大气激光通信信标光捕获过程中光斑检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以激光作为信息载体的大气激光通信技术以其高带宽、高码率、高保密性、低功耗等优点成为通信技术发展的新方向,具有良好的应用前景。近些年来,该技术受到了世界各国的重视,并得到了迅速的发展。但是,大气激光通信由于信号光束窄、传输距离长等原因,给通信链路的建立和保持造成了极大的困难。因此,在大气激光通信中,必须建立一套捕获、瞄准和跟踪(Acquisition、Poniting and Tracking,简称APT)系统来防止通信链路中断,从而保证整个通信过程的顺利进行。近年来,从各国激光通信的发展情况来看,ATP系统是目前激光通信中最为关键的一项技术,可以说它是进行可靠通信的前提。在APT系统中,信标光捕获是建立通信链路的第一步,其一般过程为:大气激光通信双方先搜索对方的信标光,当信标光进入视场后从对方信标光的光斑中获取对方的位置信息,然后进行方位调整,最终把天线表面积上的法线矢量调整到与光束的到达角一致。其中信标光的捕获判定以及位置信息提取属于光斑检测技术。
     本文主要的研究对象是信标光捕获过程中的光斑检测技术。文中首先综述了研究大气激光通信的意义以及国内外在激光通信中的研究进展,进而阐述了APT技术的必要性和重要性。其次,重点分析研究了APT系统中的捕获技术,在此研究基础上对可用于信标光光斑检测的几种探测器进行了分析。最后,着重分析了PSD与CCD这两种探测器在信标光光斑检测技术中的具体应用。
     光斑检测探测器的主要作用就是进行信标光的捕获判定及信标光光斑重心提取。PSD在光斑检测技术中的具体使用方法就是通过对PSD各输出引脚上的光电流进行采集以及相关运算,进行捕获判定以及光斑重心位置提取,实际上就是PSD信号的采集与处理过程。CCD采集到的是图像信息,所以使用CCD作为光斑检测探测器,在进行光斑检测过程中所涉及到的工作实际上就是对图像的处理。
     基于对PSD和CCD的原理、特性以及使用方法的分析,文中设计了PSD信号采集与处理电路以及用于信标光光斑检测的CCD图像处理软件,并且进行了仿真实验,给出了仿真实验结果。从结果中可以看出方案的可行性以及不足,可为后续课题提供参考。
The laser communication in atmosphere which use laser as an information carrier has a good application prospects and become the new direction of communication technology development because of its wide bandwidth, high data rate, good secrecy and lower power consumption. In recent year, this technology has been paid much attention by many countries, and has been developing rapidly. But, laser communication in atmosphere is much difficult to establish and maintain a communication links because of the limited width of laser beam and the long communication distance. So it is necessary to build an APT (Acquisition, Pointing and Tracking) subsystem to prevent the loss of communication signal from the failure of links. From the overview of the development of optical communication in the last two decades, we can see that APT technology is the most important technology, so APT technology is the precondition of reliable communication. In the APT system, to capture beacon is the first step in the establishment of communication links, and its general process is that First of all, both Terminals of laser communication in Atmospheric to search each other's beacon, When the beacon light into the field of view, they obtain position information from each other's Beacon spot, then Adjust the position, Finally adjust the normal vector of Antenna surface area and arrival angle of beam to the same direction.
     The main object of study in this paper is spot detection technology in the process of capture beacon. At the beginning of this paper, it reviewed the purpose of carrying out optical communication research and the result that many countries and enterprises gained, and introduced the significance and the necessity of APT. Secondly, it analyzed and researched carefully the acquisition technology in APT system, Based on this research, it analyzed several detectors that can be used to capture beacon. At the end, it analyzed especially specific application of PSD and CCD in the process of capture beacon.
     The main function of capture probe is to detect the beacon spot. Application of PSD in the process of capture beacon is that to collect photocurrent and related operations from the output pins of PSD in order to make acquisition determination and extract the location of the focus spot, actually that is process of PSD signal acquisition and processing. The information which CCD collected is images, so if use CCD as a beacon light capture detector, the related work is Image Processing.
     Based on the analysis of principles, characteristics and the methods of use of PSD and CCD, in this paper, it designed the PSD signal acquisition and processing circuit and the CCD image processing software for detecting beacon spot, and the simulation and experimental results have been given. The results can prove the feasibility and the lack of. It's the reference of follow-up subject.
