双孢蘑菇热胁迫蛋白质表达差异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双孢蘑菇[Agaricus bisporus Lange(Imbach)]是目前世界上人工栽培最广泛、产量最高、消费量最大的食用菌。它属于稳温结实性的菌类,温度是影响其生长的主要因素。加强和深化双孢蘑菇的分子生物学研究,特别是充分运用现代生物技术研究双孢蘑菇的热胁迫蛋白质表达差异以及耐热分子机理,对培育耐温、高产、优质的菌株具有十分重要的理论和实践意义。
     首先,本研究对双孢蘑菇耐温型02菌株和温度敏感型8213菌株进行ITS鉴定。经过ITS鉴定分析,02和8213菌株是双孢蘑菇种内的不同菌株。将02和8213菌株各分为4组:24℃常温培养、先32℃热诱导6h,再37℃热处理6h、37℃热处理12h和42℃热处理12h。观察不同温度处理条件下菌丝体的形态变化,结果发现:02菌株比8213菌株耐高温;较低的亚致死诱导温度对于提高热耐受能力是有帮助的。
     其次,通过双向电泳联用质谱技术研究02菌株热处理前后总蛋白2-DE图谱的变化以及同时热处理的02和8213菌株的总蛋白2-DE图谱差异,并对差异表达的蛋白质点进行MALDI-TOF-MS分析。2-DE图谱分析结果表明:热处理后的02菌株,有32个蛋白质斑点出现明显的差异,其中热诱导出现蛋白质5个,表达量上调蛋白质14个,抑制表达蛋白质4个,表达量下调蛋白质9个;02和8213菌株同时热处理后,有41个蛋白质斑点有较为明显的差异,其中18个蛋白质为02菌株独有,17个蛋白质在02菌株中表达上调;3个蛋白质为8213菌株独有,3个蛋白质在8213菌株中表达上调。应用MALDI-TOF-MS分析73个差异蛋白质点,在MASCOT数据库中检索比对,共鉴定出58个差异表达蛋白质。将这58个已鉴定差异蛋白质序列在COGs数据库中进行比对功能分类,可分为以下几类:分子伴侣类、能量代谢类、物质代谢类、细胞过程和信号传导类、遗传信息类及功能未知蛋白质。功能簇中分子伴侣蛋白质共有6个,占全部已鉴定差异蛋白质的10.3%,这表明包括热激蛋白在内的分子伴侣蛋白质对于耐高温可能起重要的作用。与能量代谢和物质代谢相关的蛋白质有14个,占全部已鉴定差异蛋白质的24.1%,说明在热处理中双孢蘑菇的正常的能量和物质代谢受到了干扰。细胞信号、遗传信息传递相关蛋白质共有11个,占已鉴定差异蛋白质的19%,说明双孢蘑菇在基因转录水平上对热激反应进行调控。
     在差异蛋白质中,有两个被鉴定为Heat shock protein HSS1和HSP70。HSS1在02菌株热处理后表达上调;在02与8213菌株同时热处理的蛋白质组比较中,HSP70在02菌株蛋白质组中表达量较大。我们通过real-time PCR检测,发现02菌株热处理后HSS1和HSP70基因的表达量都上升5倍以上;同样进行热处理的02和8213菌株中,HSS1和HSP70基因在02菌株中的表达量分别为8213菌株的1.6倍和2.8倍,说明基因转录水平上调引起了HSS1和HSP70表达量的提高。
     本研究通过双向电泳技术手段找到一些耐温02菌株热处理前后的差异表达蛋白质以及耐温02菌株和温度敏感型8213菌株同时热处理的差异表达蛋白质,并通过MALDI-TOF-MS和肽指纹质量图谱鉴定了部分差异蛋白质。通过分析已鉴定差异蛋白质的功能,初步了解双孢蘑菇可能的热应激机制,这将有助于揭示双孢蘑菇的耐热分子机理,为基因工程手段培育耐高温双孢蘑菇菌株提供理论基础。
Agaricus bisporus is the manual cultivation most widespread,the output highest, the consumption quantity biggest edible fungus in the present world.It belongs to stable-temperature fruitfulness fungi,temperature is the main factor affecting its growth.The enforced and deeply research of thermotolerance moleculer biology of A.bisporus,especially researching on different expression proteins of heat shock and heat-resistant molecular mechanism by the modern biological technology,is important to breeding of A.bisporus for heat-tolerance,high yield,high quality in theory and practice.
