分粒级沉积物磷吸附特征研究[D].内蒙古:内蒙古大学,2008
    [63]朱梦圆,朱广伟,王永平.太湖蓝藻水华衰亡对沉积物氮、磷释放的影响[J].环境科学,2011,32(2):409-415
    [64]张宪伟,潘刚,王晓丽等.内蒙古段黄河沉积物对磷的吸附特征研究[J].环境科学,2009,30(1):172-177
    [65]薛杨,王而立,邱素芬等.沉积物中磷的吸附和释放研究进展[J].辽宁工程技术大学学报(自然科学版),2009,28(增刊):146-148
    [66]李兵,袁旭音,邓旭.不同pH条件下太湖入湖河道沉积物磷的释放[J].生态与农村环境报,2008,24(4):57-62
    [67]张文涛.大沙河水库富营养化限制性因子分析[J].广东水利水电,2009,(9):26-28,42.
    [68]吴根福,吴雪昌,金承涛等.杭州西湖底泥释磷的初步研究[J].中国环境科学,1998,18(2):107-110
    [69]Lerat Y, P Lasserre and P1e Corre. Seasonal changes in pore water concentrations of nutrients and their diffusive fluxes at the sediment-water interface [J]. J.Exp, Mar. Biol. Ecol.,1990,135: 135-160
    [70]Kemp W M, Sampou P A, Garber J, et al. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay:role of benthic and planktonic respiration and physical exchange processes [J]. Marine Ecology Progress Series,1992,85:137-152
    [71]Sundby B, Gobeil C, Silverberg N, et al. The phosphorus cycle in coastal marine sediments [J]. Limnol Oceanogr,1992,37:1129-1145
    [72]徐明德,韦鹤平,李敏等.长江口泥沙与沉积物对磷酸盐的吸附和解吸研究[J].山西:太原理工大学学报,2006,37(1):48-54
    [73]李曰嵩,杨红.长江口沉积物对磷酸盐的吸附与释放的研究[J].海洋环境科学,2004,23(3):39-42
    [74]张路,范成新,秦伯强等.模拟扰动条件下太湖表层沉积物磷行为的研究[J].湖泊科学,2001,13(1):35-42
    [75]尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响[J].湖泊科学,1994,6(3):240-244
    [76]徐轶群,赵秀兰.不同组成湖泊沉积物对磷吸附的动力学[J].扬州大学学报,2008,11(2):70-73
    [77]安敏,文威,孙淑娟等.pH和盐度对海河干流表层沉积物吸附解吸磷(P)的影[J].环境科学学报,2009,29(12):2616-2622
    [78]翟丽华,刘鸿亮,席北斗等.杭嘉湖流域某源头沟渠沉积物氮及磷的吸附[J].清华大学学报,2009,49(3):374-377
    [79]高丽,史衍玺,孙卫明等.荣成天鹅湖湿地沉积物对磷的吸附特征及影响因子分析[J].水土保持学报,2009,23(5):162-166
    [80]Krom M D, Berner R. The diagenesis of phosphorus in nearshore marine sediment [J]. Geochimica et Cosmochimmica Acta,1981,45:207-216
    [81]Krom M D, Kress N, Brenner S. Phosphorus limitation of primary productivity in the eastern Mediteeranean Sea [J]. Limnology and Oceanography,1991,36(3):424-432
    [82]Olila O G, Reddy K R, Harris W G. Forms and distribution of inorganic phosphorus in sediments of two shallow eutrophic lakes in Florida[J]. Hydrobiologia,1995,302:147-161
    [83]Fabre A, Qotbi A, Dauta A, et al. Relation between algal available phosphate in the sediments of the River Garonne and chemically-determined phosphate fractions[J]. Hydrobiologia,1996,335: 43-48
    [84]I. M. O. Silveira, S. R. Patchineelam. Phosphorus fractionation in surface sediments of the Amazon continental shelf [J]. Geo-Marine Letters,1996,16:24-26
    [85]Fabre A, Fromard F, Trichon V. Fractionation of phosphate in sediments of four representative mangrove stages (French Guiana) [J]. Hydrobiologia,1999,392:13-19