引文
[1]李宏伟,赵爱新.大气激光通信技术的特点与应用[J].科技咨询导报,2007(3):6-7
    [2]王俊生,田波,崔一平.大气激光通信技术[J].电子器件,28(1),2005:28-29
    [3]张尚剑.光无线通信系统中移动终端APT技术研究[D].成都:电子科技大学,2003
    [4]胡渝,刘华.空间激光通信技术及其发展[J].电子科技大学学报,27(5),1998:453-456
    [5]Robert M.Gagliardi & Sherman Karp.光通信技术与应用[M].陈根祥,秦玉文等译.北京电子工业出版社,1998
    [6]邱昆.光纤通信导论[M].成都:成都电子科技大学出版社1999
    [7]王强.无线激光通信技术及应用[J].通信世界,2002(2):36-39
    [8]Y. Arimoto, M.Toyoshima, M.Toyoda. Preliminary Result of Laser Communication Experiment using ETS-VI[J]. SPIE,1995, vol.2381:151~158
    [9]K. Araki, Y. Arimoto, M.shikatani, et al. Performance Evaluation of Laser Communication Equipment Onboard the ETS-VI Satellite[J]. SPIE,1996, vol.2669:52~59
    [10]Y. Suzuki, K.Nakagawa, T.Jono, et al. National Space Development Agency (Japan).Current status of OICETS laser communication terminal development:development of laser diodes and sensors for OICETS program[J]. SPIE,1997, vol.2990:31~37
    [11]A.Biswas, GWilliams, K.E.Wilson, Jet Propulsion Lab. Results of the STRV-2 laser com terminal evaluation tests[J]. SPIE,1998, vol.3266:1~13
    [12]I.I.Kim, H.Hakakha, B.Riley, et al. Preliminary results of the STRV-2 satellite-to-ground laser com experiment[J]. SPIE,2000, vol.3932:21~34
    [13]Robert G.Marshalek and David L.Beglely. Lightweight, high-data-rate Laser communications terminal for low-Earth-orbit Satellite constellations[J]. SPIE,1995, vol.2381:72~82
    [14]P.F.Szajowski, GNykolak, J.J.Aubom, et al.2.4km free-space optical communication 1550nm transmission link[J]. Part of the SPIE conference on Optical Wireless Communications, Boston,1998, vol.3532:29~40
    [15]P.F.Szajowski, G.Nykolak, J.J.Auborn, et al. Free-Space optical communication 1550nm transmission link operating at Gb/s experimental results[J]. SPIE,1998, vol.3532:29~40
    [16]Muthu Jeganathan, G.Stephen Mecherle and James R. Lesh, Jet Propulsion Laboratory. Development of the Free-space Optical Communications Analysis Software[J]. SPIE,1998, vol.3266:90~98
    [17]陈媛,余成波,万文略.自由空间激光通信技术及其发展[J].重庆工学院学报,2002(3): 59-64
    [18]Correll C. A mathematical model describing the effects of Pointing and tracking error due to “mechanical noise”in coherent optical inter satellite links[J]. International Journal of Satellite Communieations,1996, vol.14:37-51
    [19]韩旭东,陈定安,李小娟,崔一平[J].无线激光通信技术,电子器件,29(2),2006:306
    [20]葛林,邱昆,阳树棕.采用EDFA的空间光通信系统模型[J].电子科技大学学报,27(3),1998:261-264
    [21]胡晟,艾勇.自由空间光通信中气象因素影响分析[J].光学与光电技术,1(3),2003:16-20
    [22]Shinhak Lee, James W. Alexander, Gerry G. Ortiz. Deep Space Acquisition, Tracking, Pointing(ATP) Technologies for Optical Communication[R]. JPL, SePtember22,1999
    [23]刘淑华.空间光通信链路光束捕获、对准、跟踪技术及数字化仿真[D].成都:电子科技大学,2002,5
    [24]蒋丽娟,朱道伟.近地实用激光大气通信系统设计[J].光通信技术,24(3),2000:220-222
    [25]John H Mc ELROY, et al. CO2laser communication systems for near-earth space applications[J]. Proc IEEE,1977, Vol.65, No.2:221~251