     First,the ITS test are carried out to identify strains 02 and 8213.strains 02 and 8213 are identified to different strains of A.bisporus by ITS test.Strains 02 and 8213 are grouped into four groups:cultured on 24℃;cultured on 32℃for 6h,then cultured on 37℃for 6h;cultured on 37℃;cultured on 42℃.From the morphotype of A.bisporus in different temperature conditions we found:strain 02 is more thermotolerance than strain 8213;lower sublethal temperature is helpful to thermotolerance.
     Secondly,We have used two dimensional electrophoresis(2-DE) and Mass spectrometry(MALDI-TOF/MS) to identify proteins that are differentially expressed in group of strain 02 under heat stress and under normal temperature and group of strains 02 and 8213 under heat stress.From 2-DE data of strain 02 under heat stress and under normal temperature,32 resolved differentially expressed proteins were detected,5 of those were induced,14 of those were up-regulated,4 of those disappear,9 of those were down-regulated.From 2-DE data of strains 02 and 8213 under heat stress,41 resolved differentially expressed proteins were detected,18 of those were only found in strain 02,17 of those were were up-regulated in strain 02,3 of those were only found in strain 8213,3 of those were up-regulated in strain 8213.All the 73 spots were subjected to tryptic digestion followed by MALDI-TOF-MS, compared in Mascot.Total 58 proteins were identified and classified into different functional categories by COGs.They are classified into molecular chaperon,energy, metabolism,cellular processes and signaling,information storage and processing, function unknown.Six of these are molecular chaperon proteins,accounting for 10.3%, showed that molecular chaperon proteins(including HSP) are helpful to thermotolerance.Fourteen of these are energy and metabolism proteins,accounting for 24.1%,showed that the normal energy metabolism is interfered.Eleven of these are cellular processes and signaling,information storage and processing proteins, accounting for 19%,showed that A.bisporus regulate heat shock response on gene transcription level.
     Heat shock protein HSS1 is identified up-regulated in strain 02 under heat stress. HSP70 is identified up-regulated in strain 02 caompared to strain 8213.From real-time PCR detection,we find HSS1 and HSP70 are up-regulated to 5 times;in strains 02 and 8213 under heat stress,HSS1 and HSP70 are up-regulated to 1.6 and 2.8 in strain 02,showed that HSS1 and HSP70 are up-regulated induced by gene transcription level.
     The study found differentially expressed proteins in group of strain 02 under heat stress and under normal temperature and group of strains 02 and 8213 under heat stress by 2-DE,then identify them by MALDI-TOF-MS and PMF.Analyze the identified differentially expressed proteins and understand the mechanism of heat stress is helpful to reveal heat-resistant molecular mechanism of A.bisporus and breed heat-tolerance strain by genetic engineering.
引文
[1]Miller R.E.and Kananen D.L.Bipolar sexuality in the mushroom[J].Mushroom Science,1972,Ⅷ:197-203.
    [2]Elliott T.J.Sex and the single spore[J].Mushroom Science,1972,Ⅷ:11-18.
    [3]Raper C.A.,Raper J.R.and Miller R.E.Genetic analysis of the life cycle of Agaricus bisporus[J].Mycologia,1972,64:1088-1117.
    [4]Callac P.Billette C.,Imbernon M.,et al.Morphological,genetic,and interfertility analyses reveal an novel,tetrasporic variety of Agaricus bisporus from the Sonoran Desert of Clifornia[J].Mycologia,1993,85:835-851.
    [5]Callac P,Imbernon M,Kerrigan W R,et al.The two life cycles of Agaricus bisporus[J].In Mushroom Biology and Mushroom Products,Royse D J(ed.).Penn State Univ,1996:57-66.
    [6]黄毅.食用菌生产理论与实践[M].厦门:厦门大学出版社,1988.
    [7]黄年来.自修食用菌学[M].江苏:南京大学出版社,1987.
    [8]王泽生.双孢蘑菇规范化集约化栽培技术[M].福建:福建省科学技术协会,1998.
