1.NMDA受体NR2A和NR2B亚单位在癫痫发生过程中不同作用的研究 2.丝氨酸—苏氨酸激酶9(STK9)在大脑神经元迁移中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫病(Epilepsy)是一种危及人类健康的常见疾病,目前对癫痫病的治疗还缺乏有效手段。研究表明NMDA受体在癫痫病的产生过程中起着至关重要的作用,NMDA受体非选择性拮抗剂MK801能够抑制癫痫持续状态( Status Epilepticus SE )引起的细胞损伤和癫痫病的产生。NMDA受体由NR1和NR2两种亚基构成,NR2亚基又分为NR2A, NR2B, NR2C, NR2D四种亚单位,不同的亚单位在大脑中的分布以及在生理和病理情况下作用是不同的。本研究的目的是探讨NMDA受体NR2亚基中NR2A和NR2B亚单位在癫痫病产生过程中的不同作用。实验表明NR2A和NR2B亚单位分别与不同的信号通路相关,阻断NR2A亚单位后能够抑制兴奋性突触传递引起的BDNF表达上升,而阻断NR2B亚单位后能够抑制兴奋性突触传递引起的ERK1/2磷酸化水平的上升。在模拟人类颞叶癫痫的两种经典的动物模型-电刺激点燃(Kindling Model)和匹罗卡品诱导癫痫(Pilocarpine Model)的大鼠模型中,分别给大鼠NMDA受体非选择性抑制剂MK801,NR2A选择性抑制剂NVP-AAM077,NR2B选择性抑制剂Ifenprodil后,观察各拮抗剂对大鼠癫痫产生和癫痫持续状态对大鼠神经元的损伤是否存在差异。实验结果表明:在Kindling模型中MK801,NVP-AAM077可以延缓癫痫产生的过程,而Ifenprodil对这一过程没有明显抑制性作用。在匹罗卡品诱导癫痫的大鼠模型中,MK801、NVP-AAM077和Ifenprodil都可以保护癫痫持续状态对大鼠神经元的损伤。MK801和NVP-AAM077可以抑制自发性癫痫的产生,而Ifenprodil对此没有作用。本研究结果显示在癫痫病中NR2A和NR2B亚单位都参与了癫痫持续状态对大鼠神经元的损伤,而NR2A和NR2B亚单位在癫痫产生过程中发挥不同的作用,这可能与两种不同的亚单位激活不同基因和信号途径有关。该发现为临床研制抗癫痫的药物提供了新的靶点。
     Rett综合征((RTT, OMIM 312750)是一种严重影响儿童神经发育的遗传疾病,患者出现严重的智力低下,该疾病主要累及女性,女孩中发病率约为1/10 000~1/15 000。Rett综合征包括典型和非典型两类。最近研究表明丝氨酸-苏氨酸激酶9 (Serine Threonine Kinase 9 STK9,又称为Cyclin Dependent Kinase-Like 5 CDKL5)和非典型Rett综合征发病相关。临床筛查非典型Rett综合征时发现病人中STK9基因存在错义突变,无义突变或移码突变,造成氨基酸替代或翻译提前终止,从而使得该基因功能丧失,导致了非典型性Rett综合征,属于基因功能丧失(Loss of function)导致的遗传疾病。本研究中我们成功的从大鼠大脑cDNA文库中克隆了大鼠的STK9基因,并发现STK9基因存在两种不同形式的剪切体(STK9-S, STK9-L),不同的剪切体编码的蛋白在细胞中的分布不同:STK9-S主要分布于细胞的胞核内,STK9-L主要分布于细胞胞浆中。利用原位杂交技术发现STK9基因广泛的表达于各种组织中。在中枢神经系统STK9基因在胚胎早期就开始表达,在发育过程中逐渐增高,成年后表达水平下降。在胚胎期利用RNAi基因干扰技术结合子宫内胚胎电转急性敲减STK9基因后,发现皮层神经元的迁移受到影响,提示STK9基因可能在皮层神经元的迁移过程中起着重要的作用。本研究为今后进一步了解STK9基因在非典型性Rett综合征中致病机制打下了良好的基础。
Fleeting activation of NMDA receptors (NMDARs) induces long-term modification of synaptic connections and refinement of neuronal circuits, which may underlie learning and memory and contribute to pathogenesis of a diversity of neurological diseases, including epilepsy. Here, we found that NR2A and NR2B subunit-containing NMDARs were coupled to distinct intracellular signaling, resulting in differential BDNF expression and ERK1/2 activation. Selective activation of NR2A-containing NMDARs increased BDNF gene expression. Activation of NR2B-containing NMDARs led to ERK1/2 phosphorylation. Furthermore, selectively blocking NR2A-containing NMDARs impaired epileptogenesis and the development of mossy fiber sprouting in the kindling and pilocarpine rat models of limbic epilepsy, while inhibiting NR2B-containing NMDARs had no effects in epileptogenesis and mossy fiber sprouting. Interestingly, blocking either NR2A- or NR2B-containing NMDARs decreased status epilepticus-induced neuronal cell death. The specific requirement of NR2A and its downstream signaling for epileptogenesis implicates attractive new targets for the development of drugs that prevent epilepsy in patients with brain injury.
     Mutations in the CDKL5 gene (Cyclin Dependent Kinase-Like 5, also named as STK9, Serine Threonine Kinase 9) are associated with early-onset mental retardation and severe neurological symptoms. The clinical features meet the criteria for the early-onset of Rett syndrome, and suggest that CDKL5/STK9 plays important roles in brain development. Here we show that CDKL5/STK9 regulates neuronal migration. CDKL5/STK9 mRNA and protein were highly expressed in the developing rat brain and decreased rapidly in the adulthood. In vivo reduced amounts of STK9 caused inhibition of cortical neuronal migration. Our findings suggest that STK9 plays a critical role in neuronal migration during corticogenesis. Our studies together with the clinical findings shed light on the critical roles of STK9 in the atypical Rett syndrome.
