应力吸收层结合料性能及其关键评价指标研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设置改性沥青混合料应力吸收层是刚性、半刚性基层沥青路面抗反射裂缝措施之一,其延缓反射裂缝性能的关键是其高性能特种改性沥青及其优良的混合料性能。目前,我国尚未对改性沥青混合料应力吸收层结合料进行系统研究,也缺乏相应的技术规范或指南,影响了这项新技术的进一步推广和应用。因此,对改性沥青混合料应力吸收层特别是其结合料的性能进行深入系统的研究,并提出相应的技术要求是目前亟待解决的关键问题。论文以西部交通建设科技项目《复合式路面应力吸收层研究》为依托,通过对改性沥青混合料应力吸收层结合料及其混合料性能进行系统研究,分析了影响应力吸收层结合料性能及其混合料性能的因素,结合生产实践,推荐出相应的评价改性沥青混合料应力吸收层结合料的关键指标与标准。
     (1)分析了改性沥青混合料应力吸收层结合料所用基质沥青类型、化学组分、标号、改性剂类型、剂量、改性工艺、存储条件等因素对其性能的影响。通过微观结构观测和宏观性能试验,解释了各改性剂之间的相互作用机理,提出了高性能应力吸收层沥青结合料的改性方案和加工工艺,制备出高温稳定性和耐老化性能优良,弹性恢复性能以及低温抗裂性能卓越的改性沥青混合料应力吸收层结合料。
     (2)针对现有规范中普通改性沥青评价指标体系的不足,结合应力吸收层的功能要求,推荐了相应的应力吸收层结合料的技术要求,并选择有代表性的SBS改性、SBR改性、QP改性、GC改性、TPS改性、SAM改性以及STR改性沥青等几种改性沥青结合料,进行了老化前后的感温性能、高温性能、低温性能、粘韧性以及弹性恢复等性能的对比研究。结合老化前后沥青宏观性能指标的变化规律,采用凝胶渗透色谱和灰关联法对改性沥青的老化机理进行研究发现,沥青相老化前后的分子量及分散度变化是影响改性沥青宏观性能的最显著因素。
     (3)针对应力吸收层在路面结构中的受力特点,在相关研究的基础上提出了评价改性沥青混合料高温性能的贯入试验方法,通过数值模拟与试验研究,分析了加载压头直径、试件形状、加载速率、试验温度、改性沥青类型、级配类型等因素对贯入试验结果的影响,推荐了应力吸收层沥青混合料高温抗剪指标。通过对沥青结合料技术指标与其混合料高、低温性能进行灰关联分析,分析了应力吸收层结合料对其混合料性能的影响,提出了应力吸收层结合料的关键评价指标。
Setting stress absorbing layer with modified asphalt is one of the measures of anti-reflective cracking in semi-rigid or rigid base asphalt pavement. Its special modified asphalt and mixture are critical to the performance of anti-reflective cracking. But at present, systematic study and the specification or guide for stress absorbing layer asphalt binder in China are still blank, this brings difficulties for the popularization and application of this new technology. Therefore, further research on the properties of stress absorbing layer asphalt binder is needed and specification for the asphalt binder is urgent. Relying on west traffic construction project research on composite pavement of stress absorbing layer, systematic studies on asphalt binder and mixture were carried on and influencing factors on the performance were analyzed. Based on the production practice, key control index and evaluation standard for stress absorbing layer asphalt binder were proposed.
     (1) Factors to performance of stress absorbing layer asphalt binder were analyzed, such as base asphalt, chemical components, asphalt grade, modifier type and dose, modification technology and storage conditions. Based on the micro observation and macro experiments, mechanism of interaction among modifiers was studied and explained. Then satisfactory modification program and technology were proposed. Stress absorbing layer modified asphalt has good high and low temperature performance, aging resistance and excellent elastic recovery properties.
     (2) Aiming at the shortage of existing evaluation system for modified asphalt, and combineing with function requirements, technic requirements for stress absorbing layer binder were recommended. Meanwhile representative modified aspahlt were selected, such as SBS modified asphalt, SBR modified asphalt, QP modified asphalt, GC modified asphalt, TPS modified asphalt, SAM modified asphalt and STR modified asphalt, and performances of these asphats at high and low temperature, temperature susceptibilitu, toughness and tenacity and elastic recovery capability before and after aging were studied and compared. Combineing with the changes of macroscopic properties index for aspahlt binder before and after aging, aging mechanisms of modified asphalt were studied by gel permeation chromatography and grey relevant method. And the results indicated that changes in molecular weight and dispersion degree of asphalt before and after aging are the most important factors influencing asphalt macroscopic properties.