    [9]Ritossa,F.A new puffing pattern induced by heat shock and DNP in Drosophila[J].Experientia,1962,671-573.
    [10]Lindquist S.The heat-shock response[J].Ann Rev Biochem,1986,55:1151-1191.
    [11]Feder M,et al.Heat shock Protein,molecular chaperones,and the stress respones:evolutionary and ecological Physiology[J].Amu.Reu.Phys,1999,61:243-282.
    [12]Feofilova EP,Tereshina VM,Memorskaya AS,Khokhlova NS.Different mechanisms of the biochemical adaptation of mycelial fungi to temperature stress:Changes in the cytosol carbohydrate composition/Changes in the lipid composition[J].Microbiology,2000,69,5:504-515.
    [13]Tissieres A MH,Tracy U.Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs[J].J Mol Biol,1974,84:389-398.
    [14]Guttrmans D,Glover C V,Allis C D,et al.Heat shock,deciliation and release from anoxia induce the synthesis of the same Polypeptides in starved[J].T.Pyriformis.Cell,1980,22:299-307.
    [15]M S Marber,R Mestril,S H Chi,et al.l.Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury[J].Investigation,1995,95(4):1446-1456.
    [16]Weitzel G.,Pilatus U,Rensing L.Similar dose response of heat shock protein synthesis and intracellular pH change in yeast[J].Experimental Cell Research,1985,159:252-256.
    [17]Sciandra J J,Subjeck J R.The effect of glucose on protein synthesis and thermosensitivity in Chinese hamster ovary cells[J].Journal of Biological Chemistry,1983,258:12091-12093.
    [18]Levinson W,Oppermann H,Jackson J.Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells[J].Biochimica et Biophysica Acta, 1980,606(1): 170-180.
    [19]Kelley PM,Schlesinger M J.The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts[J].Cell,1978,15(4):1277-1286.
    [20] Pouyssegur J,Shiu PC,Pastan I.Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation[J].Cell, 1977,11 (4): 941-947.
    [21] Barbe MF,Tytell M,Gower DJ,et al. Hyperthermia protects against light damage in the rat retina [J].Science,1988,241:1817-1820.
    [22] Lingquist S, Craig E A.. The heat-shock proteins[J]. Annu Rev Genet, 1988,22:631-677.
    [23] Ohtsuka K,Utsumi KR,Kaneda T,Hattori H.Effect of ATP on the release of hsp70 and hsp40 from the nucleus in heat-shocked Hela cells[J].Experimental Cell Research,1993,209:357-366.
    [24] Welch WJ. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease[J]. Physiol Rev,1992,72(4):1063-1081.
    [25] Angelidis CE, Lazaridis I, Pagoulatos GN. Constitutive expression of heat-shock protein 70 in mammalian cells confers thermoresistance[J]. Eur J Biochem,1991,199:35-39.
    [26]McKay D B,Wibanks S M,Flaherty K M.Stress-70 proteins and their interaction with nucleotides.In:Morimoto R I,Tissieres A,Georgopoulous C.ed.The Biology of Heat Shock Proteins and Molecular Chaperones[J].New York:Cold Spring Harbor Laboratory Press, 1994:153-177.
    [27] Beckmann RP,Mizzen LA,Welch W J.Interaction of HSP70 with newly synthesized proteins: Implications for protein folding and assembly[J].Science,1990,248:850-854.
    [28] Yonehara M, Minami Y, Kawata Y, et al. Heat-induced chaperone activity of HSP90[J]. J Biol Chem,1996,271(5):2641-2645.
    [29] Parsell DA,Lindquist S.Heat shock proteins and stress tolerance.In:Morimoto RI,Tissieres A,Georgopoulous C,eds.The Biology of Heat Shock Proteins and Molecular Chaperones[J].New York:Cold Spring Harbor Laboratory Press, 1994:457-494.
    [30] Neal F,Gordon NF,Clark B.Heat shock proteins and immune response,the challenges of bringing autologous HSP-based vaccines to commercial reality[J].Methods,2004,32(1):63-69.
    [31] Le BE,Valenti P,Lucchetta P,Payre F.Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster[J].Biogerontology,2001,2:155-164.