引文
[1] Lowenstein, D. H. and Alldredge, B. K. Status epilepticus. N Engl J Med 1998; 338:970-976.
    [2] Chang, B. S. and Lowenstein, D. H. Epilepsy. N Engl J Med 2003; 349:1257-1266.
    [3] Sylaja, P. N. and Radhakrishnan, K. Problems and pitfalls in developing countries. Epilepsia 2003; 44 Suppl 1:48-50.
    [4] Boling, W., Longoni, N., Palade, A., Moran, M. and Brick, J. Surgery for temporal lobe epilepsy. W V Med J 2006; 102:18-21.
    [5] Regis, J., Bartolomei, J. and Chauvel, P. Epilepsy. Prog Neurol Surg 2007; 20:267-278.
    [6] Liu, Y., Wong, T. P., Aarts, M., Rooyakkers, A., Liu, L., Lai, T. W., Wu, D. C., Lu, J., Tymianski, M., Craig, A. M. and Wang, Y. T. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 2007; 27:2846-2857.
    [7] Hara, M. R. and Snyder, S. H. Cell signaling and neuronal death. Annu Rev Pharmacol Toxicol 2007; 47:117-141.
    [8] Tsai, G. and Coyle, J. T. The role of glutamatergic neurotransmission in the pathophysiology of alcoholism. Annu Rev Med 1998; 49:173-184.
    [9] Shin, C. and McNamara, J. O. Mechanism of epilepsy. Annu Rev Med 1994; 45:379-389.
    [10] Ormandy, G. C., Jope, R. S. and Snead, O. C., 3rd Anticonvulsant actions of MK-801 on the lithium-pilocarpine model of status epilepticus in rats. Exp Neurol 1989; 106:172-180.
    [11] Stafstrom, C. E., Holmes, G. L. and Thompson, J. L. MK801 pretreatment reduces kainic acid-induced spontaneous seizures in prepubescent rats. Epilepsy Res 1993; 14:41-48.
    [12] Rice, A. C. and DeLorenzo, R. J. NMDA receptor activation during statusepilepticus is required for the development of epilepsy. Brain Res 1998; 782:240-247.
    [13] Sutula, T., Cascino, G., Cavazos, J., Parada, I. and Ramirez, L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989; 26:321-330.
    [14] Sutula, T., Koch, J., Golarai, G., Watanabe, Y. and McNamara, J. O. NMDA receptor dependence of kindling and mossy fiber sprouting: evidence that the NMDA receptor regulates patterning of hippocampal circuits in the adult brain. J Neurosci 1996; 16:7398-7406.
    [15] Isackson, P. J., Huntsman, M. M., Murray, K. D. and Gall, C. M. BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 1991; 6:937-948.
    [16] Danzer, S. C., He, X. and McNamara, J. O. Ontogeny of seizure-induced increases in BDNF immunoreactivity and TrkB receptor activation in rat hippocampus. Hippocampus 2004; 14:345-355.
    [17] He, X. P., Kotloski, R., Nef, S., Luikart, B. W., Parada, L. F. and McNamara, J. O. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron 2004; 43:31-42.
    [18] Binder, D. K., Routbort, M. J., Ryan, T. E., Yancopoulos, G. D. and McNamara, J. O. Selective inhibition of kindling development by intraventricular administration of TrkB receptor body. J Neurosci 1999; 19:1424-1436.
    [19] Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B. and Seeburg, P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994; 12:529-540.
    [20] Akazawa, C., Shigemoto, R., Bessho, Y., Nakanishi, S. and Mizuno, N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 1994; 347:150-160.
    [21] Guilarte, T. R. and McGlothan, J. L. Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure. Brain Res 1998; 790:98-107.
    [22] Tovar, K. R. and Westbrook, G. L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 1999; 19:4180-4188.
    [23] Liu, L., Wong, T. P., Pozza, M. F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y. P. and Wang, Y. T. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 2004; 304:1021-1024.
    [24] Massey, P. V., Johnson, B. E., Moult, P. R., Auberson, Y. P., Brown, M. W., Molnar, E., Collingridge, G. L. and Bashir, Z. I. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 2004; 24:7821-7828.
    [25] Takagi, N., Shinno, K., Teves, L., Bissoon, N., Wallace, M. C. and Gurd, J. W. Transient ischemia differentially increases tyrosine phosphorylation of NMDA receptor subunits 2A and 2B. J Neurochem 1997; 69:1060-1065.
    [26] Sprengel, R., Suchanek, B., Amico, C., Brusa, R., Burnashev, N., Rozov, A., Hvalby, O., Jensen, V., Paulsen, O., Andersen, P., Kim, J. J., Thompson, R. F., Sun, W., Webster, L. C., Grant, S. G., Eilers, J., Konnerth, A., Li, J., McNamara, J. O. and Seeburg, P. H. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 1998; 92:279-289.
    [27] Racine, R., Okujava, V. and Chipashvili, S. Modification of seizure activity by electrical stimulation. 3. Mechanisms. Electroencephalogr Clin Neurophysiol 1972; 32:295-299.
    [28] Williams, K. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 1993; 44:851-859.
    [29]Priestley, T., Laughton, P., Myers, J., Le Bourdelles, B., Kerby, J. and Whiting, P. J. Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Mol Pharmacol 1995; 48:841-848.
    [30] Auberson, Y. P., Allgeier, H., Bischoff, S., Lingenhoehl, K., Moretti, R. and Schmutz, M. 5-Phosphonomethylquinoxalinediones as competitive NMDA receptorantagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg Med Chem Lett 2002; 12:1099-1102.
    [31] Berberich, S., Punnakkal, P., Jensen, V., Pawlak, V., Seeburg, P. H., Hvalby, O. and Kohr, G. Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 2005; 25:6907-6910.