    [86]Goedkoop W, Pettersson K. Seasonal changes in sediment phosphorus forms in relation to sedimentation and benthic bacterial biomass in Lake Erken [J]. Hydrobiologia,2000,4:41-50
    [87]House W A, Benison F H. Total phosphorus content of river sediments in relationship to calcium, iron and organic matter concentrations [J]. The science of the Total Environment,2002,282-283
    [88]Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments-lakes Volvi and Koronia, N. Greece [J]. Chemophere,2002,46:1147-1155
    [89]Andrieux-Loyer F, Aminot. Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas [J].Eatuar Coast Shelf Sci.,2001,52:617-629
    [90]Kian Siong, Takashi Asaeda, Takeshi Fujino, et al. Difference characteristics of phosphorus in Chara and two submerged angiosperm species:implications for phosphorus nutrient cycling in an aquatic ecosystem [J]. Wetlands Ecology and Management,2006,14:505-510
    [91]Liu Z, Jin Z, Li Y, et al. Sediment phosphorus fractions and profile distribution vegetation growth zones in a macrophyte dominated shallow Wuliangsuhai Lake, China [J]. Environmental Geology, 2007,10.1007/s00254-007-0637-6
    [92]Wang Z, Lin C, He M. Phosphorus content and fractionation of phosphate in the surface sediments of the Daliao river system in China [J]. Environ Earth Sci. (2010)59:1349-1357
    [93]昊丰昌,白占国,万国江.贵州百花湖沉积物中磷的再迁移作用[J].环境科学进展,1996,11(2):191-196
    [94]王雨春,万国江,王仕禄等.红枫湖、百花湖沉积物中磷的存在形态研究[J].矿物学报,2000,20(3):274-279
    [95]王雨春,马梅,万国江等.贵州红枫湖沉积物磷赋存形态及沉积历史[J].湖泊科学,200(?),16(1):21-27
    [96]王圣瑞,赵海超,周小宁等.五里湖与贡湖不同粒径沉积物中有机质、总氮和磷形态分布研究[J].环境科学研究,2004,17(增刊):11-13
    [97]孟凡德.长江中下游湖泊沉积物物理化性质与磷及其形态的关系研究[D].首都师范大学,2005
    [98]李晶.官厅水库沉积物中磷的状态分布和矿物成分研究及其意义[D].中国地质大学,2005
    [99]王琦,姜霞,金相灿等.太湖不同营养水平湖区沉积物形态与生物可利用磷的分布及相互关系[J].湖泊科学,2006,18(2):120-126
    [100]田忠志,邢友华,姜瑞雪等.东平湖表层沉积物中磷的形态分布特征研究[J].长江流域资源与环境,2010,19(6):719-723
    [101]黄清辉,王东红,王春霞等.沉积物中磷形态与湖泊富营养化的关系[J].中国环境科学,2003,23(6):583-586
    [102]朱广伟,秦伯强,高光等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J]环境科学,2004,24(3):381-384
    [103]夏学慧,东野脉兴,周建民等.滇池现代沉积物中磷的地球化学及其对环境影响[J].沉积学报,2002,20(3):417-421
    [104]董方,刘素美,张经.北黄海与渤海沉积物中磷形态的分布特征[J].海洋环境科学,2001,20(2):18-23
    [105]陈红军,黄怀曾,冯流等.永定河沉积物中磷的存在形态及其指示意义[J].岩矿测试,2005,24(3):176-180
    [106]戴纪翠,宋金明,李学刚.胶州湾不同形态磷的沉积记录及生物可利用性研究[J].环境科学,2007,28(5):929-936
    [107]苏玉萍,郑达贤,林婉珍等.福建省富营养化水库沉积物磷形态及对水体的贡献[J].湖泊科学,2005,17(4):311-316
    [108]林荣根,吴景阳.黄河口沉积物中无机磷酸盐的存在形态[J].海洋与湖沼,1992,23(4):387-395.