    [32] Vieling E. The roles of heat shock proteins in the plants[J]. Annu Rev Plant Physiology Plant MolBiol,1991,42:579-620.
    [33] Morimoto R I.Cell in stress transcriptional activation of heat shock genes[J].Science, 1993,259: 1409-1410.
    [34] Sophie E Jackson,Christine Queitsch&David Toft. Hsp90:from structure to phenotype[J]. Nature Structural & Molecular Biology,2004, 11:1152-1155.
    [35] Conner TW, LaFayette PR, Nagao RT et al. Sequence and expression of a HSP83 from. Arabidopsis thaliana[J].Plant Physiol,1990,94:1689-1695.
    [36]Gerloff,D.L.,Cohen F.E.,Korostensky C et al.A predicted consensus structure for the N-terminal fragment of the heat shock protein Hsp90 family[J].Proteins Struct Funct Genet,1997,27:450-458.
    [37]Priti Krishna and Greg Gloor.The Hsp90 family of proteins in Arabidopsis thaliana[J].Cell Stress&Chaperones,2001,6(3):238-246.
    [38]Johnson J.L,Toft D.O.A novel chaperone complex for steroid receptors involving heat-shock proteins,immunophilins,and p23[J].J.Biol.Chem,1994,69:24989-24993.
    [39]Bardwell J.C.A,Craig E.A.Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli[J].Proc Natl Acad Sci,1987,84:5177-5181.
    [40]Sanchez Y,Lindquist S.L.HSP 104 required for induced thermotolerance[J].Science,1990,248:1112-1114.
    [41]Cheng L,Hirst K,Piper P.W.Authentic temperature regulation of a heat-shock gene in yeast on a high copy number vector Influences of overexpression of Hsp protein on high-temperature growth and thermotolerance[J].Biochim Biophys Acta,1992,1132:26-34.
    [42]Nathan D F,Lindquist S.Mutational analysis of Hsp90 function:interactions with a steroid receptor and a protein kinase[J].Mol Cell Biol,1995,15:3917-3925.
    [43]Borkovich K A,Farrelly F W,FinkelsteinD B,et al.Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures[J].Mol Cell Biol,1989,9:3919-3930.
    [44]Jakob U,Lilie H,Meyer,et al.Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase—implications for heat-shock in vivo[J].J Biol Chem,1995,270:7288-7294.
    [45]Hubert DA,Tornero P,Belkhadir Y,et al.Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein[J].The EMBO Journal,2003,22(21):5679-5689.
    [46]Pelham H R B.Activation of heat-shock genes in eukaryotes[J].Trends Genet,1985,1:31-35.
    [47]张君岚,黄善生,凌亦凌.不同家族热休克蛋白的生理功能及病理意义[J].中国病理生理杂志,1998,14(5):549-553.
    [48]Lee J E,Kim Y J,Kim J Y,et al.The 70kDa heat shock protein suppresses matrix metallo-proteinases in astrocytes[J].Neuroreport,2004,15(3):499-502.
    [49]Gabai V L,Meriin A B,Mosser D D,et al.Hsp70 prevents activation of stress kinases a novel pathway of cellular thermotolerance[J].Biol Chem,1997,272(29):18033-180377.
    [50]Bernelli-Zazzera A,Cairo G,Schiaffonati L,et al.Stress proteins and reperfusion stress in the liver[J].Ann N Y Acad Sci,1992,663:120-124.
    [51]Mehlen P,Kertz RC,Preville X,et al.Human HSP27,Drosophila HSP27 and human alpha B-crystallin expression-mediate dincrease in gultathione is essential for the protective activity of these proteins against TNF alpha-induced cell death[J].EMBO J,1996,15:2695-2706.
    [52]Vig N P,Vig J,Brambl R.Phylogeny of the α-crystallin related heat shock Proteins[J].J Mol Evol,1992,35(6):537-545.
    [53]Plesofskyvig N,Brambl R.Disruption of the gene for hsp30,an alpha-crystallin-related heat shock protein of Neyrospora crassa,causes defects in thermotolerance[J].Proceedings of the National Academy of Sciences of the United States of Americs,1995,92(11):5032-5036.
