表没食子儿茶素没食子酸酯(EGCG)酶法乙酰化分子修饰及其产物的抗氧化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表没食子儿茶素没食子酸酯(EGCG)具有抗氧化、抗突变、防辐射、抗肿瘤、调节免疫和延缓衰老等卓越的生理活性。但是,其较高的亲水性和较低的亲脂性,极大的限制了EGCG在食品领域的应用,尤其是在油脂类食品中的应用。本文采用酶法分子修饰获得EGCG酰化产物以增加其脂溶性,通过分离纯化、结构表征,明确其酰化位点及最终产物结构,并对酰化产物的脂溶性和抗氧化性能进行评价。
     首先,确立了酰化EGCG酶法合成路线为以乙烯酯作为酰基供体的酯交换反应。不同碳链乙烯酯作为酰基供体对EGCG的转化率影响较大,随着碳链的增加,EGCG的转化率逐渐减小,EGCG与乙酸乙烯酯之间的酯交换反应能达到最高的转化率。采用响应面分析法对酶法制备乙酰化EGCG反应条件进行优化,最优条件为:脂肪酶Lipozyme RM IM为酶催化剂,添加量为2.1%(w/w底物);乙腈和异丙醇(质量比为1:1)为反应溶剂体系;40℃反应12h;EGCG与乙酸乙烯酯底物摩尔比为1.1。在该条件下,EGCG乙酰化转化率达到90.32%。采用液质联用选择离子分析明确了乙酰化EGCG反应产物为单-,二-和三取代乙酰化EGCG的混合物。在该反应体系中,脂肪酶LipozymeRM IM催化EGCG和乙酸乙烯酯的酯交换反应为动力学控制,在所研究的底物浓度范围内(EGCG浓度<15mmol/L,乙酸乙烯酯浓度<10mmol/L),无底物抑制现象,反应遵循Michaelis-Menton方程,符合乒乓机制。
     采用高速逆流色谱(HSCCC)与高效制备液相色谱对乙酰化EGCG粗产品进行分离纯化。确定HSCCC分离条件为:上相为固定相,下相为流动相,采用正己烷:乙酸乙酯:甲醇:水=1.5:5:1.5:5(v/v)为溶剂系统,分离温度为20℃,转速为700r/min,流动相以5mL/min的流速从首端进行洗脱。分离产物经过质谱和核磁共振鉴定分别为5″-O-乙酰基EGCG,3″,5″-2-O-乙酰基EGCG和5′,3″,5″-3-O-乙酰基-EGCG,确定了在脂肪酶Lipozyme RM IM催化作用下,EGCG发生酰化的位点是B环的5′位和D环的3″,5″位。
     通过溶解度实验,透光率实验和油水分配系数(LogP)测定表明,乙酰化EGCG的脂溶性得到明显提高,30℃时在大豆油中溶解度为397mg/kg。色差实验表明在添加量为200mg/kg时,乙酰化EGCG对植物油色泽和亮度没有明显影响。采用过氧化值法和Rancimat仪方法考察并比较了乙酰化EGCG、未改性EGCG、2,6-二特丁基对甲酚(BHT)、叔丁基对苯二酚(TBHQ)在不同油脂油中的抗氧化性能。结果表明,乙酰化EGCG在油脂中具有良好的抗氧化性,在添加量相同时,乙酰化EGCG在油脂中的抗氧化活性要高于未改性EGCG、BHT,略低于TBHQ。乙酰化EGCG产物的溶剂残留符合欧洲药典标准,安全可靠。在添加乙酰化EGCG后,油脂的理化指标没有改变。
     通过测定乙酰化EGCG对超氧阴离子自由基(O2·-)、羟基自由基(·OH)、DPPH自由基的清除能力,研究其体外抗氧化活性,结果表明,乙酰化EGCG对O2·-、·OH、DPPH·均具有较强的清除能力,半抑制率(IC50)分别为0.52mg/mL、0.43mg/mL和11.5mg/L。体外抗脂质过氧化实验表明当乙酰化EGCG浓度为320mg/L时,对H2O2和Fe2+诱导大鼠肝线粒体丙二醛(MDA)生成的抑制率分别为69.44%和74.77%,对H2O2诱导大鼠红细胞氧化溶血的抑制率达93.54%。乙酰化EGCG具有良好的体外抗氧化活性,其浓度与抗氧化活性呈现一定的量效关系。
(-)-Epigallocatechin-3-O-gallate (EGCG) is an active compound with the biologicalactivities of anti-oxidation, anti-mutation, radiation resistance, preventing cancer andcardiovascular diseases, modulating the immune system, anti-aging, etc.. However, with itslow solubility in lipophilic systems, the application of EGCG in food industry is limited. Inthis study, modification of EGCG by enzymatic acylation was carried out in order to improveits hydrophobic property. The acylated EGCG products were separated and purified, themolecular structure of the productes were determined and the acylation positions for EGCGwere obtained. And then the in vitro antioxidant properties and solubility for the acylatedEGCG products were further evaluated.
     Firstly, the enzymatic acylation process of EGCG was established. Different C chains ofvinyl ester had great effect on the conversion of EGCG. The conversion yield reduced withthe increasing of C chains. The highest conversion yield was obtained with the reactionbetween EGCG and vinyl acetate. By response surface methodology, the optimal reactioncondition was obtained under40°C, with the enzyme concentration of2.1%, the reactiontime was12h and EGCG/vinyl acetate mole ratio was1.1, respectively. The conversionyield of acylated EGCG products reached87.37%under the optimal conditions. The acylatedproducts were determined by liquid chromatography tandem mass spectrometry and infraredspectrometry. The presence of mono-, di-and tri-acetylated derivatives in acetylated EGCGwas confirmed by LC-MS-MS. The acylation reaction of EGCG catalyzed by lipase wascontrolled by the kinetic theory. There was no substrate inhibition with the concentrationrange of EGCG <15mmol/L and vinyl acetate <10mmol/L. The reaction was in accordancewith the Michaelis-Menton equation, which followed the ping-pong mechanism.