    [26]熊金涛,张秉华.自由空间光通信ATP地面模拟系统研制[J].电子科技大学学报,5(27),1998:474~475
    [27]Barry J D. Beam pointing error as a significant design parameter for satellite borne, free-space optical communication systems[J]. Optical Engineering,1985, Vol.27:325~333
    [28]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光学工程,1989(3):1~44
    [29]熊金涛,张秉华.空间光通信ATP系统设计分析[J].电子科技大学学报,27(5),1998:467-472
    [30]柯熙政,席晓莉.无线激光通信概论[M].北京邮电大学出版社,2004
    [31]季力.基于空间光通信ATP系统的图像处理技术研究[D].浙江:浙江大学,2003,1
    [32]赵玉鹏.自由空间激光通信系统高概率、快速捕获技术研究[D].长春:长春理工大学,2007,6
    [33]于思源,马晶,谭立英[J].提高卫星光通信扫描捕获概率的方法研究.光电子·激光,16(1)2005:57-62
    [34]Michael Scheinfeild, N.S.Kopeika. Acquisition System for Micro satellite Laser Communication in Space[J]. SPIE,2000, Vol.3932:166~175
    [35]谭立英,马晶,韩琦琦,等.空间光通信中基本振动对误码率的影响分析[J].光学技术,1999(6):22-25
    [36]尹道素,熊金涛,皮德忠.卫星光通信中平台抖动补偿技术研究[J].电子科技大学学报,27(5),1998:532-536
    [37]柯熙政,席晓莉,刘长城.大气激光通信中一种新的光束自动捕获方法[J].光通信技术,20(10),2004:39-41
    [38]蔡文贵,李永远,许振华.CCD技术及应用[M].电子工业出版社,1992
    [39]张文涛,李贤,胡渝.空间光通信探测技术中象限探测器(QD)的研究[J].量子电子学报,20(1),2003:114-117
    [40]倪飞,邓兴成,李贤.空间光通信ATP系统中光信号处理技术研究[J].激光杂志,210(4), 2000:15-16
    [41]Hausler Gerd, Schneider Gerhard. Testing optics by experimental ray tracing with a lateral effect photodiode[J]. Applied Optics,1988,27(24):5160-5164
    [42]Lu A, Yuan H, Qian C, et al. Brief introduction of straightness curvature measurement system for straight tube using tangent method and error analysis[J]. Automatic Optical Inspection for Industry SPIE, 1996, Vol.2899:180-185
    [43]袁红星,贺安之,李振华,王志兴.PSD位置特性与光斑及背景的关系研究[J].东南大学学报,29(2),1999:145-148
    [44]王占强.一维PSD信号调理电路及其应用[J].仪表技术与传感器,1997(12):25
    [45]Hamamatsu technical data. PSD (position sensitive detectors) [Z].2002:3-6
    [46]袁纵横,张文涛.空间光通信A PT探测技术中位置敏感器件(PSD)的研究[J].应用光学,28(1),2007:30-32
    [47]施隆照,黄梅珍,杨小玲,郑明学.二维位置敏感探测器及信号处理器[J].传感器技术,21(8),2002:20-22
    [48]林知木,潘宏侠.激光测试系统PSD信号处理电路的研究[J].科技情报开发与经济,15(3),2005:193-194
    [49]谢清华,王梦珂,谷安.位置敏感探测器(PSD)信号调理电路的改进[J].青岛科技大学学报(自然科学版),28(1),2007:83-85
    [50]衣彬,李忠科,张金根.二维枕形PSD信号采集与处理系统的设计[J].计算机测量与控制,15(3),2007:407-409
    [51]Analog Devices.4-Channel, simultaneous sampling, high speed,12-Bit ADC[Z].1999:4-8
    [52]马峻,李思敏.空间光通信捕获与跟踪技术[J].桂林电子工业学院学报,25(1),2005:1-6
    [53]李贤,曾广荣,徐铭.空间光通信收发端机性能分析与设计[J].电子科技大学报,1998,27(5):502-505
    [54]刘文耀.光电图像处理[M].北京:电子工业出版,2002
    [55]Pitas I. Digital image processing and algorithms and applications [M]. New York:John Wiley & Sons, Inc.,2000
    [56]李晓峰,罗彤,邓科,何俊,胡渝.采用CCD的空间光通信光斑位置提取重心算法的分析及实验[J].光通信技术,2004(6):13-15
    [57]宋坤,刘锐宁,马文强.Visual C++视频技术方案宝典[M].人民邮电出版社,2008
    [58]杨淑莹,边奠英.VC++图像处理程序设计[M].清华大学出版社,北京交通大学出版社,2005
    [59]杨旭强,冯勇,刘洪臣.一种基于HSI颜色模型的目标提取方法[J].光学技术,32(2),2006:290-292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700