    [54]Dunlop M E,Muggli E E.Small heat shock proteinalteration provides a mechanism to reduce mesangial cell contractility indiabetes and oxidative stress[J].Kidney International,2000,57:464-475.
    [55]Mearow K M,Dodge M E,Rahimtula M,et al.Stressmediated signaling in PC12 cells-the role of the small heat shock protein,Hsp27,and Akt in protecting cells from heat stress and nerve growth factor withdrawal[J].J Neurochem,2002,83:452-462.
    [56]Nagao R T,Kimpel J A,Vierling E,et al.The heat shock response:a comparative analysis[J].In Oxford Surveys of Plant Molecular & Cell Biology,1986,3:384-438.
    [57]Singer M A,Lindquist S.Thermotolerance in Saccharomyces cerevisiae:the Yin and Yang of trehalose[J].Trends in Biotechnology,1998,16:460-468.
    [58]Nwaka S,Mechler B,Destruelle M,et al.Phenotypic features of trehalse mutants in Saccharomyces cevevisiae[J].FEBS Letters,1995,360(3):286-290.
    [59]陈兰芬.双孢蘑菇耐温特性研究及其相关基因片段的克隆与分析[M].厦门:厦门大学,2000.
    [60]严培兰,谭琦,王南等.香菇菌株耐热性研究初报[J].食用菌学报,2000,7(4):25-28.
    [61]王波,唐利民,熊鹰.香菇菌株菌丝和子实体生长耐高温试验研究[J].吉林农业大学学报,2004,26(2):145-147.
    [62]Helene F J,Bo Jensen.Accumulation of trehalose in the thermophilic fungus Chaetomium thermophilurn var.coprophilum in response to heat or salt stress[J].Soil Biology &Biochemistry,2004,36:1669-1674.
    [63]Raphaela C.Georg and Suely L.Gomes.transcriptome analysis in response to heat shock and cadmium in the aquatic fungus blastocladiella emersonii[J].Eukaryotic Cell,2007,6(6):1053-1062.
    [64]Julio RR,Corrochano.L.M.The gene for the heat-shock protein HSP100 is induced by blue light and heat-shock in the fungus Phycomyces blakesleeanus[J].Curr Genet,2004,46:295-303.
    [65]A.S.Ferreira,M.R.Totola,Maria C.M.Kasuya.Small heat shock proteins in the development of thermotolerance in Pisolithus sp[J].Journal of Thermal Biology,2005,30:595-602.
    [66]Kuei-Yu CHEN,Zuei-Ching CHEN.Heat shock proteins of thermophilic and thermotolerant fungifrom Taiwan[J].Bot.Bull.Acad.Sin.,2004,45:247-257.
    [67]Nora PV,Rpbert BR.Heat shock response of neurospora crassa:protein synthesis and induced thermotolerance[J].Journal of Bacteriology,1985,162(7):1083-1091.
    [68]M.Kapoor,C.A.Curle,C.Runham.The hsp70 gene family of neurospora crassa:cloning,sequence analysis,expression,and genetic mapping of the major stress-inducible member[J].Journal of Bacteriology,1985,177(1):212-221.
    [69]Gabriella M,Silvana G,Bruno M.The intron- containing hsp82 gene of the dimorphic pathogenic fungus histoplasma capsulatum is properly spliced in severe heat shock conditions[J].Molecular Cellular Biology,1991,11(11):5624-5630.
    [70]白雪,陈兰芬,宋思扬.高温诱导双孢蘑菇蛋白质表达变化的分析[J].厦门大学学报,2001,40(6):1342-1945.
    [71]陈兰芬,宋思扬,郑忠辉.RT-PCR技术分析高温诱导双孢蘑菇相关基因片段[J].厦门大学学报,2002,41(1):103-107.
    [72]陈美元.双孢蘑菇耐热相关基因028-1的克隆与序列分析[J].福建轻纺,2006,9:1-6.
    [73]Wasinger VC,Cordwell SJ,Cerpa-Poljak A.Progress with gene-product mapping of the mollicutes:Mycoplasma genitalism[J].Electrophoresis,1995,16:1090-1094.
    [74]O' Farrell P H.High resolution two-dimensional electrophoresis of proteins[J].The Journal of Biological Chemistry,1975,250(10):4007-4021.