     High speed counter current chromatography (HSCCC) and preparative high performanceliquid chromatography was used to separate and purify the acylated EGCG products. Theconditions for HSCCC were: rotation rate of700r/min under20℃at a flow rate of5mL/min.And two-phase solvent system contained n-hexane, ethyl acetate, methanol and water withthe ratio of1.5:5:1.5:5was selected.The structures of acylated EGCG products wereidentified as5″-O-acetyl-EGCG,3″,5″-2-O-acetyl-EGCG and5′,3″,5″-3-O-acetyl-EGCGby TOF MS/MS,1H NMR and13C NMR.
     The light transmittance experiments and soluble properties of acylated EGCG showedthat the acetylation products had excellent lipid soluble property and high transparency inedible oil. The solubility in soybean oil was425mg/kg under30℃. There was little effect oncolor and brightness of soybean oil with the addition of200mg/kg of acylated EGCG asshowed by chromatic aberration experiments. Furthermore, the antioxidant effects ofacetylated EGCG, EGCG, butylated hydroxytoluene (BHT),tert-butyl hydroquinone (TBHQ)on edible oils were evaluated and compared by POV values and Rancimat apparatus. Theresults indicated that the solubility of acetylated EGCG in edible oils was significantlyimproved by modification. And the antioxidant capabilities of acetylated EGCG in edible oilswere superior to that of EGCG and BHT, but slightly inferior to that of TBHQ. The residueof acylated EGCG products was under the level of the European pharmacopoeia. Thephysicochemical property of the oil was not changed after adding the acetylated EGCGproducts.
     The in vitro antioxidant activity of acetylated EGCG products was evaluated bymeasuring its scavenging effect on superoixide anion (O2·-), hydroxyl radical (·OH) and1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical. The acetylated EGCG was found to havegood scavenging effects on O2·-,·OH and DPPH·and the50%inhibitory concentrations(IC50) were0.52mg/mL,0.43mg/mL and11.5mg/L, respectively. Anti lipid peroxidationexperiments showed that with acetylated EGCG concentration of320mg/L, the inhibitionrate of malonyldialdehyde (MDA) formation in rat liver mitochondrial induced by H2O2was61.11%and that of hemolysis for rats red blood cells induced by H2O2was93.54%. Itindicated that acetylated EGCG had strong in vitro antioxidant activity. The antioxidantactivity was dependent on the concentration of acetylated EGCG products.
引文
1. Abdel-Rahman A, Anyangwe N, Carlacci L, et al. The safety and regulation of natural products usedas foods and food ingredients [J]. Toxicological Sciences,2011,123(2):333-348.
    2. Balentine D A, Wiseman S A, Bouwens L C. The chemistry of tea flavonoids [J]. Critical Reviews inFood Science&Nutrition,1997,37(8):693-704.
    3. Yilmaz Y. Novel uses of catechins in foods [J]. Trends in food science&technology,2006,17(2):64-71.
    4. Wanasundara U N, Shahidi F, Jablonski C R. Comparison of standard and NMR methodologies forassessment of oxidative stability of canola and soybean oils [J]. Food Chemistry,1995,52(3):249-253.
    5. Chaturvedula V S P, Prakash I. The aroma, taste, color and bioactive constituents of tea [J]. Journal ofMedicinal Plants Research,2011,5(11):2110-2124.
    6. Zhu Q Y, Zhang A, Tsang D, et al. Stability of green tea catechins [J]. J Agr Food Chem,1997,45(12):4624-4628.
    7. Ananingsih V K, Sharma A, Zhou W. Green tea catechins during food processing and storage: Areview on stability and detection [J]. Food Research International,2013,50(2):469-479.
    8. Jovanovic S V, Hara Y, Steenken S, et al. Antioxidant potential of gallocatechins. A pulse radiolysisand laser photolysis study [J]. Journal of the American Chemical Society,1995,117(39):9881-9888.
    9. Kimura M, Umegaki K, Kasuya Y, et al. The relation between single/double or repeated tea catechiningestions and plasma antioxidant activity in humans [J]. European journal of clinical nutrition,2002,56(12):1186-1193.
    10. Xerri L, Mathoulin M-P, Birg F, et al. Heterogeneity of rearranged T-cell receptor V-alpha andV-beta transcripts in tumor-infiltrating lymphocytes from Hodgkin's disease and non-Hodgkin'slymphoma [J]. American journal of clinical pathology,1994,101(1):76-80.
    11. Wanasundara U, Shahidi F. Stabilization of seal blubber and menhaden oils with green tea catechins[J]. Journal of the American Oil Chemists’ Society,1996,73(9):1183-1190.
    12. He Y, Shahidi F. Antioxidant activity of green tea and its catechins in a fish meat model system [J]. JAgr Food Chem,1997,45(11):4262-4266.
    13. Shahidi F, Alexander D. Green tea catechins as inhibitors of oxidation of meat lipids [J]. Journal ofFood Lipids,1998,5(2):125-133.
    14.杨贤强,候京武.表没食子儿茶素没食子酸酯对活性氧自由基的清除作用机制[J].中国药理学报,1994,15(4):350-353.
    15. Rice-Evans C. Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro forchemoprevention in humans [J]. Proceedings of the Society for experimental Biology and Medicine,1999,220(4):262-266.
    16. Frei B, Higdon J V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies [J].The Journal of nutrition,2003,133(10):3275-3284.
    17. Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metalstress [J]. Polish Journal of Environmental Studies,2006,15(4):523-530.
    18. Velayutham P, Babu A, Liu D. Green tea catechins and cardiovascular health: an update [J]. Currentmedicinal chemistry,2008,15(18):1840-1850.
    19. Cutter H, Wu L-Y, Kim C, et al. Is the cancer protective effect correlated with growth inhibitions bygreen tea ()-epigallocatechin gallate mediated through an antioxidant mechanism?[J]. Cancer letters,2001,162(2):149-154.
    20.沈生荣,赵保路. EGCG和GCG清除单线态氧效果的ESR鉴别[J].茶叶科学,2000,20(1):19-21.