    [32] Cull-Candy, S., Brickley, S. and Farrant, M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 2001; 11:327-335.
    [33] Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N. and Jan, L. Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 1994; 368:144-147.
    [34] Vaha-Koskela, M. J., Tuittila, M. T., Nygardas, P. T., Nyman, J. K., Ehrengruber, M. U., Renggli, M. and Hinkkanen, A. E. A novel neurotropic expression vector based on the avirulent A7(74) strain of Semliki Forest virus. J Neurovirol 2003; 9:1-15.
    [35] Lundstrom, K. and Ehrengruber, M. U. Semliki Forest virus (SFV) vectors in neurobiology and gene therapy. Methods Mol Med 2003; 76:503-523.
    [36] Ehrengruber, M. U. Alphaviral vectors for gene transfer into neurons. Mol Neurobiol 2002; 26:183-201.
    [37] Ehrengruber, M. U., Hennou, S., Bueler, H., Naim, H. Y., Deglon, N. and Lundstrom, K. Gene transfer into neurons from hippocampal slices: comparison of recombinant Semliki Forest Virus, adenovirus, adeno-associated virus, lentivirus, and measles virus. Mol Cell Neurosci 2001; 17:855-871.
    [38] Rosenthal, A., Goeddel, D. V., Nguyen, T., Lewis, M., Shih, A., Laramee, G. R., Nikolics, K. and Winslow, J. W. Primary structure and biological activity of a novel human neurotrophic factor. Neuron 1990; 4:767-773.
    [39] Hohn, A., Leibrock, J., Bailey, K. and Barde, Y. A. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 1990; 344:339-341.
    [40] Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakowski, P., Thoenen, H. and Barde, Y. A. Molecular cloning and expression of brain-derivedneurotrophic factor. Nature 1989; 341:149-152.
    [41] Hardingham, G. E., Fukunaga, Y. and Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002; 5:405-414.
    [42] Marty, S., Wehrle, R. and Sotelo, C. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J Neurosci 2000; 20:8087-8095.
    [43] Agell, N., Bachs, O., Rocamora, N. and Villalonga, P. Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin. Cell Signal 2002; 14:649-654.
    [44] Hardingham, G. E., Arnold, F. J. and Bading, H. A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat Neurosci 2001; 4:565-566.
    [45] McNamara, J. O., Russell, R. D., Rigsbee, L. and Bonhaus, D. W. Anticonvulsant and antiepileptogenic actions of MK-801 in the kindling and electroshock models. Neuropharmacology 1988; 27:563-568.
    [46] Gilbert, M. E. The NMDA-receptor antagonist, MK-801, suppresses limbic kindling and kindled seizures. Brain Res 1988; 463:90-99.
    [47] Henshall, D. C. and Simon, R. P. Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 2005; 25:1557-1572.
    [48] Houser, C. R., Miyashiro, J. E., Swartz, B. E., Walsh, G. O., Rich, J. R. and Delgado-Escueta, A. V. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 1990; 10:267-282.
    [49] Wenzel, A., Fritschy, J. M., Mohler, H. and Benke, D. NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem 1997; 68:469-478.
    [50] Yourick, D. L., Repasi, R. T., Rittase, W. B., Staten, L. D. and Meyerhoff, J. L. Ifenprodil and arcaine alter amygdala-kindling development. Eur J Pharmacol 1999; 371:147-152.
    [51] Wang, J., Liu, S., Fu, Y., Wang, J. H. and Lu, Y. Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 2003; 6:1039-1047.
    [52] O'Mahony, S., Harkany, T., Rensink, A. A., Abraham, I., De Jong, G. I., Varga, J. L., Zarandi, M., Penke, B., Nyakas, C., Luiten, P. G. and Leonard, B. E. Beta-amyloid-induced cholinergic denervation correlates with enhanced nitric oxide synthase activity in rat cerebral cortex: reversal by NMDA receptor blockade. Brain Res Bull 1998; 45:405-411.
    [53] Picconi, B., Tortiglione, A., Barone, I., Centonze, D., Gardoni, F., Gubellini, P., Bonsi, P., Pisani, A., Bernardi, G., Di Luca, M. and Calabresi, P. NR2B subunit exerts a critical role in postischemic synaptic plasticity. Stroke 2006; 37:1895-1901.
    [54]Tongiorgi, E., Armellin, M., Giulianini, P. G., Bregola, G., Zucchini, S., Paradiso, B., Steward, O., Cattaneo, A. and Simonato, M. Brain-derived neurotrophic factor mRNA and protein are targeted to discrete dendritic laminas by events that trigger epileptogenesis. J Neurosci 2004; 24:6842-6852.
    [55] Laroche, S. M. A new look at the second-generation antiepileptic drugs: a decade of experience. Neurologist 2007; 13:133-139.
    [56] Kohl, B. K. and Dannhardt, G. The NMDA receptor complex: a promising target for novel antiepileptic strategies. Curr Med Chem 2001; 8:1275-1289.
    [1] Chadwick, L. H. and Wade, P. A. MeCP2 in Rett syndrome: transcriptional repressor or chromatin architectural protein? Curr Opin Genet Dev 2007; 17:121-125.
    [2] Hagberg, B., Goutieres, F., Hanefeld, F., Rett, A. and Wilson, J. Rett syndrome: criteria for inclusion and exclusion. Brain Dev 1985; 7:372-373.
    [3] Amir, R. E., Van den Veyver, I. B., Schultz, R., Malicki, D. M., Tran, C. Q., Dahle, E. J., Philippi, A., Timar, L., Percy, A. K., Motil, K. J., Lichtarge, O., Smith, E. O., Glaze, D. G. and Zoghbi, H. Y. Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol 2000; 47:670-679.