    [75]Shaw M M,Riederer B M.Sample preparation for two-dimensional gel electrophoresis[J].Proteomics,2003,,3:1408-1417.
    [76]Bjellqvist B,Ek K,Righetti P G,et al.Isoelectric focusing in immobilized Ph gradients:principle,methodology and some applications[J].J.Biochem.Biophys Methods,1982,6:317-339.
    [77]Urquhart B L,Atsalos T E,et al."proteomic contigs" of Mycobacterium tuberculosis and mycobacterium bovis(BCG) using novel immobilized pH gradients.Electrophoresis[J].1997,18(8):1384-1392.
    [78]Berggren K,Chernokalskaya E,et al.Background-free,high sensitivity staining of proteins in one-and two-dimensional sodium dodecyl sulfatepolyacrylamide gels using a luminescent ruthenium complex[J].Electrophoresis,2000,21:2509-2521.
    [79]Fenn J B,Mann M,Meng C K,Electrospray ionization for mass spectrometry large biomolecules[J].Science,1989,246:64-71.
    [80]Karas M,Hillenkamp F.Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons[J].Anal.Chem,1988,60:2299-2301.
    [81]朱金勇,黄河清.MALDI-TOF质谱技术分析细胞与组织多肽组成的研究进展[J].分析仪器,2004,2:5-9.
    [82]Wei J,Buriak J,MSiuzdak G,et al.Desorption-ionization mass spectrometry on porous silicon[J].Nature,1999,399(6733):243-246.
    [83]Giulietti A,Overbergh L,Valckx D,et al.An overview of real-time quantitative PCR:application to quantify cytokine gene expression[J].Methods,2001,25(4):386-401.
    [84]Becker K,Pan D,Whitely C B.Real-time quantitative polymerase chain reaction to assess gene transfer[J].Hum Gene Ther,1999,10:2559-2566.
    [85]Higgins J A,Ezzell J,et al.5' nuclease PCR assay to detect Yersinia pestis[J].J Clin Microbil.1998,36:2284-2288.
    [86]Bieche I,Onody P,Laurendeau I,et al.Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications[J].Clin Chem,1999,45:1148-1156.
    [87]Wang X,Li X,Currie R W,et al.Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1 beta mRNA in ischemic brain tolerance[J].J Neurosci Res,2000,59:238-246.
    [88]Pfaffl MW.A new mathematical model for relative quantification in real-time RT-PCR[J].Nucleic Acids Res,2001,29:2002-2007.
    [89]高斌,刘敬忠.实时荧光PCR技术的研究及其应用进展[J].诊断学理论与实践,2005,4(6):507-509.
    [90]Huggett J,et al.Real-time RT-PCR normalisation:strategies and considerations[J].Genes Immun,2005,6:279-284.
    [91]张蓓,沈立松.实时荧光定量PCR的研究进展及其应用[J].国外医学(临床生物化学与检验学分册),2003,24(6):327-329.
    [92]孙艳,常杰,杜光宇.香菇中多糖的分离与检测[J].职业与健康,2006,22(6):425-426.
    [93]刘康,胡凤萍,张天真.棉花胚珠与纤维蛋白质的两种提取方法比较研究[J].棉花学报,2005,17(6):323-327.
    [94]Dong-Gi Lee,Nagib Ahsan,Sang-Hoon Lee.A proteomic approach in analyzing heat-responsive proteins in rice leaves[J].Proteomics,2007,7:3369-3383.
    [95]Wang W,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:Towards genetic engineering for stress tolerance[J].Planta,2003,218:1-14.
    [96]Ahsan N,Lee D G,Lee S H,et al.Excess copper induced physiological and proteomic changes in germinating rice seeds[J].Chemosphere,2007,67:1182-1193.
    [97]Sabehat A,Lurie S,Weiss D.Expression of small heat shock proteins at low temperatures.A possible role in protecting against chilling injuries[J].Plant Physiol,1998,117:651-658.
    [98]Lee B H,Won S H,Lee H S,et al.Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice[J].Gene,2000,245:283-290.