    [109]侯立军,陆健健,刘敏等.长江口沙洲表层沉积物磷的赋存形态及生物有效性[J].环境科学学报,2006,6(3):488-494
    [110]李北罡,郭博书.黄河中游表层沉积物中无机磷的化学形态研究[J].农业环境科学学报,2006,25(6):1607-1610
    [111]范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及其相互关系分析[J].湖泊科学,2000,12(4):359-366
    [112]李宝,范成新,丁士明等.滇池福保湾沉积物磷的形态及其与间隙水磷的关系[J].湖泊科学,2008,20(1):27-32
    [113]张继民,刘霜,张琦等.黄河口附近海域营养盐特征及富营养化程度评价[J].海洋通报,2008,27(5):66-71
    [114]金相灿,卢少勇,王开明,巢湖城区洗耳池沉积物磷及其生物有效磷的分布研究[J].农业环境科学报,2007,26(30):847-851
    [115]吴敏,黄岁樑,文威等.海河干流柱状沉积物磷的分布特征及潜在释放预测[J].武汉大学学报,2010,56(5):551-556
    [116]刘巧梅,刘敏,许世远等.上海滨岸潮滩不同粒径沉积物中无机形态磷的分布特征[J].海洋环境科学,2002,21(3):29-33
    [117]戚小红,刘素美,张经等.东海赤潮高发区沉积物中营养盐再生速率的研究[J].应用生态学报,2003,14(7):1112-1116
    [118]何清溪.大亚湾沉积物中磷的化学形态分步特征[J].海洋环境科学,1990,9(4):6-10
    [119]扈传邑,潘建明,刘小涯.珠江口沉积物中磷的赋存形态[J].海洋环境科学,2001,20(4):21-25
    [120]王兆群,张书海,郑毅.洪泽湖南部湖区沉积物磷的形态研究[J].仪器仪表与分析监测,2010,4:37-41
    [121]丰茂武,吴云海,龚春生.玄武湖沉积物中磷的形态分布特征[J].环境监测管理与技术,2007,19(2):19-22
    [122]李北罡,郭博书.库布齐沙漠恩格贝沙样中磷的化学赋存形态[J].中国沙漠,2008,28(1):73-76
    [123]张志,周瑞请,郭博书.乌兰布和沙漠与黄河沉积物磷的形态分析[J].内蒙古石油化工,2007,33(1):1-4,14
    [124]李北罡,郭博书.库布齐沙漠恩格贝沙样中磷的化学赋存形态[J].中国沙漠,2008,28(1):73-76
    [125]李北罡,丁伟杰,郭博书.巴丹吉林沙漠北部沙样中磷的化学赋存形态[J].环境科学与技术,2008,31(12):4-7
    [126]李北罡,马钦,郭博书.内蒙古乌兰布和沙漠样中磷形态分析及生物可获磷研究[J].生态与农村环境学报,2008,24(3):86-88,93
    [127]何桐,谢健,于汉生等.大亚湾表层沉积物中磷的形态分布特征[J].中山大学学报,20;49(6):126-131
    [128]张路,范成新,朱广伟等.长江中下游湖泊沉积物生物可利用磷分布特征[J].湖泊科学2006,18(1):3642
    [129]步青云,金相灿,王圣瑞.长江中下游浅水湖泊表层沉积物潜在可交换性磷研究[J].地理研究,2007,26(1):117-124
    [130]孟春霞.2004年夏季黄河口及邻近海域各形态磷的研究[D].中国海洋大学,2005
    [131]Jensen H S, Mortensen P B, Andersen F, et al. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark [J]. Limnol Oceanogr,1995,40(5):908-917
    [132]陈中原,周长振,杨文达等.长江口外现代水下地貌和沉积[J].东海海洋,1986,14(2):28-37
    [133]Filippelli G M, Delaney M L. Phosphorus geochemistry of equatorial Pacific sediments [J]. Geochem Cosmochim Acta,1996,60(9):1971-1980
    [134]Vaalgamaa S. The effect of urbanisation on Laajalahti Bay,Helsinki City, as reflected by sediment geochemistry [J]. Marine Pollution Bulletin,2004,48:650-662
    [135]SALOMONS W, GERRITSE R G Some observations on the occurrence of phosphorus in recent sediments from Western Europe[J]. The Science of the Total Environment,1981,17:37-49.