    [4] Moser, S. J., Weber, P. and Lutschg, J. Rett syndrome: clinical and electrophysiologic aspects. Pediatr Neurol 2007; 36:95-100.
    [5] Anvret, M. and Zhang, Z. P. Current status of genetic research in Rett syndrome. Neuropediatrics 1995; 26:88-89.
    [6] Jan, M. M., Dooley, J. M. and Gordon, K. E. Male Rett syndrome variant: application of diagnostic criteria. Pediatr Neurol 1999; 20:238-240.
    [7] Shahbazian, M. D. and Zoghbi, H. Y. Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am J Hum Genet 2002; 71:1259-1272.
    [8] Williamson, S. L. and Christodoulou, J. Rett syndrome: new clinical and molecular insights. Eur J Hum Genet 2006; 14:896-903.
    [9] Wenk, G. L. Rett syndrome: neurobiological changes underlying specific symptoms. Prog Neurobiol 1997; 51:383-391.
    [10] Reiss, A. L., Faruque, F., Naidu, S., Abrams, M., Beaty, T., Bryan, R. N. and Moser, H. Neuroanatomy of Rett syndrome: a volumetric imaging study. Ann Neurol 1993; 34:227-234.
    [11] Jellinger, K. and Seitelberger, F. Neuropathology of Rett syndrome. Am J Med Genet Suppl 1986; 1:259-288.
    [12] Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U. and Zoghbi, H. Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23:185-188.
    [13] Van den Veyver, I. B. and Zoghbi, H. Y. Methyl-CpG-binding protein 2 mutations in Rett syndrome. Curr Opin Genet Dev 2000; 10:275-279.
    [14] Bienvenu, T., Carrie, A., de Roux, N., Vinet, M. C., Jonveaux, P., Couvert, P., Villard, L., Arzimanoglou, A., Beldjord, C., Fontes, M., Tardieu, M. and Chelly, J. MECP2 mutations account for most cases of typical forms of Rett syndrome. Hum Mol Genet 2000; 9:1377-1384.
    [15]Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., Fan, G. and Sun, Y. E. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003; 302:890-893.
    [16] Nan, X., Campoy, F. J. and Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997; 88:471-481.
    [17] Lesca, G., Bernard, V., Bozon, M., Touraine, R., Gerard, D., Edery, P. and Calender, A. Mutation screening of the MECP2 gene in a large cohort of 613 fragile-X negative patients with mental retardation. Eur J Med Genet 2007; 50:200-208.
    [18] Chunshu, Y., Endoh, K., Soutome, M., Kawamura, R. and Kubota, T. A patient with classic Rett syndrome with a novel mutation in MECP2 exon 1. Clin Genet 2006; 70:530-531.
    [19] Chen, R. Z., Akbarian, S., Tudor, M. and Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 2001; 27:327-331.
    [20] Archer, H. L., Whatley, S. D., Evans, J. C., Ravine, D., Huppke, P., Kerr, A., Bunyan, D., Kerr, B., Sweeney, E., Davies, S. J., Reardon, W., Horn, J., MacDermot, K. D., Smith, R. A., Magee, A., Donaldson, A., Crow, Y., Hermon, G., Miedzybrodzka, Z., Cooper, D. N., Lazarou, L., Butler, R., Sampson, J., Pilz, D. T., Laccone, F. and Clarke, A. J. Gross rearrangements of the MECP2 gene are found in both classical and atypical Rett syndrome patients. J Med Genet 2006; 43:451-456.
    [21] Weaving, L. S., Ellaway, C. J., Gecz, J. and Christodoulou, J. Rett syndrome: clinical review and genetic update. J Med Genet 2005; 42:1-7.
    [22] Akesson, H. O., Hagberg, B. and Wahlstrom, J. Rett syndrome, classical andatypical: genealogical support for common origin. J Med Genet 1996; 33:764-766.
    [23] Montini, E., Andolfi, G., Caruso, A., Buchner, G., Walpole, S. M., Mariani, M., Consalez, G., Trump, D., Ballabio, A. and Franco, B. Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region. Genomics 1998; 51:427-433.
    [24] Weaving, L. S., Christodoulou, J., Williamson, S. L., Friend, K. L., McKenzie, O. L., Archer, H., Evans, J., Clarke, A., Pelka, G. J., Tam, P. P., Watson, C., Lahooti, H., Ellaway, C. J., Bennetts, B., Leonard, H. and Gecz, J. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet 2004; 75:1079-1093.
    [25] Tao, J., Van Esch, H., Hagedorn-Greiwe, M., Hoffmann, K., Moser, B., Raynaud, M., Sperner, J., Fryns, J. P., Schwinger, E., Gecz, J., Ropers, H. H. and Kalscheuer, V. M. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet 2004; 75:1149-1154.
    [26] Scala, E., Ariani, F., Mari, F., Caselli, R., Pescucci, C., Longo, I., Meloni, I., Giachino, D., Bruttini, M., Hayek, G., Zappella, M. and Renieri, A. CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J Med Genet 2005; 42:103-107.
    [27] Mari, F., Azimonti, S., Bertani, I., Bolognese, F., Colombo, E., Caselli, R., Scala, E., Longo, I., Grosso, S., Pescucci, C., Ariani, F., Hayek, G., Balestri, P., Bergo, A., Badaracco, G., Zappella, M., Broccoli, V., Renieri, A., Kilstrup-Nielsen, C. and Landsberger, N. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 2005; 14:1935-1946.
    [28] Evans, J. C., Archer, H. L., Colley, J. P., Ravn, K., Nielsen, J. B., Kerr, A., Williams, E., Christodoulou, J., Gecz, J., Jardine, P. E., Wright, M. J., Pilz, D. T., Lazarou, L., Cooper, D. N., Sampson, J. R., Butler, R., Whatley, S. D. and Clarke, A. J. Early onset seizures and Rett-like features associated with mutations in CDKL5. Eur J Hum Genet 2005; 13:1113-1120.