    [99]Nijtmans LG,Artal SM,Grivell LA,et al.The mitochondrial PHB complex:roles in mitochondrial respiratory complex assembly,ageing and degenerative disease[J].Cell Mol Life Sci,2002,59(1):143-155.
    [100]Fusaro G,Dasgupta P,Rastogi S,et al.Prohibitin induces the transcriptional activity of p53and is exported from the nucleus upon apoptotic signaling[J].J Biol Chem,2003,278(48):47853-47861.
    [101]Gamble SC,Odontiadis M,Waxman J.Androgens target prohibitin to regulate proliferation of prostate cancer cells[J].Oncogene,2004,23(17):2996-3004.
    [102]Woodlock TJ,Bethlendy G,Segel GB.Prohibitin expression is increased in phorbol ester -treated chronic leukemic B-lymphocytes[J].Blood Cells Mol Dis,2001,27(1):27-34.
    [103]Back JW,SanzMA,De JongL,et al.A structure for the yeast prohibitin complex:Structure prediction and evidence from chemical crosslinking and mass spectrometry[J].Protein Sci,2002,11(10):2471-2478.
    [104]Back JW,Sanz MA,De Jong L,et al.A structure for the yeast prohibitin complex:Structure prediction and evidence from chemical crosslinking and mass spectrometry[J].Protein Sci,2002,11(10):2471-2478.
    [105]Coates PJ,Nenutil R,McGregor A,et al.Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence[J].Exp Cell Res,2001,265(2):262-273.
    [106]Wilkinson KD.Ubiquitination and deubiquitination:targeting of proteins for degradation by the proteasome[J].Semin Cell Dev Biol,2000,11(3):141-148.
    [107]Feki A,Jefford CE,Berardi P,et al.Irminger-Finger I.BARD1 induces apoptosis by catalysing phosphorylation of p53 by DNA-damage response kinase[J].Oncogene,2005,24(23):3726-3736.
    [108]Jeffers M,Taylor GA,Weidner KM,et al.Degradation of the Met tyrosine kinase receptor bythe ubiquitin-proteasome pathway[J].Mol Cell Biol,1997,17(2):799-808.
    [109]Huang F,Kirkpatrick D,Jiang X,et al.Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain[J].Mol Cell 2006,21:737-748.
    [110]L Sepp-Lorenzino,Z Ma,DE Lebwohl,et al.Herbimycin A Induces the 20S Proteasome-and Ubiquitindependent Degradation of Receptor Tyrosine Kinases[J].J Biol Chem,1995,270(28):16580-16587.
    [111]Goldberg AL& Rock,KL.Proteolysis,proteasomes and antigen presentation[J].Nature,1992,357:375-379.
    [112]M.Groettrup et al.Peptide antigen production by the proteasome:complexity provides efficiency[J].Immunol.Today,1996,17:429-435.
    [113]S.Hatakeyama,M.Matsumoto,M.Yada,et al.Interaction of U-box-type ubiquitin-protein ligases(E3s) with molecular chaperones[J].Genes Cells,2004,9(6):533-548.
    [114]申严杰.酵母双杂交筛选结核分枝杆菌异柠檬酸裂合酶的相互作用蛋白[M].重庆:西南大学,2006.
    [115]沈同,王镜岩.生物化学[第二版][M].北京:高等教育出版社,1990.
    [116]吴德,吴忠道,余新炳.磷酸甘油酸激酶的研究进展[J].中国热带医学,2005,5(2):385-387.
    [117]Durst F.Biochemistry and physiology of phdnt cytochrome P-450[A].In:Ruekpaul K et al (eds.) Microbial and Plant Cytochrome[C].London:Taylor and Francis,1991:193-233.
    [118]Robert P D,et al.Multiple Forms of Plant Cytochrome P450[J].Plant Physiology,1991,96:669-674.
    [119]Whitbred JM,Schuler MA.Molecular characterization of CYP73A9 and CYP82A1 P450genes involved in plant defense in pea[J].Plant Physiol,2000,124(1):47-58.
    [120]Chapple C.Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases[J].Annual Review of Plant Physiology Plant Molecular Biology,1998,49:311-343.
    [121]于晓玲.香菇GPD_RAS启动子和细胞色素P450基因的克隆[M].海口:华南热带农业大学,2004.
