微电解厌氧生物滤池法处理猪场厌氧废液的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,畜禽养殖业快速发展,由此带来的污染问题也日益突出,其中养猪业的污染最为突出。目前大多数猪场都建有沼气池,猪粪废水大都经沼气池处理成厌氧废液后直接排放,而厌氧废液中仍含有相当数量的有机污染物和氨氮等,对环境造成极大的压力,也影响到猪场的生存与发展。然而猪粪厌氧废液既是严重的污染源,又是一种具有较高利用价值的资源,所以针对猪粪厌氧废液的这一特点,并结合目前大多数猪场的实际,作者对原有的猪场废水处理工艺进行改进和优化,设计出更经济高效的猪场废水再生循环系统,以使处理后的出水能用于农业灌溉或猪舍冲栏。
     针对猪场厌氧废液胶体物含量高、可生化性差和处理难度大的特点,本课题首次尝试采用微电解-厌氧生物滤池的组合工艺来处理猪场厌氧废液。以铸铁屑和焦炭粒作为厌氧生物滤池的填料,利用铁炭的微电解作用和厌氧生物滤池的协同作用来处理厌氧废液,以使厌氧废液中的胶状物和有机污染物能得到有效的去除。
     首先通过铁炭微电解静态试验,确定了滤池内铁炭填料的最佳装填比为3∶1(体积比);得出了滤池运行试验中HRT应控制的参考范围为HRT≥5h以及滤池进水pH的考察值:只考察pH调到6与不调两种情况;同时还验证了所选的铁炭填料对厌氧废液可生化性的改善效果:在铁炭比为3∶1,反应时间为5h,不调pH和pH调到6两种情况下,微电解反应后厌氧废液的可生化性(BOD_5/COD平均值)分别由原来的0.28提高到0.39和0.41。
     其次以微电解静态试验中得出的结论为依据,对滤池的填料进行了装填,并进行了滤池的启动及运行试验。在进水COD为770mg/L左右、浊度为380NTU左右、pH为7.2~7.6,HRT为12~18h的情况下经29天的启动试验,顺利完成了滤池的启动,且启动完成后滤池对浊度的去除率可达到70%以上。试验研究表明以铁屑和焦炭为填料的厌氧生物滤池启动快,具有优良的运行特性和处理效果。
     滤池成功启动后进入稳定运行阶段,通过对影响该阶段滤池稳定运行的两个因素——进液pH值和HRT的考察得出:进液pH调到6与不调时处理效果相差不大,所以可以不调节进液pH而直接进液处理;HRT对浊度去除率的影响显著,并利用SPSS软件对处理结果进行分析得出了HRT与浊度去除率之间的回归方程式:y=33.803+10.194x-0.538x~2,同时计算出该试验中滤池稳定运行的最佳HRT为9.47h。
     最后,通过系统稳定运行试验对滤池的处理效果进行了检验,检验结果表明所设计的微电解-厌氧生物滤池对猪场厌氧废液中的污染物有较好的去除效果,对浊度、COD和BOD的平均去除率分别达到了80.10%,63.54%和48.81%,经滤池处理后出水的BOD和COD均达到了畜禽养殖业污水的排放标准和农田灌溉中旱作的用水标准。
     在猪场厌氧废液的试验处理中,本文创新地提出了以铁屑和焦炭作为厌氧生物滤池的填料,利用铁炭的微电解作用来改善厌氧废液的可生化性,提高其厌氧生物滤池的处理效果,并初步建立了可行的猪场厌氧废液的微电解-厌氧生物滤池处理工艺,以工业生产中废弃的铁屑和焦炭屑作为材料,实现了以废治废的良好处理模式。本文的研究方法与初步结论将对今后的同类研究和该处理方法的实践研究具有一定的参考价值。
With the development of the livestock industry, the pollution of which has been more serious these years, and the swine wastewater is the head of all pollution. Nowadays, the pool of firedamp has being in most of piggery, the swine wastewater has mostly been changed into anaerobic effluent by the pool of firedamp, and then been emitted directly. However, the anaerobic effluent still contains much of organic contamination and NH_4~--N etc., which brought about a huge press to the environment, and also made significant influence on the piggery's living and developing. So the further disposal to the anaerobic effluent has become an urgent affair to the disposal of swine wastewater. Moreover, though the anaerobic effluent is a kind of contamination, it's a sort of available resource. To this trait, the author work out a swine wastewater reborn and cycle system with the purpose of using its outing water in irrigation, which is more economic and more efficient contrast to the traditional ones.The micro-electrolytic and anaerobic bio-filter process was first applied to treat swine anaerobic wastewater in the light of the characteristics of its wastewater quality, which is hard to biodegrade and hard to disposal due to it contains high concentration of colloid. The filter medium of its reactor was the mixture of iron filings and carbon granules. In this reactor, it put the anaerobic bio-treatment and the iron-carbon micro-electrolysis process together, so as to make the jelly and organic contamination of the anaerobic effluent remove effectivelyFirstly, after captive test of micro-electrolysis, it is concluded that the optimal volume proportion of the iron and carbon in the bio-filter was 3:1; the HRT of the bio-filter should be controlled to 5 hours and above; only to see about the pH which is changed to 6 and unchanged. What's more, it also validated that it is resultful to improve the biodegradability of anaerobic effluent by this iron-carbon medium. The average ration of BOD5/COD of the anaerobic effluent has increased from 0.28 to 0.39 after 5 hours reacting, in the filter medium of which ration of its iron and carbon is 3:1.Secondly, to load the bio-filter with stuffing based on the conclusions of the captive test of micro-electrolysis, and then carried on its startup and running test. The startup of the bio-filter was completed within 29 days period under the operational conditions of influent COD concentration of 770mg/L, turbidity of 390NTU, pH=7.2~7.6 and HRT=12~18h. At the same time the filter medium retained the biomass successfully and the rate of turbidity removal reached 70% above. The startup results of study showed that the anaerobic bio-filter is characterized by fast startup, operation stable and effective treatment.