    [29] Buoni, S., Zannolli, R., Colamaria, V., Macucci, F., di Bartolo, R. M., Corbini, L., Orsi, A., Zappella, M. and Hayek, J. Myoclonic encephalopathy in the CDKL5 gene mutation. Clin Neurophysiol 2006; 117:223-227.
    [30] Archer, H. L., Evans, J., Edwards, S., Colley, J., Newbury-Ecob, R., O'Callaghan, F., Huyton, M., O'Regan, M., Tolmie, J., Sampson, J., Clarke, A. and Osborne, J. CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet 2006; 43:729-734.
    [31] Saito, T. and Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 2001; 240:237-246.
    [32] des Portes, V., Pinard, J. M., Billuart, P., Vinet, M. C., Koulakoff, A., Carrie, A., Gelot, A., Dupuis, E., Motte, J., Berwald-Netter, Y., Catala, M., Kahn, A., Beldjord, C. and Chelly, J. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 1998; 92:51-61.
    [33] Ayala, R., Shu, T. and Tsai, L. H. Trekking across the brain: the journey of neuronal migration. Cell 2007; 128:29-43.
    [34] Hirotsune, S., Fleck, M. W., Gambello, M. J., Bix, G. J., Chen, A., Clark, G. D., Ledbetter, D. H., McBain, C. J. and Wynshaw-Boris, A. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 1998; 19:333-339.
    [35] Gupta, A., Tsai, L. H. and Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nat Rev Genet 2002; 3:342-355.
    [36] Marin, O. and Rubenstein, J. L. Cell migration in the forebrain. Annu Rev Neurosci 2003; 26:441-483.
    [37]Bai, J., Ramos, R. L., Ackman, J. B., Thomas, A. M., Lee, R. V. and LoTurco, J. J. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 2003; 6:1277-1283.
    [38] Takahashi, M., Sato, K., Nomura, T. and Osumi, N. Manipulating gene expressions by electroporation in the developing brain of mammalian embryos. Differentiation 2002; 70:155-162.
    [39] Tabata, H. and Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 2001; 103:865-872.
    [40] Kriegstein, A. R. and Noctor, S. C. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 2004; 27:392-399.
    [41] Tsai, L. H. and Gleeson, J. G. Nucleokinesis in neuronal migration. Neuron 2005; 46:383-388.
    [42] Rivas, R. J. and Hatten, M. E. Motility and cytoskeletal organization of migrating cerebellar granule neurons. J Neurosci 1995; 15:981-989.
    [43] Li, M. R., Pan, H., Bao, X. H., Zhang, Y. Z. and Wu, X. R. MECP2 and CDKL5 gene mutation analysis in Chinese patients with Rett syndrome. J Hum Genet 2007; 52:38-47.
    [44] Nectoux, J., Heron, D., Tallot, M., Chelly, J. and Bienvenu, T. Maternal origin of a novel C-terminal truncation mutation in CDKL5 causing a severe atypical form of Rett syndrome. Clin Genet 2006; 70:29-33.
    [45] Lin, C., Franco, B. and Rosner, M. R. CDKL5/Stk9 kinase inactivation is associated with neuronal developmental disorders. Hum Mol Genet 2005; 14:3775-3786.
    [46] Kato, M., Kimura, T., Lin, C., Ito, A., Kodama, S., Morikawa, T., Soga, T. and Hayasaka, K. A novel mutation of the doublecortin gene in Japanese patients with X-linked lissencephaly and subcortical band heterotopia. Hum Genet 1999; 104:341-344.
    [47] Gleeson, J. G., Lin, P. T., Flanagan, L. A. and Walsh, C. A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 1999; 23:257-271.
    [48] Francis, F., Koulakoff, A., Boucher, D., Chafey, P., Schaar, B., Vinet, M. C., Friocourt, G., McDonnell, N., Reiner, O., Kahn, A., McConnell, S. K., Berwald-Netter, Y., Denoulet, P. and Chelly, J. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 1999; 23:247-256.
    [49] Gambello, M. J., Darling, D. L., Yingling, J., Tanaka, T., Gleeson, J. G. and Wynshaw-Boris, A. Multiple dose-dependent effects of Lis1 on cerebral cortical development. J Neurosci 2003; 23:1719-1729.
    [50] Sasaki, S., Mori, D., Toyo-oka, K., Chen, A., Garrett-Beal, L., Muramatsu, M., Miyagawa, S., Hiraiwa, N., Yoshiki, A., Wynshaw-Boris, A. and Hirotsune, S. Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality. Mol Cell Biol 2005; 25:7812-7827.
    [1] Mari, F., Azimonti, S., Bertani, I., Bolognese, F., Colombo, E., Caselli, R., Scala, E., Longo, I., Grosso, S., Pescucci, C., Ariani, F., Hayek, G., Balestri, P., Bergo, A., Badaracco, G., Zappella, M., Broccoli, V., Renieri, A., Kilstrup-Nielsen, C. and Landsberger, N. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 2005; 14:1935-1946.
    [2] Rickmann, M. and Wolff, J. R. Differentiation of 'preplate' neurons in the pallium of the rat. Bibl Anat 1981; 142-146.
    [3] Bielas, S., Higginbotham, H., Koizumi, H., Tanaka, T. and Gleeson, J. G. Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu Rev Cell Dev Biol 2004; 20:593-618.
    [4] Ayala, R., Shu, T. and Tsai, L. H. Trekking across the brain: the journey of neuronal migration. Cell 2007; 128:29-43.
    [5] Gupta, A., Tsai, L. H. and Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nat Rev Genet 2002; 3:342-355.
    [6] Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. and Pearlman, A. L. Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 2001; 4:143-150.
    [7] Marin, O. and Rubenstein, J. L. Cell migration in the forebrain. Annu Rev Neurosci 2003; 26:441-483.