    [122]Fischer G,Bang H,Mech C.Determination of enzymatic catalysis for the cis-trans -isomerization of peptide binding in proline-containing peptides[J].Biomed Biochim Acta,1984,43(10):1101-1011.
    [123]Handschumacher RE,Harding MW,Rice J,et al.Cyclophilin:a specific cytosolic binding protein for cyclosporine A[J].Science,1984,226(4674):544-547.
    [124]Takahashi N,Hayano T,Suzuki M.Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin[J].Nature,1989,337(6206):473-475.
    [125]Huai Q,Kim HY,Liu Y,et al.Crystal structure of cal-cineurin-cyclophilin-cyclosporin shows common but distinct recognition of immunophilin-drug complexes[J].Proc Natl Acad Sci USA,2002,99(19):12037-12042.
    [126]Kallen J,Sedrani R,Zenke G,Wagner J.Structure of human cyclophilin a in complex with the novel immunosuppressant sanglifehrin a at 1.6 a resolution[J].J Biol Chem,2005,,280:21965-21971.
    [127]Changyi Chen,Min Li,Hui Yang,et al.Roles of Thymosins in Cancers and Other Organ Systems[J].World Journal of Surgery,2005,29(3):264-270.
    [128]S Chen,B Zhu,L Yu.In silico comparison of gene expression levels in ten human tumor types reveals candidate genes associated with carcinogenesis[J].Cytogenet Genome Res,2006,112:53-59.
    [129]Gamble TR,et al.Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid[J].Cell,1996,87:1285-1294.
    [130]LL Huang,XM Zhao,CQ Huang,et al.Structure of recombinant human cyclophilin J,a novel member of the cyclophilin family[J].Acta Crystallographica Section D Biological Crystallography,2005,61(3):316-321.
    [131]Wiegers K,et al.Cyclophilin A incorporation is not required for human immunodeficiency type Ⅰ particle maturation and does not destabilize the mature capsid[J].Virology,1999,257:261-274.
    [132]蔡冲,吕均良,陈昆松.蛋白激酶的研究[J].亚热带植物科学,2002,31(1):63-67.
    [133]Mizoguchi T,Lchimura K,Shinozaki K.Environmental stress response in plants:the role of nitogen activated protein kinase[J].TIBTECH,1997,15(1):15-19.
    [134]Bogre L,Ligternk W,Bose EB,et al.Mechanosensors in plants[J].Nature,1996,383:489-490.
    [135]Jonak C,Kiegerl M,Ligterink W et al.Stress signalling in plants:a MAP kinase pathway is activated by cold and drought[J].Proc Natl Acad Sci USA,1996,93:11274-11279.
    [136]Kovtun Y,Chiu WL,Zeng W & Sheen,J.Suppression of auxin signal transduction by a MAPK cascade in higher plants[J].Nature,1998,395:716-720.
    [137]Bogre L,Calderini O,Binarova P et al.A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division[J].Plant Cell,1999,11:101-113.
    [138]Bogre L,Ligterink W,Meskiene I et al.Wounding induces the rapid and transient activation of a specific MAP kinase pathway[J].Plant Cell,1997,9:75-83.
    [139]宋莉芸.一个水稻DEAD_boxRNA解旋酶基因OsBIRH1的克隆鉴定[M].杭州:浙江大学,2006.
    [140]宋莉芸,陈洁,郑重等.一个水稻DEAD盒RNA解旋酶基因OsBIRH1的克隆鉴定及其蛋白纯化[J].浙江农业学报,2007,04:259-263.
    [141]Vashisht AA,Tuteja N.Stress responsive DEAD-box helicases:A new pathway to engineer plant stress tolerance[J].Journal of Photochemistry and Photobiology B:Biology,2006,84:150-160.
    [142]Seki M,Narusaka M,Abe H,et al,Monitoring the expression pattem of 1300 Arabidopsis genes under drought and cold stresses by using afull-length cDNA microarray[J].Plant Cell,2001,13:61-72.
    [143]Toshihide Nakamura,Yasunori Muramoto,Sadaki Yokota,et al.Structural and transcriptional characterization of a salt-responsive gene encoding putative ATP-dependent RNA helicase in barley[J].Plant Science,2004,167(1):63-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700