激光毛化过程热效应的有限元数值仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着汽车与家电工业的迅速发展,人们对采用毛化技术轧制的冷轧薄钢板的深冲、涂镀性能的需求与日俱增。然而目前人们对激光毛化的研究还不是很充分,特别是对激光毛化工艺技术的研究距离生产实际的需求还有很大距离。因此,为了深入理解激光毛化的机理,进而优化加工参数,对激光毛化进行理论研究与数值仿真是很有必要的。
     本论文通过由浅入深建立理论模型并做相应的仿真分析的方式,对激光毛化的技术参数及其对激光毛化效果的影响进行了研究。本论文的主要工作如下:
     (1)从激光与材料相互作用时的热传导、熔质对流以及汽化作用等多个角度,详细阐述了激光毛化的机理,建立了激光毛化的数学模型。
     (2)以不考虑流体流动为基本假设,建立传统毛化光路系统的热传导模型,并进行了仿真研究,得出了扫描方式下只能得到形状不规则的椭圆形毛化坑的结论。
     (3)以改进光路为基础,在模型中考虑热传导过程中的相变潜热,通过有限元仿真展现了相变潜热的影响;得出激光功率和光斑半径分别与熔池宽度和深度近似呈线性关系,熔池中的最高温度近似与功率密度呈线性关系的结论,并初步确立了加工参数的大致范围。
     (4)建立了描述激光毛化的计算流体动力学模型,首先不考虑自由表面,只对自然对流做模拟,得出自然对流对熔池微形貌影响甚微的结论;然后对熔质表面张力梯度引起的Marangoni对流进行了模拟,并追踪了熔池自由表面的形成过程,得出毛化坑微形貌为中间凹陷、周围凸起的火山口状;并且得出在激光脉冲后半段,Marangoni对流的作用超过了热传导的结论,并进一步精选出了加工参数的范围。
     本论文的研究对激光毛化加工实践有一定的指导作用。
In recent years, with the rapid development of automobile and electrical appliances industry, the need for the good stamping performance and fine brightness after painting of the cold-rolled sheet productions, which is rolled by the texturing technology, is growing faster day by day. However, the present studies on laser-texturing are not very sufficient, especially the studies on the craft technology of laser-texturing have a large distance from the demand of production practical. Therefore the theoretical study and numerical simulation is needed to help for understanding the physical mechanism of laser-texturing and choosing processing parameters.
     The theoretical models that from simple to complex are established and corresponding numerical simulation analysis is carried on in this thesis, and the laser-texturing processing parameters and their influence of texturing effect is studied to learn the laser-texturing technology. And this thesis concentrates these works such as followings:
     At first, the mechanism of laser-texturing is elaborated in detail by all these aspects such as the heat-conduction, convection of melt material, and vaporization during the laser-material interaction, and the mathematical model which is used for describing laser-texturing is established.
     Second, take the basic supposition that the fluid doesn’t flow, the heat-conduction model based on the traditional unimproved laser-texturing optics system, then the conclusion that it can only acquire ellipse and anomalous texturing-pit by the way of laser-scanning, through the corresponding simulation.
     Third, a model based on the improvement optics system, considering the phase-change latent heat during the heat-conduction process, and the influence of the latent heat is shown through Finite Element simulation. It gets a conclusion that the power of laser, and the radius of the laser facula has a approximate linearity relationship of the melt-pool’s width and depth respectively, and the simulation to this model also obtains a conclusion that the highest temperature in the melt-pool has a approximate linearity relationship of power-density. Then the scope of processing parameters is selected preliminarily.
     Fourth, based on the above works, the Computational Fluid Dynamics(CFD) model is established. At first the free-surface is unconsidered, and the function of free-convection is simulated, and it gets a conclusion that the free-convection has little influence on the microstructure of the melt-pool. Then, the function of Marangoni-convection, which is cause by the gradient of the surface tension, is simulated, and the free-surface’s formation- processing is traced, and the calculated microstructure of the texturing-pit is like a crater——there is a hollow in the middle, and the bulge surrounded the hollow. At last it gets a conclusion that the influence of Marangoni-convection may has bigger effect than the heat-conduction on the later time of laser-material interaction, then a more precise scope of processing parameter has been selected.