    21. Devika P, Stanely Mainzen Prince P. Protective effect of (-)-epigallocatechin-gallate (EGCG) on lipidperoxide metabolism in isoproterenol induced myocardial infarction in male Wistar rats: Ahistopathological study [J]. Biomedicine&Pharmacotherapy,2008,62(10):701-708.
    22. Yin S-T, Tang M-L, Su L, et al. Effects of epigallocatechin-3-gallate on lead-induced oxidativedamage [J]. Toxicology,2008,249(1):45-54.
    23. Saffari Y, Sadrzadeh S. Green tea metabolite EGCG protects membranes against oxidative damage invitro [J]. Life sciences,2004,74(12):1513-1518.
    24. Guo Q, Zhao B, Li M, et al. Studies on protective mechanisms of four components of green teapolyphenols against lipid peroxidation in synaptosomes [J]. Biochimica et Biophysica Acta(BBA)-Lipids and Lipid Metabolism,1996,1304(3):210-222.
    25. Guo Q, Zhao B, Shen S, et al. ESR study on the structure-antioxidant activity relationship of teacatechins and their epimers [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1999,1427(1):13-23.
    26. Zhao B, Guo Q, Xin W. Free radical scavenging by green tea polyphenols [J]. Methods inenzymology,2001,335:217-231.
    27. Zhang L, Jie G, Zhang J, et al. Significant longevity-extending effects of EGCG on Caenorhabditiselegans under stress [J]. Free Radical Biology and Medicine,2009,46(3):414-421.
    28. Brown M K, Evans J L, Luo Y. Beneficial effects of natural antioxidants EGCG and-lipoic acid onlife span and age-dependent behavioral declines in Caenorhabditis elegans [J]. PharmacologyBiochemistry and Behavior,2006,85(3):620-628.
    29. Yu H-N, Shen S-R, Yin J-J. Effects of interactions of EGCG and Cd2+on the growth of PC-3cellsand their mechanisms [J]. Food and Chemical Toxicology,2007,45(2):244-249.
    30. Yokoyama M, Noguchi M, Nakao Y, et al. Antiproliferative effects of the major tea polyphenol,(-)-epigallocatechin gallate and retinoic acid in cervical adenocarcinoma [J]. Gynecologic oncology,2008,108(2):326-331.
    31. Noguchi M, Yokoyama M, Watanabe S, et al. Inhibitory effect of the tea polyphenol,(-)-epigallocatechin gallate, on growth of cervical adenocarcinoma cell lines [J]. Cancer letters,2006,234(2):135-142.
    32. Nishikawa T, Nakajima T, Moriguchi M, et al. A green tea polyphenol, epigalocatechin-3-gallate,induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2familyproteins [J]. Journal of hepatology,2006,44(6):1074-1082.
    33. Yamauchi R, Sasaki K, Yoshida K. Identification of epigallocatechin-3-gallate in green teapolyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549[J]. Toxicology in Vitro,2009,23(5):834-839.
    34. Gordon N C, Wareham D W. Antimicrobial activity of the green tea polyphenol(-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia [J].International journal of antimicrobial agents,2010,36(2):129-131.
    35. Xu X, Zhou X D, Wu C D. Tea catechin epigallocatechin gallate inhibits Streptococcus mutansbiofilm formation by suppressing gtf genes [J]. Archives of oral biology,2012,57(6):678-683.
    36. Unno K, Takabayashi F, Kishido T, et al. Suppressive effect of green tea catechins on morphologicand functional regression of the brain in aged mice with accelerated senescence (SAMP10)[J].Experimental gerontology,2004,39(7):1027-1034.
    37. Lee K-M, Kim W-S, Lim J, et al. Antipathogenic properties of green tea polyphenol epigallocatechingallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157:H7[J].Journal of Food Protection,2009,72(2):325-331.
    38. Tiraihi T, Boroujeni M B, Ahmadvand H, et al. Effects of epigallocatechin gallate on tissue protectionand functional recovery after contusive spinal cord injury in rats [J]. Brain research,2010,1306:168-175.
    39. Weinreb O, Amit T, Mandel S, et al. Neuroprotective molecular mechanisms of(-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenicproperties [J]. Genes&nutrition,2009,4(4):283-296.
    40. Itoh T, Imano M, Nishida S, et al.(-)-Epigallocatechin-3-gallate protects against neuronal cell deathand improves cerebral function after traumatic brain injury in rats [J]. Neuromolecular medicine,2011,13(4):300-309.
    41. Kitao S, Ariga T, Matsudo T, et al. The syntheses of catechin-glucosides by transglycosylation withLeuconostoc mesenteroides sucrose phosphorylase [J]. Bioscience, biotechnology, and biochemistry,1993,57(12):2010-2015.
    42.沈生荣,贾春友.油溶性茶多酚对色拉油的抗氧化作用[J].茶叶,1998,24(3):134-137.
    43.陈理,孙东. EGCG棕榈酸酯对人卵巢癌HO-8910细胞株的体外抑制活性实验研究[J].医学研究杂志,2006,35(3):39-40.
    44. Nakagawa K, Miyazawa T. Chemiluminescence-high-performance liquid chromatographicdetermination of tea catechin,(-)-epigallocatechin3-gallate, at picomole levels in rat and humanplasma [J]. Analytical biochemistry,1997,248(1):41-49.
    45. Hara Y. Process for the production of tea catechins [P].1986.
    46.傅冬和,刘仲华.儿茶素在食用植物油中的抗氧化应用效果[J].茶叶科学,1999,19(1):61-66.
    47. Nakajima H, Okabe M, Tomomasa S. Emulsified composition [P].1992.
    48.李清禄,林新华.增效脂溶性茶多酚溶液的制备及其在食用植物油中的抗氧化性能[J].福建农业大学学报,2001,30(2):244-249.
    49.戴彦韵.茶多酚磷脂复合物的制备和抗氧化性能检测方法的探究[D]:[硕士学位论文].上海:上海交通大学,2009.
    50.车春波.茶多酚微胶囊对油脂自氧化的抑制活性[J].哈尔滨商业大学学报:自然科学版,2010(4):400-403.
    51.邓泽元,余迎利.微胶囊油溶性茶多酚及其抗氧化能力的研究[J].食品科学,2001,22(11):37-39.