    [8] Kriegstein, A. R. and Noctor, S. C. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 2004; 27:392-399.
    [9] Tsai, L. H. and Gleeson, J. G. Nucleokinesis in neuronal migration. Neuron 2005; 46:383-388.
    [10] Schaar, B. T. and McConnell, S. K. Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 2005; 102:13652-13657.
    [11] Rivas, R. J. and Hatten, M. E. Motility and cytoskeletal organization of migrating cerebellar granule neurons. J Neurosci 1995; 15:981-989.
    [12] Lambert de Rouvroit, C. and Goffinet, A. M. Neuronal migration. Mech Dev 2001; 105:47-56.
    [13] Dehmelt, L. and Halpain, S. Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol 2004; 58:18-33.
    [14] Dhavan, R. and Tsai, L. H. A decade of CDK5. Nat Rev Mol Cell Biol 2001; 2:749-759.
    [15] Luo, L. Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 2000; 1:173-180.
    [16]Stossel, T. P., Condeelis, J., Cooley, L., Hartwig, J. H., Noegel, A., Schleicher, M. and Shapiro, S. S. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2001; 2:138-145.
    [17] Loo, D. T., Kanner, S. B. and Aruffo, A. Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction. J Biol Chem 1998; 273:23304-23312.
    [18] Anton, E. S., Kreidberg, J. A. and Rakic, P. Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 1999; 22:277-289.
    [19] Vadlamudi, R. K., Li, F., Adam, L., Nguyen, D., Ohta, Y., Stossel, T. P. and Kumar, R. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 2002; 4:681-690.
    [20] Nagano, T., Yoneda, T., Hatanaka, Y., Kubota, C., Murakami, F. and Sato, M. Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nat Cell Biol 2002; 4:495-501.
    [21] Bear, J. E., Loureiro, J. J., Libova, I., Fassler, R., Wehland, J. and Gertler, F. B. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 2000; 101:717-728.
    [22] Goh, K. L., Cai, L., Cepko, C. L. and Gertler, F. B. Ena/VASP proteins regulate cortical neuronal positioning. Curr Biol 2002; 12:565-569.
    [23] Bellion, A., Baudoin, J. P., Alvarez, C., Bornens, M. and Metin, C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 2005; 25:5691-5699.
    [24] Tullio, A. N., Bridgman, P. C., Tresser, N. J., Chan, C. C., Conti, M. A., Adelstein, R. S. and Hara, Y. Structural abnormalities develop in the brain after ablation of the gene encoding nonmuscle myosin II-B heavy chain. J Comp Neurol 2001; 433:62-74.
    [25] Ma, X., Kawamoto, S., Hara, Y. and Adelstein, R. S. A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons. Mol Biol Cell 2004; 15:2568-2579.
    [26] Avila, J., Dominguez, J. and Diaz-Nido, J. Regulation of microtubule dynamics by microtubule-associated protein expression and phosphorylation during neuronal development. Int J Dev Biol 1994; 38:13-25.
    [27] Teng, J., Takei, Y., Harada, A., Nakata, T., Chen, J. and Hirokawa, N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 2001; 155:65-76.
    [28] Takei, Y., Teng, J., Harada, A. and Hirokawa, N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 2000; 150:989-1000.
    [29] Ozmen, M., Yilmaz, Y., Caliskan, M., Minareci, O. and Aydinli, N. Clinical features of 21 patients with lissencephaly type I (agyria-pachygyria). Turk J Pediatr 2000; 42:210-214.
    [30] Hirotsune, S., Fleck, M. W., Gambello, M. J., Bix, G. J., Chen, A., Clark, G. D., Ledbetter, D. H., McBain, C. J. and Wynshaw-Boris, A. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 1998; 19:333-339.
    [31] Sapir, T., Elbaum, M. and Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. Embo J 1997; 16:6977-6984.
    [32] Mesngon, M. T., Tarricone, C., Hebbar, S., Guillotte, A. M., Schmitt, E. W., Lanier, L., Musacchio, A., King, S. J. and Smith, D. S. Regulation of cytoplasmic dynein ATPase by Lis1. J Neurosci 2006; 26:2132-2139.
    [33] Hatten, M. E. Central nervous system neuronal migration. Annu Rev Neurosci 1999; 22:511-539.
    [34] Bai, J., Ramos, R. L., Ackman, J. B., Thomas, A. M., Lee, R. V. and LoTurco, J. J. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 2003; 6:1277-1283.
    [35] Deuel, T. A., Liu, J. S., Corbo, J. C., Yoo, S. Y., Rorke-Adams, L. B. and Walsh, C. A. Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth. Neuron 2006; 49:41-53.
    [36] Koizumi, H., Tanaka, T. and Gleeson, J. G. Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron 2006; 49:55-66.
    [37] Chunshu, Y., Endoh, K., Soutome, M., Kawamura, R. and Kubota, T. A patient with classic Rett syndrome with a novel mutation in MECP2 exon 1. Clin Genet 2006; 70:530-531.
    [38] Taylor, K. R., Holzer, A. K., Bazan, J. F., Walsh, C. A. and Gleeson, J. G. Patient mutations in doublecortin define a repeated tubulin-binding domain. J Biol Chem 2000; 275:34442-34450.
    [39] Caspi, M., Atlas, R., Kantor, A., Sapir, T. and Reiner, O. Interaction between LIS1 and doublecortin, two lissencephaly gene products. Hum Mol Genet 2000; 9:2205-2213.
    [40] Kholmanskikh, S. S., Dobrin, J. S., Wynshaw-Boris, A., Letourneau, P. C. and Ross, M. E. Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J Neurosci 2003; 23:8673-8681.
    [41]Kholmanskikh, S. S., Koeller, H. B., Wynshaw-Boris, A., Gomez, T., Letourneau, P. C. and Ross, M. E. Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat Neurosci 2006; 9:50-57.