     This thesis have a certain instruction of the laser-texturing practical.
引文
[1]朱大庆.快速激光该花的理论与实验研究: [博士学位论文].武汉:华中科技大学图书馆, 2000
    [2]蒋显全.张秀锦.激光毛化表面技术与应用.新技术, 2000, (1): 68
    [3] D. Du, Y. F. He, B. Sui. Laser texturing of rollers by pulsed Nd:YAG laser. Joural of Materials Processing Technology, 2005, 161: 456~461
    [4] Xiaolei Wang, Koji Kato, Koshi Adachi. The effect of laser texturing of SiC Surface on critical load for the transition of water lubrication mode feom hydrodynamic to mixed. Tribology International, 2001, 34: 703~711
    [5] G. Lallemand, G. Jacrot, E Cicala, et al. Grooving by Nd: YAG laser treatment. Journal of Materials Processing Technology, 2000, 99: 32~37
    [6] M. Poterasu, T. Dascalu, A. Marian, et al. Nd:YAG Laser Surface Texturing. Proc. of SPIE, 1999, 3405: 233~240
    [7]何云峰,都东,刘莹等.轧辊表面脉冲激光三维微改形过程参数分析.激光技术, 2003, 27(1): 8~10, 13
    [8]何云峰,都东,岁波等.轧辊表面冠状微凸形貌的激光加工.应用激光, 2002, 22(3): 327~330
    [9] Y. Gerbig, G. Dumitru, V. Spassov, et al. Effects of Laser Texturing on Technical Surface. Matericals Research Society Symposium-Procedings, 2002, 75: 455~460
    [10] Jaxu Xuan, Chung Shin, Zheng Pan. Optimization of Bump Shape and Pattern in Laser-Texture Design for Improving Media Tribological Performances. IEEE Transations on Magnetics, 1999, 35(5): 2436~2438
    [11] Sameera Chilamakuri, Bharat Bhushan. Effect of peak radius on design of W-type donut shaped laser textured surfaces. Wear, 1999, 230: 118~123
    [12] Andriy Kovalchenko, Oyelayo Ajayi, Ali Erdemir. The effect of laser surface texturing on transition in lubrication regimes duringunidirectional sliding contact. Tribology International, 2005, 38: 219~225
    [13]林子光.激光毛化与摩擦学设计.机械设计, 2000, (4): 24~27
    [14] S. C. Wang, P. S. Wei. Energy-Beam redistribution and absorption in a drilling or welding cavity, Metal. Trans. B, 1992, 23B: 505~511
    [15] H. E. Cline, T. R. Anthony. Heat treating and melting material with a scanning laser or electron beam. J. Appl. Phys, 1977, 48: 3895~3900
    [16] A. Kar, T. Rockstroh, J. Mazumder. Two-dimensional model for laser-induced materials damage: Effects of assist gas and multiple reflections inside the cavity, J. Appl. Phys, 1992, 71: 2560~2569
    [17] S. Kou, S. C. Hsu, R. Mehrebian. Rapid melting and solidification of surface fue to a moving heat flux, Metall. Trans. B, 1981, 13B: 33~45
    [18] C. Chan, J. Mazumder, M. M. chen. A two-dimensional transient model for convection in laser melted pool, Metall. Trans. A, 1984, 15A: 2175~2184
    [19] T. Chande, J. Mazumder. Two-dimensional transient model for mass Transport in laser surface alloying. J. Appl. Phys., 1985, 57(6): 2226~2232