     (3) Considering the function of stress absorbing layer in the pavement structure, penetration test for asphalt mixture at high temperature was proposed on the basis of relevant research. Calculation combined with the test, the influence of test conditions such as diameter of pressure head, specimen shape, loading rate, temperature, asphalt and grading type was discussed. Finally, a shear index for absorbing layer asphalt mixture at hight temperature was recommended. In addition, Grey relevant method was used to analyze the relationship between asphalt and mixture performance, and the key evaluation index for stress absorbing layer asphalt binder were recommended in the paper.
引文
[1]沙庆林.高等级公路半刚性基层沥青路面[M].北京:人民交通出版社,1998.
    [2]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D].中南大学博士学位论文,2003.6.
    [3]石昆磊.高粘性沥青应力吸收层防治沥青路面反射裂缝的研究[D].哈尔滨工业大学硕士学位论文,2006.6.
    [4]Dempsey, B.J. Development and performance of interlayer stress-absorbing composite in asphalt concrete overlays [J]. Transportation Research Record, n 1809,2002, p175-183.
    [5]Molenaar A A A, Heerbens J C P. Effect s of stress absorbing membranes interlays [J]. Proc of AAPT,1986,55:2062219.
    [6]ABEN, MAEHARA H, MARUYAMAT. Study of Reflective Cracking Prevention Effects Using Stress Absorbing Membrane Interlayer [J]. Journal of JSCE,1998, (3):245-249.
    [7]Transportation Association of Canada. Canadian Strategic Highway Research Program-C-SHRP [R]. Canada:Transportation Association of Canada,2001.
    [8]葛折圣,黄朝晖,黄晓明.沥青混合料疲劳性能的影响因素分析[J].公路交通科技,2002,19(6):1-4.
    [9]University of California at Berkeley, Oregon State University, Austin Research Engineers, et al. Validation of the Relationship between Asphalt Properties and Asphalt aggregate Mix Performance [R]. Washington DC: National Research Council,1994.
    [10]陈拴发,周燕,陈华鑫等.改性沥青性能指标合理测试时间的确定[J].长安大学学报(自然科学版),2008,28(6):1-4.
    [11]廖卫东,陈拴发,刘云全.STRATA应力吸收层抗疲劳特性研究[J].武汉理工大学学报,2003,25(12):1-4.
    [12]李祖仲,陈拴发,华敏.Sampave层厚度对沥青结构层内力影响分析[J].郑州大学学报(工学版),2007,28(4):92-95.
    [13]廖卫东,刘洪海,张昌波,张春燕.STRATA应力吸收层的级配特征与施工控制技术[J].公路,2005,第5期:13-17.
    [14]杨斌,陈拴发,廖卫东等.STRATA应力吸收层对加铺层荷载及温度应力的影响分析[J].公路交通科技,2005,22(9):27-30.
    [15]杨斌,陈拴发,廖卫东等.STRATA应力吸收层对加铺层荷载及温度应力的影响分析[J].公路交通科技,2005,22(9):27-30.
    [16]杨斌.旧水泥混凝土路面沥青加铺层结构研究[D].长安大学博士学位论文,2005.
    [17]李祖仲,陈拴发,张登良等.应力吸收层沥青混合料的路用特性[J].长安大学学报(自然科学版)2008,2 (2):5-8.
    [18]李祖仲.应力吸收层沥青混合料路用性能研究[D].西安:长安大学硕士学位论文,2005.
    [19]周燕SAMPAVE抗裂结构层材料及其路用性能研究[D].西安:长安大学硕士学位论文,2007.
    [20]刘丹.应力吸收层材料组成及其特性研究[D].西安:长安大学硕士学位论文,2008.
    [21]程毅.设置应力吸收层的旧混凝土路面沥青加铺层结构研究[D].长安大学硕士学位论文,2006.
    [22]谭忆秋,石昆磊,王佳妮等.沥青性质对应力吸收层沥青混合料性能影响的研究[J].公路交通科技,2009,26(2):13-17.