    52.沈生荣,金超芳.儿茶素的分子修饰[J].茶叶,1999,25(2):76-79.
    53.王巧娥,黄文.脂溶性茶多酚的合成及其抗油脂自动氧化特性的研究[J].天然产物研究与开发,2001,13(4):12-15.
    54.王巧娥,唐安斌.含不同脂肪链脂溶性茶多酚的合成及其抗氧化活性研究[J].精细化工,2002,19(2):86-89.
    55.陈平,孙东,郑小明. EGCG棕榈酸酯的制备、结构及其抗氧化活性[J].浙江大学学报:理学版,2003,30(4):422-425.
    56.孙东,陈平. EGCG肉豆蔻酸酯的制备、结构及其抗氧化活性[J].温州医学院学报,2006,36(3):225-227.
    57.陈平.抗氧化剂的EGCG脂肪酸酯及其制备方法[P]. CN1448395.2003.
    58. Lam W H, Kazi A, Kuhn D J, et al. A potential prodrug for a green tea polyphenol proteasomeinhibitor: evaluation of the peracetate ester of (-)-epigallocatechin gallate [-)-EGCG][J]. Bioorganic&medicinal chemistry,2004,12(21):5587-5593.
    59. CHAN T H, LAM W H, CHOW L M, et al. Preparation of (-)-epigallocatechin gallate derivatives foruse in pharmaceutical compositions as proteasome inhibitors to reduce tumor cell growth [P].2006.
    60. CHAN T H, LAM W H, CHEUNG L M, et al. Preparation of (-)-epigallocatechin gallate derivativesfor inhibiting proteasome [P].2009.
    61. Landis-Piwowar K R, Kuhn D J, Wan S B, et al. Evaluation of proteasome-inhibitory andapoptosis-inducing potencies of novel (-)-EGCG analogs and their prodrugs [J]. International journalof molecular medicine,2005,15(4):735-742.
    62. Kuhn D, Lam W H, Kazi A, et al. Synthetic peracetate tea polyphenols as potent proteasomeinhibitors and apoptosis inducers in human cancer cells [J]. Front Biosci,2005,10(2):1010-1023.
    63. Utenovaa B T, Malterudb K E, Risea F. Antioxidant activity of O-protected derivatives of(-)-epigallocatechin-3-gallate: inhibition of soybean and rabbit15-lipoxygenases [J]. Arkivoc,2007,9:6-16.
    64.江和源.表没食子儿茶素没食子酸酯乙酰化物的制备方法[P]. CN101190910.
    65.刘晓辉,江和源,张建勇等.乙酰化EGCG的制备研究[J].安徽农业科学,2009,37(24):11360-11363.
    66.刘晓辉.乙酰化EGCG衍生物的合成、纯化及应用特性研究[D]:[硕士学位论文].北京:中国农业科学院,2009.
    67. Matsubara K, Saito A, Tanaka A, et al. Catechin conjugated with fatty acid inhibits DNA polymeraseand angiogenesis [J]. DNA and cell biology,2006,25(2):95-103.
    68. Lin S F, Lin Y-H, Lin M, et al. Synthesis and structure-activity relationship of3-O-acylated(-)-epigallocatechins as5-reductase inhibitors [J]. European Journal of Medicinal Chemistry,2010,45(12):6068-6076.
    69. Mustafa J, Khan S I, Ferreira D, et al. Synthesis, spectroscopic and anti-tumor studies ofpolyphenol-linoleates derived from natural polyphenols [J]. European Journal of Lipid Science andTechnology,2007,109(6):552-559.
    70. Tobiason F L. MNDO and AM1Molecular Orbital and Molecular Mechanics Analyses of(+)-Catechin,()-Epicatechin, and their3-O-Acetyl Derivatives [J]. Basic Life Sci, Plant Polyphenols,1992,59:459-478.
    71. Matsumoto Y, Kaihatsu K, Nishino K, et al. Antibacterial and antifungal activities of new acylatedderivatives of epigallocatechin gallate [J]. Frontiers in microbiology,2012,3.
    72. Sakai M, Suzuki M, Nanjo F, et al.3-O-acylated catechins and methods of producing same [P].1994.
    73. Patti A, Piattelli M, Nicolosi G. Use of Mucor miehei lipase in the preparation of long chain3-O-acylcatechins [J]. Journal of Molecular Catalysis B: Enzymatic,2000,10(6):577-582.
    74. Lambusta D, Nicolosi G, Patti A, et al. Application of lipase catalysis in organic solvents for selectiveprotection-deprotection of bioactive compounds [J]. Journal of Molecular Catalysis B: Enzymatic,2003,22(5):271-277.
    75. Lambusta D, Nicolosi G, Patti A, et al. Enzyme-mediated regioprotection-deprotection of hydroxylgroups in (+)-catechin [J]. Synthesis,1993,1993(11):1155-1158.
    76. Mori S, Miyake S, Kobe T, et al. Enhanced anti-influenza a virus activity of(-)-epigallocatechin-3-O-gallate fatty acid monoester derivatives: Effect of alkyl chain length [J].Bioorganic&Medicinal Chemistry Letters,2008,18(14):4249-4252.
    77. Matsumura K, Kaihatsu K, Mori S, et al. Enhanced antitumor activities of(-)-epigallocatechin-3-O-gallate fatty acid monoester derivatives in vitro and in vivo [J]. Biochemicaland biophysical research communications,2008,377(4):1118-1122.
    78. Gao C, Mayon P, MacManus D A, et al. Novel enzymatic approach to the synthesis of flavonoidglycosides and their esters [J]. Biotechnol Bioeng,2000,71(3):235-243.
    79.赵峰.茶多酚体外活性评价体系建立及EGCG生物修饰的研究[D]:[硕士学位论文].广东:华南农业大学,2009.
    80.王芳,马习东,谭天伟等.固定化酶催化合成EGCG脂肪酸酯的方法[P]. CN101086000.
    81.梁燕,赵保路.脂溶性茶多酚抗氧化特性的研究[J].浙江大学学报:农业与生命科学版,1999,25(5):529-534.