    [20] S. Kou, Y. H. Wang. Three-dimensional convection in laser melted pools, Metall. Trans. A, 1986, 17A: 2265~2270
    [21] C. L. Chan, J. Mazumder, M. M. chen. Three-dimensional axisymmetric Model for convection in laser melted pools, Mater. Sci. T-echnol., 1987, 3: 306~311
    [22] C. L. Chan, J. Mazumder, M. M. chen. Effect of surface tension gradient driven convection in a laser melt pool: three-dimensional perturbation model, J. Appl. 1Phys, 1988, 64(11): 6166~6174
    [23] A. F. A. Hoadley, M. Rappaz. A thermal model of laser cladding by powder injection, Metall. Trans. B, 1992, 23B: 631~643
    [24]叶晓虎,陈熙.激光加热熔池流动和传热的分区数值模拟.中国激光, 2002, A29(9): 855~858
    [25] M. Picasso, A. F. A. Hoadley. Finite element simulation of laser surface treatments including convection in the melt pool, Int. J. Num. Meth. Heat Fluid Flow, Int. J. Num. Meth. Heat. Fluid Flow, 1994, 4: 61~83
    [26]朱大庆,左都罗,李适民等.激光刻花表面形貌的数值模拟及实验比较.华中理工大学学报, 2000, 28(1): 68~70
    [27]朱大庆,左都罗,李适民等.一种模拟激光刻花的二维CSF模型.华中科技大学学报, 1999, 23(6): 31~33
    [28] S. R. Vatsya, S. K. Nikumb. Modeling of fluid dynamical processes during pulsed-laser texturing of material surfaces. Phys. Rev. B, 2003, 68(3): 035410-1~ 035410-5
    [29] Etsuji Ohmura, Rina Murayama, Isamu Miyamoto. Thermohy drodynamics analysis on t he mechanism of bump formation in laser texturing. SPIE, 2000, 4088: 244~ 248
    [30]万大平,胡德金,刘红斌等.脉冲激光毛化加工的计算机流体动力学数值模拟.中国激光, 2007, 34(7): 1004~1008
    [31]朱明珠.射频脉冲CO2激光轧辊表面毛化技术及工艺实验研究: [硕士学位论文].武汉:华中科技大学图书馆, 2006
    [32]李俊昌.激光的衍射及热作用计算.北京:科学出版社, 2002. 350~472
    [33]杨森,黄卫东,刘文今等.激光表面快速熔凝过程中熔区组织重构.应用激光, 2001, 21(4): 224~228
    [34] M. Ii, T. P. Duffey, J. Mazumder. Spatially and temporally resolved temperature measurements of plasma generated in percussion drilling with a diode-pumped Nd:YAG laser. J. Appl. Phys, 1998, 84: 4122~4127
    [35]杜文勇.油菜联合收割机清选装置气流场数值模拟和试验研究: [硕士学位论文].武汉:华中农业大学图书馆, 2007.5
    [36]张国智,胡人喜,陈继刚等. ANSYS11.0热力学有限元分析实例指导教程.北京:机械工业出版社, 2007. 14~16
    [37]郑启光,辜建辉.激光与物质相互作用.武汉:华中理工大学出版社, 1996. 17
    [38]谢元峰.基于ANSYS的焊接温度场和应力的数值模拟研究: [硕士学位论文].武汉:武汉理工大学图书馆, 2006. 32
    [39]陆建,倪晓武等.激光与材料相互作用物理学.北京:机械工业出版社,1996. 18~25
    [40]雷玉成.基于ANSYS的铝合金TIG焊接温度场应力场数值模拟及二次开发: [硕士学位论文].苏州:江苏大学图书馆, 2007. 28~29
    [41]张朝晖. ANSYS8.0热分析教程与实例解析.北京:中国铁道出版社, 2005. 70~73
    [42]仇卫华,刘长毅.基于ANSYS的激光熔覆的数值模拟.机械制造与研究, 2008, 37(1): 13~15
    [43]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社, 2007. 6
    [44]小飒工作室.最新经典ANSYS及Workbench教程.北京:电子工业出版社, 2004. 511~536
    [45]胡红军,杨名波,张丁非. ANSYS10.0材料工程有限元分析实例教程.北京:电子工业出版社, 2008. 48~49
    [46]马立.等离子弧焊接熔池流场与温度场三维数值模拟: [硕士学位论文]. 2006. 14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700