    [23]董武斌.应力吸收层在成都市一环路旧水泥混凝土路面改造中的应用[J].公路交通科技,2005年4月(2):54-56+72.
    [24]叶志刚.Strata反射裂缝应力吸收层混合料配合比设计及施工技术[J].辽宁交通科技,第二期:13-15.
    [25]高中军,何唯平.高粘沥青改性剂开发及其应用研究[J].公路,2007年1月第1期:168-170.
    [26]陈亭.应力吸收层在尉许高速公路上的应用[J].华东公路,2007,163(1):7-9.
    [27]南雪峰,唐明,李迎.应力吸收层原材料选择标准的探讨[J].北方交通,第一期:29-32.
    [28]吴旷怀.应力吸收夹层沥青混合料设计研究[J].公路交通科技,2006,23(12):18-36.
    [29]JTG F40-2004公路沥青路面施工技术规范[s].北京:人民交通出版社,2004.
    [30]AASHTO MP la-01, Standard Specification for Performance Graded Asphalt Binder [S].
    [31]薛忠军王佳妮谭忆秋.应力吸收防水粘结层的抗反射裂缝性能[J].华南理工大学学报(自然科学版),2008,36(10):81-85.
    [32]沈圆顺,王新宇.橡胶沥青应力吸收层在柔性路面中的应用[J].工程质量,2007,No.7(A):37-39.
    [33]薛忠军.旧水泥路面加铺超薄沥青层综合技术的研究[D].哈尔滨工业大学博士学位论文,2007,6.
    [34]Application of Sand Anti-Fracture (SAF) Layer for Pavement Rehabilitation. Research Development and Technology [R]. Missouri Department of transportation. Jefferson City, Missouri,2001 Feb.
    [35]Experiment Sand Anti-fracture Mixture. JSP-97-10[s]. Construction and Materials,2007-12.
    [36]科氏路面解决方案-反射裂缝应力吸收层系统[R].美国科氏材料(中国)公司.2001.
    [37]J. Weigel, D.Bischoff, L.Makowski, Blankenship. Protecting Ⅰ-94 in Wisconsin: Impermeable Reflective Crack Relief System[R]. Transportation Research Record,2004.
    [38]Leonard Makowski, Debra L. Bischoff, Phillip Blankenship, etc. Wisconsin Experiences with Reflective Crack Relief Projects[R]. Transportation Research Record,2006,2005(1905)/2005.
    [39]高建立.沥青指标的分析与评价及新指标的研究[D].东南大学博士学位论文,2005.9.
    [40]廖卫东.基于应力吸收层的旧水泥混凝土路面沥青加铺层结构与材料研究[D],武汉理工大学博士学位论文,2007.6.
    [41]原健安.聚合物改性沥青中的几个问题[J].石油沥青,1994(4):14-15.
    [42]吴培熙,张留城.聚合物共混改性[M].北京:中国轻工业出版社,1996.
    [43]易洪.对改性沥青改性机理的探讨[J].交通科技,2004,205(4):79-82.
    [44]Jennings P. W. and Pribanic J. A. S., A perspective on asphalt chemistry research and the use of HP-GPC analysis[J]. Fuel Sci. & Technol. Intl,1989,7:1269-1287.
    [45]Wahhab HI A., Asi I. M., Ali F. M., etc., Prediction of asphalt rheological properties using HP-GPC[J]. Mater. Civil Eng.,1999,7:6-14.
    [46]原健安.两种重交通沥青性质差异的分析[J].公路交通科技,1995,(2):9-12
    [47]Masson J. F., Pelletier L. and Collins D., RaPId FTIR method for quantification of styrene-butadiene type copolymers in bitumen[J]. ApPI. Polym.&Sci.2001,79:1034-1041.
    [48]Jemison H.B., Burr B.L., Davison R.R., etc., Application and use of the ATR, FTIR method to Asphalt aging studies[J]. Fuel Sci. & Technol. Intl,1992,10(4&6):795-808.
    [49]张玉贞,聚合物改性沥青相容性研究[D].石油大学博士学位论文,2001年5月.
    [50]Jennings PW., Fonnesbeck J., Smith J., etc., Asphalt chemistry: an NMR investigation of the benzylic hydrogens and oxidation[J]. Asphalt science and technology, edited by A.M. Usmani. Marcel Dekker Co., New York,1997, P1-10.