    82.聂芊,沈春燕.分子修饰法制备油溶性茶多酚及其抗氧化性能的研究[J].化学世界,2007,48(4):209-211.
    83.李哲,朱松,王洪新等.酶法酰化儿茶素EGCG及其产物在大豆油中的抗氧化性[J].食品科学,2013,34(08):1-5.
    84.潘玉雷,高哲,纪殊晶等.油溶性抗氧化剂脂肪酰表儿茶素的合成及其清除自由基活性[J].中国食品添加剂,2013(2):70-75.
    85.孙达,张士康,朱跃进等.脂溶性茶多酚在油脂体系中抗氧化性能研究[J].粮食与油脂,2014(1):42-45.
    86. Zhong Y, Shahidi F. Lipophilized epigallocatechin gallate (EGCG) derivatives as novel antioxidants[J]. J Agr Food Chem,2011,59(12):6526-6533.
    87. Zhong Y, Shahidi F. Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidantpotential in food and biological systems [J]. Food chemistry,2012,131(1):22-30.
    88. Kajiya K, Hojo H, Suzuki M, et al. Relationship between antibacterial activity of (+)-catechinderivatives and their interaction with a model membrane [J]. J Agr Food Chem,2004,52(6):1514-1519.
    89. Stapleton P D, Shah S, Hamilton-Miller J M T, et al. Anti-Staphylococcus aureus activity andoxacillin resistance modulating capacity of3-O-acyl-catechins [J]. International Journal ofAntimicrobial Agents,2004,24(4):374-380.
    90. Cushnie T, Taylor P, Nagaoka Y, et al. Investigation of the antibacterial activity of3-O-octanoyl-(-)-epicatechin [J]. Journal of applied microbiology,2008,105(5):1461-1469.
    91. Park K D, Cho S J. Synthesis and antimicrobial activities of3-O-alkyl analogues of (+)-catechin:Improvement of stability and proposed action mechanism [J]. European Journal of MedicinalChemistry,2010,45(3):1028-1033.
    92. Chen D, Wan S B, Yang H, et al. EGCG, green tea polyphenols and their synthetic analogs andprodrugs for human cancer prevention and treatment [J]. Advances in clinical chemistry,2011,53:155-177.
    93. Lambert J D, Sang S, Hong J, et al. Peracetylation as a means of enhancing in vitro bioactivity andbioavailability of epigallocatechin-3-gallate [J]. Drug metabolism and disposition,2006,34(12):2111-2116.
    94. Landis-Piwowar K R, Huo C, Chen D, et al. A novel prodrug of the green tea polyphenol(-)-epigallocatechin-3-gallate as a potential anticancer agent [J]. Cancer research,2007,67(9):4303-4310.
    95. Lee S-C, Chan W-K, Lee T-W, et al. Effect of a prodrug of the green tea polyphenol(-)-epigallocatechin-3-gallate on the growth of androgen-independent prostate cancer in vivo [J].Nutrition and cancer,2008,60(4):483-491.
    96. Ahmed K, Wei Z-L, Zhao Q-L, et al. Role of fatty acid chain length on the induction of apoptosis bynewly synthesized catechin derivatives [J]. Chemico-biological interactions,2010,185(3):182-188.
    97. Matsubara K, Saito A, Tanaka A, et al. Epicatechin conjugated with fatty acid is a potent inhibitor ofDNA polymerase and angiogenesis [J]. Life sciences,2007,80(17):1578-1585.
    98. Mizushina Y, Saito A, Horikawa K, et al. Acylated catechin derivatives: inhibitors of DNApolymerase and angiogenesis [J]. Frontiers in bioscience (Elite edition),2010,3:1337-1348.
    99. Adamczak M, Krishna S H. Strategies for improving enzymes for efficient biocatalysis [J]. FoodTechnology and Biotechnology,2004,42(4):251-264.
    100. Danieli B, De Bellis P, Carrea G, et al. Enzyme-mediated acylation of flavonoid monoglycosides [J].Heterocycles,1989,29(11):2061-2064.
    101. Danieli B, De Bellis P, Carrea G, et al. Enzyme-mediated regioselective acylations of flavonoiddisaccharide monoglycosides [J]. Helvetica Chimica Acta,1990,73(7):1837-1844.
    102. Xiao Y-m, Wu Q, Wu W-b, et al. Controllable regioselective acylation of rutin catalyzed by enzymesin non-aqueous solvents [J]. Biotechnology letters,2005,27(20):1591-1595.
    103. Kodelia G, Athanasiou K, Kolisis F. Enzymatic synthesis of butyryl-rutin ester in organic solventsand its cytogenetic effects in mammalian cells in culture [J]. Applied biochemistry and biotechnology,1994,44(3):205-212.
    104. Jaeger K, Dijkstra B, Reetz M. Bacterial biocatalysts: molecular biology, three-dimensional structures,and biotechnological applications of lipases [J]. Annual Reviews in Microbiology,1999,53(1):315-351.
    105. Bornscheuer U T. Microbial carboxyl esterases: classification, properties and application inbiocatalysis [J]. FEMS microbiology reviews,2002,26(1):73-81.
    106. Hidalgo A, Bornscheuer U. Direct evolution of lipases and esterases for organic synthesis.2006.
    107. Vakhlu J. Yeast lipases: enzyme purification, biochemical properties and gene cloning [J]. ElectronicJournal of Biotechnology,2006,9(1):69-85.
    108. Anderson E M, Larsson K M, Kirk O. One biocatalyst-many applications: the use of Candidaantarctica B-lipase in organic synthesis [J]. Biocatalysis and Biotransformation,1998,16(3):181-204.
    109. Córdova A, Iversen T, Hult K, et al. Lipase-catalysed formation of macrocycles by ring-openingpolymerisation of-caprolactone [J]. Polymer,1998,39(25):6519-6524.
    110. Degn P, Pedersen L H, Zimmermann W. Lipase-catalysed synthesis of glucose fatty acid esters intert-butanol [J]. Biotechnology letters,1999,21(4):275-280.