     In stable running phase of the filter, by seeing about the pH of entering water and HRT which has effect on the filter's stable running, and then concluded that: when pH of the entering water was change to 6 and what was unchanged, the difference of their processing effect were little, so that there is no need to change pH of the water but entering it directly. In addition, made a regressive analysis for HRT and rate of turbidity removal by software of SPSS, and then the regression equation was induced as follows: y=33.803+10.194x-0.538x~2, and the optimal HRT on filter's stable running was computed at 9.47 hours.
     Finally, the processing effect of the filter was tested by stable running test, and the results showed that the micro-electrolytic and anaerobic bio-filter could effectively remove the contamination of the swine anaerobic effluent, it could remove 80.81% of turbidity, 63.54% of COD and 48.81% of BOD. What's more, the BOD and COD of the effluent could meet the standards of pollutants for livestock and poultry breeding, and also accord with the standards of irrigation water quality for the dry farming.
     The paper put forward innovatively to using the micro-electrolytic process of iron and carbon to improve the biodegradability of anaerobic effluent, further to improve the anaerobic bio-treatment effect, and set up preliminary process for swine anaerobic effluent treatment, such as micro-electrolytic and anaerobic bio-filter process. The stuff of this process was made up of iron filings and carbon granules that had fallen into disuse in industry, and it formed a well treatment mode as "treating the waste by waste". The research method and conclusion have reference value for the further research and practice.
引文
1.白宇,张杰,陈淑芳,阎立龙.生物滤池反冲洗过程中生物量和生物活性的分析.化工学报,2004,55(10):1690-1694
    2.卞有生.生态农业中废弃物的处理与再生利用.北京:化学工业出版社,2001,240-241
    3.操卫平.猪场废水厌氧消化液后处理生物脱氮新技术研究.[硕士学位论文].成都:四川大学图书馆,2004
    4.陈国武.集约化养猪场粪污的控制与利用.福建畜牧兽医,2000,22(4):25-26
    5.成文,卢平,罗国维,黄俊伟,李志勇.养猪场废水处理工艺研究.环境污染与防治,2000a,22(1):24-27
    6.成文.养猪场废水的化学混凝后处理.华南师范大学学报(自然科学版),2000b,1:82-86
    7.崔理华,朱夕珍,陈智营,庹艳.国内外规模化猪场废水处理组合工艺进展.农业环境保护,2000,19(3):188-191
    8.邓良伟,蔡昌达,陈铬铭,陈子爱.猪场废水厌氧消化液后处理技术研究及工程应用.农业工程学报,2002,18(3):92-94
    9.邓良伟,姚爱莉,梅自立.SBR工艺处理猪场粪污的试验研究.中国沼气,2000,18(1):8-9
    10.邓良伟、陈铭铭.IC工艺处理猪场废水实验研究.中国沼气,2001,19(20):12-15
    11.丁晔.不同基质垂直流人工湿地处理猪场污水的应用研究.[硕士学位论文].杭州:浙江大学图书馆,2005
    12.董红敏,陶秀萍.美国关于动物废弃物排放及处理的有关法律及法规.农业工程学报,1999,18:188-192
    13.高茹英,林聪,王平智,李光泽,彭英霞.养猪场粪污水生物处理工艺技术研究.农业环境科学学报,2004,23(3):599-603
    14.高云超,邝哲师,田兴山,杜宗亮,杨景培.钟落潭种猪场污水的活性污泥法处理.生态科学,2003,22(1):63-66.