    [42] Hirai, S., Kawaguchi, A., Hirasawa, R., Baba, M., Ohnishi, T. and Ohno, S. MAPK-upstream protein kinase (MUK) regulates the radial migration of immature neurons in telencephalon of mouse embryo. Development 2002; 129:4483-4495.
    [43] Kawauchi, T., Chihama, K., Nabeshima, Y. and Hoshino, M. Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat Cell Biol 2006; 8:17-26.
    [44] Konno, D., Yoshimura, S., Hori, K., Maruoka, H. and Sobue, K. Involvement of the phosphatidylinositol 3-kinase/rac1 and cdc42 pathways in radial migration of cortical neurons. J Biol Chem 2005; 280:5082-5088.
    [45] Simo, S., Pujadas, L., Segura, M. F., La Torre, A., Del Rio, J. A., Urena, J. M., Comella, J. X. and Soriano, E. Reelin induces the detachment of postnatal subventricular zone cells and the expression of the Egr-1 through Erk1/2 activation. Cereb Cortex 2007; 17:294-303.
    [46] Ohshima, T., Ward, J. M., Huh, C. G., Longenecker, G., Veeranna, Pant, H. C., Brady, R. O., Martin, L. J. and Kulkarni, A. B. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 1996; 93:11173-11178.
    [47]Kwon, Y. T. and Tsai, L. H. A novel disruption of cortical development in p35(-/-) mice distinct from reeler. J Comp Neurol 1998; 395:510-522.
    [48] Humbert, S., Dhavan, R. and Tsai, L. p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J Cell Sci 2000; 113 ( Pt 6):975-983.
    [49] Gilmore, E. C., Ohshima, T., Goffinet, A. M., Kulkarni, A. B. and Herrup, K. Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 1998; 18:6370-6377.
    [50] Chae, T., Kwon, Y. T., Bronson, R., Dikkes, P., Li, E. and Tsai, L. H. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 1997; 18:29-42.
    [51] Kato, G. and Maeda, S. Neuron-specific Cdk5 kinase is responsible for mitosis-independent phosphorylation of c-Src at Ser75 in human Y79 retinoblastoma cells. J Biochem (Tokyo) 1999; 126:957-961.
    [52] Kawauchi, T., Chihama, K., Nishimura, Y. V., Nabeshima, Y. and Hoshino, M. MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK. Biochem Biophys Res Commun 2005; 331:50-55.
    [53] Keshvara, L., Magdaleno, S., Benhayon, D. and Curran, T. Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of Reelin signaling. J Neurosci 2002; 22:4869-4877.
    [54] Takahashi, S., Saito, T., Hisanaga, S., Pant, H. C. and Kulkarni, A. B. Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules. J Biol Chem 2003; 278:10506-10515.
    [55] Tanaka, T., Serneo, F. F., Tseng, H. C., Kulkarni, A. B., Tsai, L. H. and Gleeson, J. G. Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron 2004; 41:215-227.
    [56] Xie, Z., Sanada, K., Samuels, B. A., Shih, H. and Tsai, L. H. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 2003; 114:469-482.
    [57] Tessier-Lavigne, M. and Goodman, C. S. The molecular biology of axon guidance. Science 1996; 274:1123-1133.
    [58] Serafini, T., Colamarino, S. A., Leonardo, E. D., Wang, H., Beddington, R., Skarnes, W. C. and Tessier-Lavigne, M. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 1996; 87:1001-1014.
    [59] Yee, K. T., Simon, H. H., Tessier-Lavigne, M. and O'Leary, D. M. Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 1999; 24:607-622.
    [60] Alcantara, S., Ruiz, M., De Castro, F., Soriano, E. and Sotelo, C. Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development 2000; 127:1359-1372.
    [61]Del Rio, J. A., Gonzalez-Billault, C., Urena, J. M., Jimenez, E. M., Barallobre, M. J., Pascual, M., Pujadas, L., Simo, S., La Torre, A., Wandosell, F., Avila, J. and Soriano, E. MAP1B is required for Netrin 1 signaling in neuronal migration and axonal guidance. Curr Biol 2004; 14:840-850.
    [62] Wong, K., Ren, X. R., Huang, Y. Z., Xie, Y., Liu, G., Saito, H., Tang, H., Wen, L., Brady-Kalnay, S. M., Mei, L., Wu, J. Y., Xiong, W. C. and Rao, Y. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 2001; 107:209-221.
    [63] Marin, O. and Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2001; 2:780-790.
    [64] Bagri, A. and Tessier-Lavigne, M. Neuropilins as Semaphorin receptors: in vivo functions in neuronal cell migration and axon guidance. Adv Exp Med Biol 2002; 515:13-31.
    [65] Kruger, R. P., Aurandt, J. and Guan, K. L. Semaphorins command cells to move. Nat Rev Mol Cell Biol 2005; 6:789-800.
    [66] Uchida, Y., Ohshima, T., Sasaki, Y., Suzuki, H., Yanai, S., Yamashita, N., Nakamura, F., Takei, K., Ihara, Y., Mikoshiba, K., Kolattukudy, P., Honnorat, J. and Goshima, Y. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylatingmechanism underlying axon guidance and Alzheimer's disease. Genes Cells 2005; 10:165-179.
    [67]Behar, T. N., Smith, S. V., Kennedy, R. T., McKenzie, J. M., Maric, I. and Barker, J. L. GABA(B) receptors mediate motility signals for migrating embryonic cortical cells. Cereb Cortex 2001; 11:744-753.
    [68] Borghesani, P. R., Peyrin, J. M., Klein, R., Rubin, J., Carter, A. R., Schwartz, P. M., Luster, A., Corfas, G. and Segal, R. A. BDNF stimulates migration of cerebellar granule cells. Development 2002; 129:1435-1442.