    [51]Miknis F. P. and Michon L.C., Some applications of nuclear magnetic resonance imaging to crumb rubber modified asphalts[J]. Fuel,1998,77(5):393-397.
    [52]Hagen A.P., Johnson M.P. and Randolph B.B., C-NMR studies on roadway asphalts[J]. Fuel Sci. &Technol. Intl,1989,7:1289-1326.
    [53]Netzel D.A., Miknis F.P., Thomas K. P., etc., Molecular motions and rheological properties of asphalts: an NMR study[J]. Asphalt science and technology, edited by A.M.Usmani, Marcel Dekker Co., New York,1997, P11-55.
    [54]Michon L.C., Netzel D.A. and Turner T.F., "C-NMR and DSC study of the amorphous and crystalline phases in asphalts[J]. Energy&Fuels,1999,13:602-610.
    [55]Gale P.J. and Bentz B. L., Chemical characterization of asphalt using thermal chromatography with mass spectrometry[J]. Fuel Sci. & Technol. Intl,1992,10:1059-1069.
    [56]敖宁建,苯乙烯-丁二烯-苯乙烯(SBS)热塑性弹性体的固相力化学改性的研究[D].四川大学博士论文,2002年.
    [57]Vibeke Wegan.Bernard Brule. The structure of polymer modified binders and corresponding asphalt mixtures[J]. AAPT,1999,68:64-88.
    [58]黄卫东,孙立军.SBS改性沥青的混合原理与过程[J].同济大学学报(自然科学版),2002,30(2):189-192.
    [59]Collins J L,Bouldin M G,Gelles R,et al. Improved performance of paving asphalts by polymer modification[J]. AAPT,1991,60:43-79.
    [60]张争奇,张登良,杨荣尚.改性沥青机理研究[J].西安公路交通大学学报,1998,18(4):21-25.
    [61]吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社,2001.1.
    [62]郝培文.沥青与沥青混合料[M],北京:人民交通出版社,2009.8.
    [63]BRUL E. Paving asphalt polymer blends relationships between composition structure and properties [J]. Asphalt Paving Technol.1988,57:116.
    [64]郝培文,申艳梅.SBS与沥青相容性的研究[J].西安公路交通大学学报,2001,21(2):27-29.
    [65]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996,12.
    [66]廖克俭,从玉凤.道路沥青生产与应用技术[M].北京:化学工业出版社,2004.
    [67]肖云,袁燕,张肖宁.SBS微观分散状态与改性沥青性能的关系[J].华南理工大学学报(自然科学版),2005,33(8):83-86.
    [68]Kraus G. Modification of asphalt by block polymers of butadiene and styrene [J]. Rubb Chem Technol, 1982,55:1389
    [69]李水平,范维玉,陈树坤,刘洪祥.SBS改性沥青微观形态结构及性能的研究[J].石油与天然气化工,32(3):147-149.
    [70]黄卫东,孙立军.SBS改性沥青显微结构及相态结构研究[J].中国建筑防水2003(4).
    [71]A.G.Williaman and L.R.Baton, Compatible asphalt-Polymer blends[J]. U.S.Pat.US5672642,1997.
    [72]温贵安.橡胶反应共混改性沥青的高性能化和稳定化研究[D],上海交通大学博士学位论文,2001.
    [73]Z.Z.Liang, Stabilized bituminous composition based on Polymer in-suit blend, PCT Int. APPI. WO 9730121,1997.
    [74]E.B.Chang and R.E.Beckwieh. Sulphur stabilized oxized polyolefin and asphalt composition, U.5. Pat. US 4497921,1985.
    [75]L. E. Moran and K. L. Sokol. Composition and method for improving the storage stability of Polymer modified asphalt[J]. U.S. Pat. US 5393811,1993.
    [76]I.Paolo, Process for causing bitumen/Polymer blends to become storage stable[J]. Eur.Pat.APPL EP 640655 AI,1994.
    [77]Wahhab HIA., Asi I. M., Ali F. M., etc., Prediction of asphalt theological properties using HP-GPC[J]. J. Mater. Civil Eng.,1999,7:6-14.