    15.龚丽雯,龚敏红,王成云,陈建湘,李京会.微电解/接触氧化/稳定塘处理猪场废水.中国给水排水,2003,19(8):92-94
    16.郭天鹏,汪诚文,陈吕军,胡纪萃,刘旭,周洪江,陈玉才,李强利.升流式曝气生物滤池深度处理城市污水的工艺特性.环境科学,2002,23(1):58-61
    17.贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998,1:16-68,104-118
    18.胡玉洁,华兆哲,王璋,陈坚.黄姜废水的铁炭微电解.混凝预处理研究.环境污染治理技术与设备,2004,5(9):44-47
    19.黄治平.IC反应器处理猪场废水实验研究.[硕士学位论文].北京:中国农业科学院,2004
    20.纪轩.废水处理技术问答.北京:中国石化出版社,2003,254-230
    21.雷英春,张克强,季民,李炎保,姚传忠.国内外规模化猪场废水处理工艺技术新进展.城市环境与城市生态,2003,16(3):218-220
    22.李宝林,王凯军,中立贤,贾立敏.大型集约化猪场粪水处理现状及建议.中国沼气,1998,16(2):31-32
    23.李长生,路旭,吴冰.规模化猪场粪污处理工艺的研究.农业工程学报,1997,13:58-63
    24.李军,王淑莹.水科学与工程试验技术.北京:化学工业出版社,2002,130-136
    25.李淑兰,吴晓芙,刘英,邓良伟.猪场废水处理技术.中南林学院学报,2005,25(5):132-137
    26.李淑兰.猪场废水厌氧消化及后处理技术研究.[硕士学位论文].长沙:中南林学院图书馆,2003
    27.李亚新,李莉,马志毅,苏玉民.塑料孔板波纹填料厌氧生物滤池处理印染废水试验研究.中国给排水,1995,11(5):16-19
    28.廖新俤,骆世明.人工湿地对猪场废水有机物处理效果的研究.应用生态学报,2002a,13(1):113-117
    29.廖新俤,骆世明.香草根和风车草人工湿地对猪场废水氮磷处理效果的研究.应用生态学报,2002b,13(6):719-722
    30.廖新俤.规模化猪场用水与废水处理技术.北京:中国农业出版社,1998:107-110
    31.林奇.上流式厌氧生物滤池处理生活污水的设计.福建环境,1999,16(6):14-15
    32.罗旌生,曾抗美,左晶莹,李昕,李福德.铁炭微电解法处理染料生产废水.水处理技术,2005,31(11):67-70
    33.缪连兴.厌氧消化应用的过去、现在和将来趋势.杭州:浙江教育出版社,1997
    34.农业部环保所.GB 18596-2001畜禽养殖业污染物排放标准.北京:中国标准出版社,2001,24-29
    35.欧阳玉祝,傅伟昌.铁屑微电解-共沉淀法处理屠宰场废水的研究.环境污染治理技术与设备,2003,4(8):37-40
    36.祁梦兰,张晶,刘华成.铁屑电化学反应-絮凝沉淀-沙滤组合工艺处理镜片染色废水.化工环保,1994,14(1):20-23
    37.任南琪,王爱杰,马放,冯玉杰,杨基先,李建政.厌氧生物技术原理与应用.北京:化学工业出版社,2004,2:4-13,46-48
    38.沈瑾,路旭,孙瑜.规模化猪场粪污水处理固液分离工艺及设备.中国沼气,1999,17(4):18-20
    39.孙华,洪英,高延耀,夏四清.铁碳床复合生物反应器处理染料废水.中国给水排水,2001,17(5):65-67
    40.覃环,欧明.猪场粪水两相厌氧处理系统的设计及应用效果.家畜生态,2000,21(4):12-15
    41.童玲,毕学军,唐国斌.废铁屑在染料生产废水处理中的应用试验研究.再生资源研究,2005,1:28-32
    42.王强,沈晓南,彭忠.铁屑微电解法处理带色城市污水和印染废水机理的探讨.山东环境,2001,2:19-20
    43.王绍文,罗志腾,钱雷.高浓度有机废水处理技术与工程应用.冶金工业出版社,2003,7:191-197
    44.王新谋.猪场粪便污水处理和利用.云南畜牧兽医,1997,3:8-12
    45.王雅琼,许文林,赵丽君.絮凝-电解法处理麻黄素废水研究.水处理技术,1996,22(3):168-172
    46.王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用.环境污染治理技术与设备,2002,3(4):69-72
    47.吴婉娥,各红光,张克峰主编.废水生物处理技术.北京:化学工业出版社,2003,1:251-252
    48.徐洁泉.集约化猪场粪便污水沼气发酵综合处理系统的生产实验.中国沼气,1991,3:26-29
    49.许振成,谢武明,谌建宇,彭晓春.养猪场废水治理技术进展.中国沼气,2004,22(2):26-28
    50.杨朝晖,曾光明,陈信常.规模化养猪场废水处理工艺的研究.环境工程,2002,20(6):19-21
    51.杨凤林,杜慧玲.利用铁炭粒料脱除燃料废水中的色度.环境工程,1992,10(6):1-5
    52.杨虹,李道棠.集约化猪场冲栏水的达标处理.上海交通大学学报,2000,34(4):550-560
    53.张国治,姚爱莉.藻类对猪粪厌氧废液的净化作用.西南农业学报,2000,13:105-112
    54.张克强,高怀友,季民,刘月敏.畜禽养殖业污染物处理与处置.北京:化学工业出版社,2004,4:160-239
    55.张元碧.集约化养猪场的污染问题及治理模式.福建环境,2003,20(4):45-48
    56.张忠祥,钱易主编.废水生物处理新技术.北京:清华大学出版社,2004,2:401-504
    57.张子间.微电解法在废水处理中的研究及应用.工业安全与环保,2004,30(4):8-10
    58.张自杰,张忠祥,龙腾锐,金儒霖,林荣忱.废水处理理论与设计[M].北京:中国建筑工业出版社,2002
    59.赵永才,孙又山.微电解法脱除水溶性染料废水色度的研究.环境污染与防治,1994,16(1):18-20
    60.周培国,傅大放.微电解工艺研究进展.环境污染治理技术与设备,2001,4:18-24