    [69] Behar, T. N., Dugich-Djordjevic, M. M., Li, Y. X., Ma, W., Somogyi, R., Wen, X., Brown, E., Scott, C., McKay, R. D. and Barker, J. L. Neurotrophins stimulate chemotaxis of embryonic cortical neurons. Eur J Neurosci 1997; 9:2561-2570.
    [70] Medina, D. L., Sciarretta, C., Calella, A. M., Von Bohlen Und Halbach, O., Unsicker, K. and Minichiello, L. TrkB regulates neocortex formation through the Shc/PLCgamma-mediated control of neuronal migration. Embo J 2004; 23:3803-3814.
    [71]Komuro, H. and Rakic, P. Modulation of neuronal migration by NMDA receptors. Science 1993; 260:95-97.
    [72] Komuro, H. and Rakic, P. Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J Neurobiol 1998; 37:110-130.
    [73]Conover, J. C., Doetsch, F., Garcia-Verdugo, J. M., Gale, N. W., Yancopoulos, G. D. and Alvarez-Buylla, A. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 2000; 3:1091-1097.
    [74] Hu, H. Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat Neurosci 2001; 4:695-701.
    [75] Rice, D. S. and Curran, T. Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 2001; 24:1005-1039.
    [76] Magdaleno, S., Keshvara, L. and Curran, T. Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 2002; 33:573-586.
    [77] Forster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Muller, U. and Frotscher, M. Reelin, Disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci U S A 2002; 99:13178-13183.
    [78] Hartfuss, E., Forster, E., Bock, H. H., Hack, M. A., Leprince, P., Luque, J. M., Herz, J., Frotscher, M. and Gotz, M. Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 2003; 130:4597-4609.
    [79] Hunter-Schaedle, K. E. Radial glial cell development and transformation are disturbed in reeler forebrain. J Neurobiol 1997; 33:459-472.
    [80] Schmid, R. S., Shelton, S., Stanco, A., Yokota, Y., Kreidberg, J. A. and Anton, E. S. alpha3beta1 integrin modulates neuronal migration and placement during early stages of cerebral cortical development. Development 2004; 131:6023-6031.
    [81] Tissir, F. and Goffinet, A. M. Reelin and brain development. Nat Rev Neurosci 2003; 4:496-505.
    [82] Howell, B. W., Herrick, T. M., Hildebrand, J. D., Zhang, Y. and Cooper, J. A. Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr Biol 2000; 10:877-885.
    [83] Arnaud, L., Ballif, B. A., Forster, E. and Cooper, J. A. Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol 2003; 13:9-17.
    [84] Bock, H. H. and Herz, J. Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 2003; 13:18-26.
    [85] Kuo, G., Arnaud, L., Kronstad-O'Brien, P. and Cooper, J. A. Absence of Fyn and Src causes a reeler-like phenotype. J Neurosci 2005; 25:8578-8586.
    [86]Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A. and Anton, E. S. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 2000; 27:33-44.
    [87] Senzaki, K., Ogawa, M. and Yagi, T. Proteins of the CNR family are multiple receptors for Reelin. Cell 1999; 99:635-647.
    [88] Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A. and Herz, J. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 1999; 24:481-489.
    [89] Beffert, U., Weeber, E. J., Morfini, G., Ko, J., Brady, S. T., Tsai, L. H., Sweatt, J. D. and Herz, J. Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J Neurosci 2004; 24:1897-1906.
    [90] Gonzalez-Billault, C., Del Rio, J. A., Urena, J. M., Jimenez-Mateos, E. M., Barallobre, M. J., Pascual, M., Pujadas, L., Simo, S., Torre, A. L., Gavin, R., Wandosell, F., Soriano, E. and Avila, J. A role of MAP1B in Reelin-dependent neuronal migration. Cereb Cortex 2005; 15:1134-1145.
    [91] Handler, M., Yang, X. and Shen, J. Presenilin-1 regulates neuronal differentiation during neurogenesis. Development 2000; 127:2593-2606.
    [92] Tai, C. Y., Dujardin, D. L., Faulkner, N. E. and Vallee, R. B. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J Cell Biol 2002; 156:959-968.
    [93] Faulkner, N. E., Dujardin, D. L., Tai, C. Y., Vaughan, K. T., O'Connell, C. B., Wang, Y. and Vallee, R. B. A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2000; 2:784-791.
    [94] Feng, Y. and Walsh, C. A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 2004; 44:279-293.
    [95] Gambello, M. J., Darling, D. L., Yingling, J., Tanaka, T., Gleeson, J. G. and Wynshaw-Boris, A. Multiple dose-dependent effects of Lis1 on cerebral cortical development. J Neurosci 2003; 23:1719-1729.
    [96] Tsai, J. W., Chen, Y., Kriegstein, A. R. and Vallee, R. B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol 2005; 170:935-945.
    [97] Yan, X., Li, F., Liang, Y., Shen, Y., Zhao, X., Huang, Q. and Zhu, X. Human Nudel and NudE as regulators of cytoplasmic dynein in poleward protein transport along the mitotic spindle. Mol Cell Biol 2003; 23:1239-1250.
    [98]Ge, W., He, F., Kim, K. J., Blanchi, B., Coskun, V., Nguyen, L., Wu, X., Zhao, J., Heng, J. I., Martinowich, K., Tao, J., Wu, H., Castro, D., Sobeih, M. M., Corfas, G., Gleeson, J. G., Greenberg, M. E., Guillemot, F. and Sun, Y. E. Coupling of cell migration with neurogenesis by proneural bHLH factors. Proc Natl Acad Sci U S A 2006; 103:1319-1324.
    [99] Mattar, P., Britz, O., Johannes, C., Nieto, M., Ma, L., Rebeyka, A., Klenin, N., Polleux, F., Guillemot, F. and Schuurmans, C. A screen for downstream effectors of Neurogenin2 in the embryonic neocortex. Dev Biol 2004; 273:373-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700