    [78]S.Hesp, Z.Z.Liang and R.T. Woodhams,, Bitumen-polymer stabilizer, stabilized bitumen-polymer compositions and methods for the preparation thereof[J]. U.S.Pat.US5280624,1994.
    [79]S.Hesp, Z.Z.Liang and R.T.Woodhams, In-situ stabilized compositions, U. S. Pat. US 5708061,1998.
    [80]李克友,张菊华,向福如.高分子合成原理及工艺学[M].北京:科学出版社,1999.
    [81]吉永海,郭淑华,李锐.SBS改性沥青的相容性和稳定性机理[J].石油学报,2002,18(3):24-29.
    [82]Martin L G, Dennis G P, Daniel J M. New polymer-modified functionalized asphalt compositions and methods of preparation[P]. USP: 5348994.1994.
    [83]郝培文,张宜洛,江建坤,许永明.改性工艺参数对SBS改性沥青性能影响研究[J].重庆交通学院学报,2001,20(2):50-53.
    [84]姬杨蓓蓓,陈华鑫,鲍燕妮.改性沥青存储稳定性试验方法与指标[J].同济大学学报(自然科学版),2006,34(8):1035-1039.
    [85]熊萍,郝培文,高传明.SBS聚合物改性沥青技术性能[J]..长安大学学报(自然科学版),2005,25(1):10-14.
    [86]李套岭,孙立军,张宏超.SBS改性沥青存贮稳定性评价方法与指标[J].建筑材料学报,2002,5(2):137-140.
    [87]原健安,钟青华,纪东.SBS改性沥青热储存过程中软化点衰减机理分析[J].石油沥青,2003,17(2):39-41.
    [88]黄卫东,孙立军.SBS改性沥青软化点的衰变[J].中国公路学报,2002,15(2):1-3.
    [89]袁燕,肖云,张肖宁.SBS改性沥青剪切发育过程的动态力学热分析[J].中国公路学报,2006,19(3):29-33.
    [90]曾凡奇,黄晓明,李海军.沥青性能的DSC评价方法[J].交通运输工程学报,2005,5(4):37-42.
    [91]钱科,傅大放,刘举正.聚合物改性沥青的储存稳定性[J].石油沥青,2003,17(3):1-8.
    [92]肖云,袁燕,张肖宁.SBS微观分散状态与改性沥青性能的关系[J].华南理工大学学报(自然科学版),2005,33(8):83-86.
    [93]Brion B Y, Tanguy A. Paving asphalt polymer blends, relationship between composition, structure and properties[J]. Association of Asphalt Paving Technologists,1988,57:41-64.
    [94]黄卫东,孙立军,游宏.SBS改性沥青流变性质与显微结构的关系[J].同济大学学报,2003,31(8):916-920.
    [95]St. Laurent Blvd, Ottawa, Ontario. Canadian strategic highway research program-C-SHRP[R]. Transportation Association of Canada,2003,(3):4-6.
    [96]薛忠军.旧水泥路面加铺超薄沥青层综合技术的研究[D].哈尔滨工业大学博士学位论文,2007,6.
    [97]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001.
    [98]张肖宁.沥青与沥青混合料的粘弹性力学原理及应用[M].北京:人民交通出版社,2006.1.
    [99]谭忆秋,姜丽伟,褚浩然等.三个温度针入度评价沥青材料感温性的敏感性分析[J].东北公路,2001,24(4):42-43+39.
    [100]曾凡奇.沥青感温性指标分析[J].中外公路,2007,27(6),156-159.
    [101]赵可,李海骢.改性沥青感温性评价指标的讨论[J].中国公路学报,2000,13(4):1-7.
    [102]郝培文,李放,刘建强等.沥青感温性指标与沥青组成的灰关联熵分析[J].石油沥青,2003,17(3):14-18.
    [103]陈俊,黄晓明.沥青粘度和稠度本质及其关系研究[J].石油沥青,2007,21(4):40-44.
    [104]赵可.沥青及沥青混合料改性研究[D].长安大学博士学位论文,1999.6.
    [105]刘亮.沥青结合料高温性能评价指标试验研究[D].长沙理工大学硕士学位论文,2005.4.
    [106]AASHTO 暂行标准.PP5-93.Standard Practice for the labolatory Evalution of Modified Asphalt Systems[s].1995.
    [107]曾凡奇.重载交通沥青关键指标研究[D].东南大学博士学位论文,2005.12.