    111. Uppenberg J, Oehrner N, Norin M, et al. Crystallographic and molecular-modeling studies of lipase Bfrom Candida antarctica reveal a stereospecificity pocket for secondary alcohols [J]. Biochemistry,1995,34(51):16838-16851.
    112. H ffner F, Norin T, Hult K. Molecular modeling of the enantioselectivity in lipase-catalyzedtransesterification reactions [J]. Biophysical journal,1998,74(3):1251-1262.
    113. Kwon H, Shin D Y, Lee J H, et al. Molecular modeling and its experimental verification for thecatalytic mechanism of Candida antarctica lipase B [J]. Journal of microbiology and biotechnology,2007,17(7):1098-1105.
    114. Patel R N. Biocatalysis in the pharmaceutical and biotechnology industries. CRC press,2010:103-158,463-488.
    115. Cygler M, Schrag J D. Structure as basis for understanding interfacial properties of lipases [J].Methods in enzymology,1997,284:3-27.
    116. Viskupicova J, Danihelova M, Ondrejovic M, et al. Lipophilic rutin derivatives for antioxidantprotection of oil-based foods [J]. Food chemistry,2010,123(1):45-50.
    117. Katsoura M, Polydera A, Tsironis L, et al. Use of ionic liquids as media for the biocatalyticpreparation of flavonoid derivatives with antioxidant potency [J]. Journal of biotechnology,2006,123(4):491-503.
    118. Katsoura M, Polydera A, Katapodis P, et al. Effect of different reaction parameters on thelipase-catalyzed selective acylation of polyhydroxylated natural compounds in ionic liquids [J].Process Biochemistry,2007,42(9):1326-1334.
    119. Ardhaoui M, Engasser J-M, Falcimaigne A, et al. Enzymatic production of acyl flavonoid derivatives[P].2003.
    120. Mellou F, Lazari D, Skaltsa H, et al. Biocatalytic preparation of acylated derivatives of flavonoidglycosides enhances their antioxidant and antimicrobial activity [J]. Journal of biotechnology,2005,116(3):295-304.
    121. Mellou F, Loutrari H, Stamatis H, et al. Enzymatic esterification of flavonoids with unsaturated fattyacids: Effect of the novel esters on vascular endothelial growth factor release from K562cells [J].Process Biochemistry,2006,41(9):2029-2034.
    122. Stevenson D E, Wibisono R, Jensen D J, et al. Direct acylation of flavonoid glycosides with phenolicacids catalysed by Candida antarctica lipase B (Novozym435)[J]. Enzyme and MicrobialTechnology,2006,39(6):1236-1241.
    123. Kontogianni A, Skouridou V, Sereti V, et al. Lipase-catalyzed esterification of rutin and naringin withfatty acids of medium carbon chain [J]. Journal of Molecular Catalysis B: Enzymatic,2003,21(1):59-62.
    124. Kontogianni A, Skouridou V, Sereti V, et al. Regioselective acylation of flavonoids catalyzed bylipase in low toxicity media [J]. European Journal of Lipid Science and Technology,2001,103(10):655-660.
    125. Fossati E, Riva S. Stereoselective Modifications of Polyhydroxylated Steroids [J]. ChemInform,2008,39(1).
    126. Rubin-Pitel S B, Zhao H. Recent advances in biocatalysis by directed enzyme evolution [J].Combinatorial chemistry&high throughput screening,2006,9(4):247-257.
    127. Torres S, Castro G R. Non-aqueous biocatalysis in homogeneous solvent systems [J]. Food TechnolBiotechnol,2004,42(4):271-277.
    128. Laane C. Medium-engineering for bio-organic synthesis [J]. Biocatalysis and Biotransformation,1987,1(1):17-22.
    129. Zaks A, Klibanov A M. Enzymatic catalysis in nonaqueous solvents [J]. Journal of BiologicalChemistry,1988,263(7):3194-3201.
    130. Chebil L, Humeau C, Falcimaigne A, et al. Enzymatic acylation of flavonoids [J]. ProcessBiochemistry,2006,41(11):2237-2251.
    131. Kragl U, Kaftzik N, Schofer S, et al. Enzyme catalysis in the presence of ionic liquids [P].2004.
    132. Jain N, Kumar A, Chauhan S, et al. Chemical and biochemical transformations in ionic liquids [J].Tetrahedron,2005,61(5):1015-1060.
    133. Wilkes J S. Properties of ionic liquid solvents for catalysis [J]. Journal of Molecular Catalysis A:Chemical,2004,214(1):11-17.
    134. Itoh T, Nishimura Y, Ouchi N, et al.1-Butyl-2,3-dimethylimidazolium tetrafluoroborate: the mostdesirable ionic liquid solvent for recycling use of enzyme in lipase-catalyzed transesterification usingvinyl acetate as acyl donor [J]. Journal of Molecular Catalysis B: Enzymatic,2003,26(1):41-45.
    135. Jastorff B, St rmann R, Ranke J, et al. How hazardous are ionic liquids? Structure-activityrelationships and biological testing as important elements for sustainability evaluation [J]. GreenChemistry,2003,5(2):136-142.
    136. Enaud E, Humeau C, Piffaut B, et al. Enzymatic synthesis of new aromatic esters of phloridzin [J].Journal of Molecular Catalysis B: Enzymatic,2004,27(1):1-6.
    137. MOUSSOU P, FALCIMAIGNE A, PAULY G, et al. Preparation of flavonoid derivatives [P].2004.
    138. Passicos E, Santarelli X, Coulon D. Regioselective acylation of flavonoids catalyzed by immobilizedCandida antarctica lipase under reduced pressure [J]. Biotechnology letters,2004,26(13):1073-1076.
    139. Gayot S, Santarelli X, Coulon D. Modification of flavonoid using lipase in non-conventional media:effect of the water content [J]. Journal of biotechnology,2003,101(1):29-36.
    140. Ishihara K, Nishimura Y, Kubo T, et al. Enzyme-catalyzed acylation of plant polyphenols forinterpretation of their functions [J]. Plant biotechnology,2002,19(3):211-214.