    [136]许金树,李亮歌.台湾海峡中、北部沉积物中磷的存在形态[J].海洋与湖沼,1990,21(1):62-69
    [137]蒋柏藩,沈仁芳.土壤无机磷分级的研究[J].土壤学进展,1990,18(1):1-8
    [138]林悦涓,吴峰,邓南圣等.武汉东湖上覆水和沉积物中磷形态的垂直分布特征[J].农业环境科学学报,2005,24(6):1152-1156
    [139]周怀阳,郑丽波,王怀照等.花鸟山外海域几种形态磷在柱状沉积物中的分布及环境意义[J].东海海洋,2000,18(4):9-15
    [140]陈红军,黄怀曾,冯流等.永定河沉积物中磷的存在形态及其指示意义[J].岩矿测试,2005,24(3):176-180
    [141]王晓丽,包华影,郭博书.黄河上中游沉积物理化特征及磷赋存形态研究[J].环境科学,2009,30(3):720-725
    [142]HIS ASH I J. Fractionation of Phosphorus and Releasable Fraction in Sediment Mud of Osaka Bay[J]. Bulletin of the Japanese Society of Scientific Fisheries,1983,49 (3):447-454
    [143]王凤英,李莹,杨晓红等.黄河典型地区沉积物中磷的赋存形态[J].人民黄河,2010,32(12):123-126
    [144]宋祖光,高效江,张弛.杭州湾潮滩表层沉积物中磷的分布、赋存形态及生态意义[J].生态 学杂志,2007,26(6):853-858
    [145]Liu S, Zhang J, Li D. Phosphous cycling in sediments of the Bohai and Yellow Seas[J]. Esutarine, Coastal and Shelf science,2004,59:209-218
    [146]张欣泉,邓春梅,魏伟等.黄河口及邻近海域溶解态无机磷、有机磷、总磷的分布研究[J].环境科学学报,2007,27(4):660-666
    [147]Carman R F, Wulff. Adsorption capacity of phosphorus in Baltic Sea sediments [J]. Est. Coast. Shelf Sci.,1989,29:447-456
    [148]Thomas C V, CLIFFORD P R., WALTER J W. Jr.. Effect of Solids Concentration on the Sorption Partitioning of Hydrophobic Pollutants in Aquatic Systems [J]. Environmental Science Technology,1983,17(9):513-518
    [149]王晓丽,包华影,郭博书.黄河沉积物对磷的吸附行为[J].生态环境学报,2009,18(6):2076-2080
    [150]OTERO M, ROZADA F, CALVOLF, et al.Kinetic and equilibrium modeling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges[J]. Biochemical Engineering Journal,2003,15(1):59-68.
    [151]BULUT Y, AYDIN H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells[J]. Desalination,2006,194(1):259-267.
    [152]何振立,朱祖祥,袁可能等.土壤对磷的吸持特性及其与土壤供磷指标之间的关系[J].1988,25(4):397404
    [153]曹志洪,李庆逵.黄土性土壤对磷的吸附与解吸[J].土壤学报,1988,25(3):218-226
    [154]国家环境保护总局.水和废水监测分析方法国家水质检测标准[M].北京:中国环境科学出版社,2002.
    [155]冯峰,方涛,刘剑彤.武汉东湖沉积物氮磷形态垂向分布研究[J].环境科学2006,27(6):1078-1082
    [156]俞志明,马锡年,谢阳.粘土矿物对海水中主要营养盐的吸附研究[J].海洋与湖沼,1995,26(2):208-213.
    [157]De Montigny C, Prairie Y. The relative importance of biological and chemical processes in the release of phosphorus from highly organic sediment[J]. Hydrobiology,1993,253:141-150.
    [158]潘纲.亚稳平衡态吸附(MEA)理论—传统吸附热力学面临的挑战与发展[J].环境科学学报,2003,23(2):156-173.
    [159]庞燕,金相灿,王圣瑞等.长江中下游浅水湖沉积物对磷的吸附特征[J].环境科学研究,2004,17(增刊):18-23
    [160]金相灿等.中国湖泊环境(第一册)[M].北京:海洋出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700