    [108]Button J W, Little D N. Mechanistic Evaluation of Selected Asphalt Additives[J]. AAPT, 1987,62-90.
    [109]Lewandowski L H. Polymer Modification of Asphalt Binders[J]. Rubber Chem. Technol 1994,67,477-480.
    [110]Radiziszewski P. Force-Ductility Properties of Polish Modified Bitumen and Their Relation to The Asphalt Concrete Fatigue Resistance[J]. Eurasphalt & Eurobitume Congress,1996.
    [111]郭淑华,曾赟,严慧等.改性剂对改性沥青性能影响的综合评价[J].石油沥青,2002,16(4):7-14.
    [112]沈建荣,险街民,沈火林.基于测力延度试验的聚合物改性沥青低温拉伸性能研究[J].石油沥青,2005,19(4):23-27.
    [113]岳学军,黄晓明,李文龙等.测力延度试验以及韧性比评价指标的研究[J].公路交通科技,2007,24(2):33-36
    [114]孙大权,沈建荣,陆新民等.基于测力延度试验的聚合物改性沥青低温拉伸性能研究(2)聚合物改性沥青测力延度拉伸形变机理分析[J].石油沥青,2005,19(5):6-9.
    [115]孙大权,吕伟民.用测力延度试验评定聚合物改性沥青低温性能[J].建筑材料学报,2007,10(1)37-42.
    [116]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003.2.
    [117]原建安.复合改性对沥青性质的影响[J].石油沥青,1998,12(1):14-19.
    [118]刘慧敏,张光庆,张田英.沥青粘韧性试验法行业标准编制说明[J].石油沥青,2003,17(4):51-52.
    [119]肖晶晶,郑南翔,宋哲玉.乳化剂对改性乳化沥青性能影响及机理研究[J].郑州大学学报(工学版),2008,29(3):5-9.
    [120]赵晶,王抒音,彭永恒,张肖宁.SBS改性沥青技术与效果评价[J].中国公路学报,1997,10(4):18-24.
    [121]高冰梅,裘建军,姚德宏.我国石化行业沥青新标准介绍[J].石油沥青,2005,19(2)50-53.
    [122]Ghazi Al-Khateeb, Xicheng Qi, Aroon Shenoy, Kevin Stuart, Terry Mitchell. Assessment of Aging at SAMWA's Pavement Testing Facility Transportation Research Record: Journal of the Transportation Research Board [J].2006,2005(1940):146-155.
    [123]张争奇,李平,王秉纲.SBS改性沥青性能及老化的影响[J].公路,2005(9):150-156.
    [124]李晓民,张肖宁,南雪丽.改性沥青老化后动态粘弹力学行为的研究[J].中外公路,2006.26(3):269-272.
    [125]王仕峰,张玉王,迪珍军,罗东山.SBS改性沥青的老化行为[J].合成橡胶工业,2003,26(5):301-304.
    [126]金日光,华幼卿.高分子物理(第三版)[M].北京:化学工业出版社,2006.
    [127]施良和.凝胶色谱法[M].北京:科学出版社,1976.
    [128]原建安,张登良.国产沥青的GPC分析[J].石油沥青,1994年第3期:1-6.
    [129]耿九光.沥青老化机理及再生技术研究[D].长安大学博士学位论文,2009.6.
    [130]Norman W. Garrick,J Member.Use of Gel-Permeation Chromatogrphy in predicting properties of asphalt[J]. Journal of Materials in Civil Engineering,1994,6(3):376-389.
    [131]赵晶,张肖宁,于桂珍,张玉贞.应用凝胶渗透色谱法研究改性沥青机理[J].哈尔滨建筑大学学报,2000,33(2):83-85.
    [132]邓聚龙.灰理论基础[M].武汉:华中理工大学出版社,2002.2.
    [133]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [134]张岐山,郭喜江,邓聚龙.灰关联熵分析方法[J].系统工程理论与实践,1996,8:7-11.
    [135]刘建慧.拓展的灰关联熵方法[J].农业系统科学与综合研究,1997,13(3):175-178.
    [136]李玉民.物流发展影响因子的灰关联熵分析[J].公路交通科技,2005,22(2):142-145.
    [137]郝培文.利用GPC曲线模型分析沥青的性质[J].石油炼制与化工,1995,26(9):28-31.