    141. Geers B, Otto R, Petersohn D, et al. Novel flavone glycoside derivatives for use in cosmetics,pharmaceuticals and nutrition [P].2001.
    142. Nakajima N, Ishihara K, Itoh T, et al. Lipase-catalyzed direct and regioselective acylation offlavonoid glucoside for mechanistic investigation of stable plant pigments [J]. Journal of bioscienceand bioengineering,1999,87(1):105-107.
    143. Pleiss J, Fischer M, Schmid R D. Anatomy of lipase binding sites: the scissile fatty acid binding site[J]. Chemistry and physics of lipids,1998,93(1):67-80.
    144. Riva S, Chopineau J, Kieboom A, et al. Protease-catalyzed regioselective esterification of sugars andrelated compounds in anhydrous dimethylformamide [J]. Journal of the American Chemical Society,1988,110(2):584-589.
    145. Wang Y F, Lalonde J J, Momongan M, et al. Lipase-catalyzed irreversible transesterifications usingenol esters as acylating reagents: preparative enantio-and regioselective syntheses of alcohols,glycerol derivatives, sugars and organometallics [J]. Journal of the American Chemical Society,1988,110(21):7200-7205.
    146. Carrea G, Riva S, Secundo F, et al. Enzymatic synthesis of various1'-O-sucrose and1-O-fructoseesters [J]. Journal of the Chemical Society, Perkin Transactions1,1989(5):1057-1061.
    1. Chebil L, Humeau C, Falcimaigne A, et al. Enzymatic acylation of flavonoids [J]. ProcessBiochemistry,2006,41(11):2237-2251.
    2. Adamczak M, Krishna S H. Strategies for improving enzymes for efficient biocatalysis [J]. FoodTechnology and Biotechnology,2004,42(4):251-264.
    3. Kontogianni A, Skouridou V, Sereti V, et al. Lipase-catalyzed esterification of rutin and naringin withfatty acids of medium carbon chain [J]. Journal of Molecular Catalysis B: Enzymatic,2003,21(1):59-62.
    4. Gayot S, Santarelli X, Coulon D. Modification of flavonoid using lipase in non-conventional media:effect of the water content [J]. Journal of biotechnology,2003,101(1):29-36.
    5. Ardhaoui M, Falcimaigne A, Engasser J, et al. Enzymatic synthesis of new aromatic and aliphaticesters of flavonoids using Candida antarctica lipase as biocatalyst [J]. Biocatalysis andBiotransformation,2004,22(4):253-259.
    6. Enaud E, Humeau C, Piffaut B, et al. Enzymatic synthesis of new aromatic esters of phloridzin [J].Journal of Molecular Catalysis B: Enzymatic,2004,27(1):1-6.
    7. Ishihara K, Nakajima N. Structural aspects of acylated plant pigments: stabilization of flavonoidglucosides and interpretation of their functions [J]. Journal of Molecular Catalysis B: Enzymatic,2003,23(2):411-417.
    8. Mellou F, Lazari D, Skaltsa H, et al. Biocatalytic preparation of acylated derivatives of flavonoidglycosides enhances their antioxidant and antimicrobial activity [J]. Journal of biotechnology,2005,116(3):295-304.
    9. Wang Y F, Lalonde J J, Momongan M, et al. Lipase-catalyzed irreversible transesterifications usingenol esters as acylating reagents: preparative enantio-and regioselective syntheses of alcohols,glycerol derivatives, sugars and organometallics [J]. Journal of the American Chemical Society,1988,110(21):7200-7205.
    10. Weber H, Stecher H, Faber K. Sensitivity of microbial lipases to acetaldehyde formed by acyl-transferreactions from vinyl esters [J]. Biotechnology letters,1995,17(8):803-808.
    11. Woudenberg-van Oosterom M, van Rantwijk F, Sheldon R A. Regioselective acylation ofdisaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase [J]. Biotechnol Bioeng,1996,49(3):328-333.
    12. Laane C, Boeren S, Vos K, et al. Rules for optimization of biocatalysis in organic solvents [J].Biotechnol Bioeng,1987,30(1):81-87.
    13. Hazarika S, Goswami P, Dutta N N. Lipase catalysed transesterification of2-O-benzylglycerol withvinyl acetate: solvent effect [J]. Chemical Engineering Journal,2003,94(1):1-10.
    14. Zheng M-M, Wang L, Huang F-H, et al. Ultrasonic pretreatment for lipase-catalyed synthesis ofphytosterol esters with different acyl donors [J]. Ultrasonics sonochemistry,2012,19(5):1015-1020.
    15. Ardhaoui M, Falcimaigne A, Ognier S, et al. Effect of acyl donor chain length and substitutionspattern on the enzymatic acylation of flavonoids [J]. Journal of biotechnology,2004,110(3):265-272.
    16. Kontogianni A, Skouridou V, Sereti V, et al. Regioselective acylation of flavonoids catalyzed bylipase in low toxicity media [J]. European Journal of Lipid Science and Technology,2001,103(10):655-660.
    17. Bj rkling F, Godtfredsen S E, Kirk O. A highly selective enzyme-catalysed esterification of simpleglucosides [J]. Journal of the Chemical Society, Chemical Communications,1989(14):934-935.
    18. Pedersen N R, Wimmer R, Emmersen J, et al. Effect of fatty acid chain length on initial reaction ratesand regioselectivity of lipase-catalysed esterification of disaccharides [J]. Carbohydrate research,2002,337(13):1179-1184.
    19. Vaysse L, Ly A, Moulin G, et al. Chain-length selectivity of various lipases during hydrolysis,esterification and alcoholysis in biphasic aqueous medium [J]. Enzyme and Microbial Technology,2002,31(5):648-655.
    1. Chebil L, Humeau C, Falcimaigne A, et al. Enzymatic acylation of flavonoids [J]. ProcessBiochemistry,2006,41(11):2237-2251.
    2.赵天涛,张丽杰,高静等.脂肪酶催化乳酸与乙醇合成乳酸乙酯的反应动力学[J].催化学报,2008,29(2):141-144.