    61.朱光远.微电解-厌氧水解-SBR工艺处理医药制药废水的研究.[硕士学位论文].长沙:湖南大学图书馆,2001
    62.朱洪涛,张振声,许佩瑶.粉煤灰铁屑组合处理印染废水的研究.环境科学与技术,2002,4(25):8-9
    63. Angenent Largus T, Shihwu Sung, Lutgarde Raskin. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Research, 2002, 36: 4648-4654
    64. Bernet N. Combined anaerobic-aerobic SBR for the treatment of piggery wastewater. Water Research, 2000,34(2):611-619
    65. Cheng Jiayang, Ben A, Bergmann John J, Classen Anne M. Stomp, James W. Howard. Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresource Technology, 2002 81:81-85.
    66. Costa R H R and A S L, Bavaresco W, Medri L S. Philippi.Tertiary treatment of piggery wastes in water hyacinth ponds. Water Science and Technology, 2000, 42(10-11):211-214
    67. Estrada V E E and D E A, Jorge de Lucas Jr, Luiz A, do Amaral. Partial characterization of the pollution load of swine wastewater treated with an integrated biodigestion system. Bioresource Technology, 2003,90:101-108
    68. Freddie R L et al. Applying swine wastewater with SDI and LEPA sprinkler irrigation. 2001. http://www.oznet.ksu.edu/sdi/reports/2001/swinerop.pdf
    69. Funk Ted, Rsndy Fonner. Certified livestock Manual. University of Illinois Cooperative Extension Service, 1998
    70. James A Entry. Polyacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants. Environmental Pollution, 2002,120:191-200
    71. James A Entry. Polyacrylamide + Al_2(SO_4)_3 and polyacrylamide + CaO remove coliform bacteria and nutrients from swine wastewater. Environmental Pollution, 2003,121:453-462.
    72. Nora Y E and Y. Livestock Wastewater Treatment by a Mangrove Pot-cultivation System and the Effect of Salinity on the Nutrient Removal Efficiency. Marine Pollution Bulletin, 2001,42(6): 513-521.
    73. Schellinkhout A, Collazos C J. Full Scale Application of the UASB Technology for Sewage Treatment. IN: Proc. Cong. IAWPRC Anaerobic Digestion Brazil, 2003:145-152
    74. Lee S I. Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere, 2003,51:265-271
    75. Sanchez E R, Borja L, Travieso A, Martin M F, Colmenarejo. Effect of influent substrate concentration and hydraulic retention time on the performance of down-flow anaerobic fixed bed reactors treating piggery wastewater in a tropical climate. Progress biochemistry, Article in press, 2004
    76. Takaaki Maekawa. Nitrogen and phosphorus removal for swine wastewater using intermittent aeration batch reactor followed by ammonium crystallization process. Water Research, 1995, 29(12): 2643-2650
    77. Yang P Y and H, Chen A. Land-limited and energy-saving treatment system for dilute swine wastewater. Bioresource Technology, 1994,49: 129-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700