    [138]原健安.改性剂与沥青的相互作用对改性沥青性质的影响[J].重庆交通学院学报,2000,19(1):67-79.
    [139]陈忠达,袁万杰,郑陈启.级配理论应用研究[J].重庆交通学院学报,2005,24(4):44-48.
    [140]林绣贤.沥青混凝土合理集料组成的计算公式[J].华东公路,2003,140(1):82-84.
    [141]JTG D50-2006.公路沥青路面设计规范[s].北京:人民交通出版社,2006.
    [142]JTJ052-2000.公路工程沥青及沥青混合料试验规程[s].北京:人民交通出版社,2000.
    [143]孙立军.沥青路面结构行为理论[M].上海:同济大学出版社,2003.4.
    [144]毕玉峰.沥青混合料抗剪试验方法及抗剪参数研究[D].上海:同济大学博士学位论文,2004.
    [145]王哲人,曹建新,王龙等.级配碎石混合料的动力变形特性[J].中国公路学报,2003,(1):22-26.
    [146]栗陪龙.沥青混合料粘弹性力学参数及其应用研究[D],长安大学博士学位论文,2009,6.
    [147]Fwa T F, Low B H, Tan S A. Behavior analysis of asphalt mixtures using triaxial test-determined properties[A]. In:Symposium on Engineering Properties of Asphalt Mixtures and the Relationship to Their Performance[C]. [s.1.]:[s. n.],1994.97-110.
    [148]Lee H J, Kim Y R. Viscoelastic constitutive model for asphalt concrete under cyclic loading[J]. Journal of Engineering Mechanics,1998,124(1):32-40.
    [149]Donald H, Shields M Z, Robert K. Nonliner viscoelastic behavior of asphalt concrete in stress relaxation[J]. Asphalt Paving Technology,1998,24:358-400.
    [150]凤家骥,葛毅雄,孙兆雄.沥青混凝土应力-应变关系试验研究[J].水利学报,1987:(11):56-62.
    [151]王为标,孙振天,吴利言.沥青混凝土应力-应变特性研究[J].水利学报,1996:(5):1-8.
    [152]李志强,张鸿儒,侯永峰等.土石坝沥青混凝土心墙三轴力学特性研究[J].岩石力学与工程学报,2006,25(5):997-1002.
    [153]周晓青,李宇峙,应荣华等.基于蠕变试验分析沥青路面车辙的能量方法[J].公路交通科技,2005,22(9):62-65.
    [154]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003.2.
    [155]郝培文,张登良.沥青混合料低温抗裂性评价方法研究[J],公路,2000.5(5):63-67.
    [156]HamiD Reza Soleymani. Viscoelastic Characterization of Blended Binders for Asphalt Pavement Recycling[D]. Saskatoon: Department of Civil Engineering University of Saskatchewan Saskatoon, Canada,1998.
    [157]詹小丽,张肖宁,谭忆秋等.改性沥青低温性能评价指标研究[J].公路交通科技,2007,24(9):42-45.
    [158]Hichaelm, Martip E, and Andrew Mielke. Synthesis of Asphalt Recycling in Minnesota Final Report[R].Minnesota Local Road Research Board,2002.
    [159]葛折圣,黄晓明,胡少宏.沥青混合料低温抗裂性能影响因素的灰关联分析[J].公路交通科技,2003,20(12):1-3.
    [160]刘涛,郝培文.沥青混合料低温抗裂性评价方法研究[J].同济大学学报,2002,30(12):1468-1471.
    [161]蔡四维,蔡敏.混凝土的断裂损伤[M].北京:人民交通出版社,1999:38-39.
    [162]Rowe GM et al. Visco-elastic analysis of hot mix asphalt pavement structures, Transportation Research Record. Transportation Research Board, Washington, D. C.,1995,1482:44-51.
    [163]张熙颖.沥青混合料低温抗裂性能蠕变试验研究与分析[J].中外公路2007,27(6):177-179.
    [164]郝培文,刘红瑛.运用蠕变速率评价沥青混合料低温抗裂性能的研究[J].石油沥青,1994,第3期:6-10.
    [165]张宏.沥青混合料低温抗裂性能评价方法[J].长安大学学报(自然科学版),2002,22(4):5-8.
    [166]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700