    3. Yadav G D, Lathi P S. Synthesis of citronellol laurate in organic media catalyzed by immobilizedlipases: kinetic studies [J]. Journal of Molecular Catalysis B: Enzymatic,2004,27(2):113-119.
    4. Singh N, Sachan P K. Kinetic Study of Catalytic Esterification of Butyric Acid and Ethanol overAmberlyst15[J]. ISRN Chemical Engineering,2013,32:234-250.
    5. Hu J-N, Lee J-H, Zhu X-M, et al. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1esters using response surface methodology [J]. J Agr Food Chem,2008,56(22):10988-10993.
    6. Aissa I, Bouaziz M, Ghamgui H, et al. Optimization of lipase-catalyzed synthesis of acetylated tyrosolby response surface methodology [J]. J Agr Food Chem,2007,55(25):10298-10305.
    7. Céliz G, Daz M. Biocatalytic preparation of alkyl esters of citrus flavanone glucoside prunin inorganic media [J]. Process Biochemistry,2011,46(1):94-100.
    8. Lambusta D, Nicolosi G, Patti A, et al. Enzyme-mediated regioprotection-deprotection of hydroxylgroups in (+)-catechin [J]. Synthesis,1993,1993(11):1155-1158.
    9. Romero M, Calvo L, Alba C, et al. A kinetic study of isoamyl acetate synthesis by immobilizedlipase-catalyzed acetylation in n-hexane [J]. Journal of biotechnology,2007,127(2):269-277.
    10. Yu J, Zhang J, Zhao A, et al. Study of glucose ester synthesis by immobilized lipase from Candida sp.[J]. Catalysis Communications,2008,9(6):1369-1374.
    1. Jing Jin, Yubo Li, Emmanuel Kipletting Tanui, et al. Fishing and knockout of bioactive compoundsusing a combination of high-speed counter-current chromatography (HSCCC) and preparative HPLCfor evaluating the holistic efficacy and interaction of the components of Herba Epimedii [J]. Journalof Ethnopharmacology,2013,147(2):357-365.
    2. Hou Z, Luo J, Wang J, et al. Separation of minor coumarins from Peucedanum praeruptorum usingHSCCC and preparative HPLC guided by HPLC/MS [J]. Separation and Purification Technology,2010,75(2):132-137.
    3. Chen L, Xin X, Lan R, et al. Isolation of cyanidin3-glucoside from blue honeysuckle fruits byhigh-speed counter-current chromatography [J]. Food chemistry,2014,152:386-390.
    4. Liu Q, Shi S, Liu L, et al. Separation and purification of bovine serum albumin binders from Fructuspolygoni orientalis using off-line two-dimensional complexation high-speed counter-currentchromatography target-guided by ligand fishing [J]. Journal of Chromatography A,2013,1304:183-193.
    5. Xiao X, Guo Z, Deng J, et al. Separation and purification of isofraxidin from Sarcandra glabra bymicrowave-assisted extraction coupled with high-speed counter-current chromatography [J].Separation and Purification Technology,2009,68(2):250-254.
    1. Shahidi F, Zhong Y. Lipid oxidation and improving the oxidative stability [J]. Chemical SocietyReviews,2010,39(11):4067-4079.
    2. Almajano M P, Delgado M E, Gordon M H. Albumin causes a synergistic increase in the antioxidantactivity of green tea catechins in oil-in-water emulsions [J]. Food chemistry,2007,102(4):1375-1382.
    3. Zhang Y, Yang L, Zu Y, et al. Oxidative stability of sunflower oil supplemented with carnosic acidcompared with synthetic antioxidants during accelerated storage [J]. Food Chemistry,2010,118(3):656-662.
    4. Shahidi F, Zhong Y. Novel antioxidants in food quality preservation and health promotion [J].European journal of lipid science and technology,2010,112(9):930-940.
    5. Kahl R, Kappus H. Toxicology of the synthetic antioxidants BHA and BHT in comparison with thenatural antioxidant vitamin E [J]. Zeitschrift fur Lebensmittel-untersuchung und-forschung,1993,196(4):329-338.
    6. Van Esch G. Toxicology of tert-butylhydroquinone (TBHQ)[J]. Food and Chemical Toxicology,1986,24(10):1063-1065.
    7. European pharmacopoeia EP7.05.4Residual Solvents2009:581-590.
    8.郑妍,朱利民.酚酸类化合物的应用及改性研究新进展[J].应用化工,2007,36(9):918-921.
    1.赵保路.天然抗氧化剂茶多酚的健康作用及其机理[J].生物物理学报,2012,5:426-437.
    2. Halliwell B, Gutteridge J, Cross C. Free radicals, antioxidants, and human disease: where are we now?[J]. The Journal of laboratory and clinical medicine,1992,119(6):598-620.
    3. Reed T T. Lipid peroxidation and neurodegenerative disease [J]. Free Radical Biology and Medicine,2011,51(7):1302-1319.
    4. Zhu K, Zhou H, Qian H. Antioxidant and free radical-scavenging activities of wheat germ proteinhydrolysates (WGPH) prepared with alcalase [J]. Process Biochemistry,2006,41(6):1296-1302.
    5. Li Y, Jiang B, Zhang T, et al. Antioxidant and free radical-scavenging activities of chickpea proteinhydrolysate (CPH)[J]. Food Chemistry,2008,106(2):444-450.
    6. Yuan J-F, Zhang Z-Q, Fan Z-C, et al. Antioxidant effects and cytotoxicity of three purifiedpolysaccharides from Ligusticum chuanxiong Hort [J]. Carbohydrate Polymers,2008,74(4):822-827.
    7. Zhang J, Zhang H, Wang L, et al. Antioxidant activities of the rice endosperm protein hydrolysate:identification of the active peptide [J]. European Food Research and Technology,2009,229(4):709-719.
    8. Wang W, Luo J, Yao S, et al. Interaction of phenolic antioxidants and hydroxyl radicals [J]. RadiationPhysics and Chemistry,1993,42(4):985-987.
    9. Zhang Z, Wang S, Qiu H, et al. Waltonitone induces human hepatocellular carcinoma cells apoptosisin vitro and in vivo [J]. Cancer letters,2009,286(2):223-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700