平板式光生物反应器中紫球藻培养条件的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫球藻(Porphyridium cruentum)是属于红藻门的一种海洋微藻,在生长过程中能合成硫酸酯多糖、多不饱和脂肪酸和藻胆蛋白等重要生物活性物质。本论文主要运用自行设计的平板式光生物反应器培养紫球藻,在培养基优化的基础上,对紫球藻在平板式光生物反应器中的生长参数进行了测定,对紫球藻的培养工艺进行优化,获得以下主要结果:
     摇瓶培养实验表明,初始pH为原始pH(7.5)时,有利于藻体生物量、胞外多糖的积累;当接种量为10%的,藻细胞生物量收获最大。当接种量为10%和20%时,胞外多糖的收获量最大,分别可以达到460mg/L和475mg/L。硝基氮可促进紫球藻生物量和胞外多糖的积累;肌醇对紫球藻生物量、胞外多糖的积累没有明显的影响。
     采用自行研制的平板式光生物反应器培养紫球藻,测定了紫球藻在不同光径平板式光生物反应器中的生长参数(溶氧、pH、光衰减、氮源的消耗、磷源的消耗),确定了紫球藻的光衰减模型以及平板式光生物反应器中平均光强计算方程;发现30 mm小光径的反应器有利于藻对光的利用效率,提高了藻的培养密度以及多糖的产量。
     运用均匀设计的方法对紫球藻的平板反应器培养条件进行了优化,考察了更新率等与半连续培养过程中细胞总采收量和多糖总采收量之间的关系;探讨了流加时间等对流加培养过程中最大细胞密度和多糖产量的影响。结果显示:在NaNO3 1.504 g/L,更新率32.93%,更新周期1 d的培养条件下,细胞总采收量最大,达到69.5 g;在NaNO3 3.5 g/L,更新率26.83%,更新周期2.9 d的条件下,多糖总采收量最大,达到17.6 g。
Porphyridium cruentum,a kind of the marine microalgae, attracts increasing interest for it can synthsis some valuable compounds such as phycoerythrin, sulfated exopolysaccharides and polyunsaturated fatty acids. To investigate the effect of culture conditions on the growth and some metabolites production of P. cruentum, the light attenuation model, the some key growth parameters and the optimal culture process were researched in the flat plate photobioreactor. The results were showed as follow.
     In the flask cultures, the productivity of biomass and extracellular polysaccharides of P. cruentum arrived to the biggest value when the original pH was 7.5. When the vaccination was 10%, the largest biomass was harvested; however, the largest extracellular polysaccharides of 460mg/ and 475mg/L were obtained when vaccination was 10% and 20%, respectively. And the nitro nitrogen could increase the productivity of the biomass and accumulation of extracellular polysaccharides of P. cruentum.
     The optical attenuation equation and the average light intensity calculation equation of P. cruentum were obtained in the flat plate photobioreactors. And some important growth parameters were determinated such as DO, pH, optical attenuator, the consumption of phosphorus and nitrogen in the different light-path flat plate photobioreactors. The results showed that the photobioreactor of small light-path (30 mm) could improved the light utilization efficiency, and a high of cells density and polysaccharide production could be obtained.
     To improve the cultural density and polysaccharide production, the cultural conditions of P.cruentum were optimized by the method of uniform design in flat plate photobioreactors. And the relationship between the renewal rate and the total harvest of biomass and polysaccharides was studied under the cultural modle of semi-continuous culture. The results showed that the total productivity of biomass reached to 69.5 g under the conditions of NaNO3 1.504 g/L, 32.93% renewal rate, and 1d renewal cycle; and the total harvest of polysaccharides amounted to 17.6 g with the conditions of NaNO3 3.5 g/L, 26.83% renewal rate and 2.9d renewal cycle.
引文
1.王长海.微藻的光生物反应器培养中国科学院博士论文,1998.
    2. Kathleen L. et al. Ultrastructure of Cell Division in the Unicellular Red Alga Porphyridium cruentum, Can. J. Bot., 1982, 60: 85-97.
    3. Lin H. et al. Light and Electron Microscope Observations on Motile Cells of Porphyridium purpureum (Rhodophyta), J. of Phycol., 1975, 11:452-457.
    4.王明兹,施巧琴,郑梅清.紫球藻的培养与利用.亚热带植物科学,2001,30(2):66-69.
    5. Schmidt P et al. Chromophore protein interaction controls the complexity of the phytochrome photocycle, J. Photochem. Photobiol. Biology, 1996, 340):73-77
    6. Glazer A N. Phycobiliprotein-a family of valuable, widely used fluorophores, J. Appl. Phycology, 1994, 6:105-112
    7.许实波.海洋生物制药.北京:化学工业出版社,2002.
    8.王明兹,施巧琴,郑梅清等.紫球藻的培养与利用.亚热带植物科学.2001,30 (2):66-69
    9.王长海,李叙风,鞠宝等.紫球藻及其应用研究.海洋通报.1998,17 (3):79-84.
    10. Rebolloso Fuentes M M, Acien Fernandez G G, Sanchez Perez J A et al. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chemistry.2000,70:345-353.
    11. Ginzberg A, Cohen M, Sod-Moriah UA et al. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Apll Phyco1.2000, 12(3/5):325-330.
    12. Dvir I, Chayoth R, Sod-Moriah U et al. Soluble polysaccharide and biomass redmicroalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterolin rats. Br J Nutr.2000,84(4):469-476.
    13.肖华山,林和,范子南等.红外线和植物生长物质对紫球藻生长及代谢的影响.热带海洋.2000, 19 (2) : 64-68
    14.王明兹,陈必链,庄惠如等.倍频Nd:YAG激光对紫球藻生长与胞外多糖的影响.激光生物学报.2002, 11(1) :6-9.
    15.黄鹭强,王明兹,欧琳等.半导体激光对紫球藻生物学效应的影响.生物技术.2002, 12 (1):14-16.
    16.王长海.微藻的光生物反应器培养中国科学院博士论文,1998.
    17.王长海,郭尽力,鞠宝等.(1998)微藻与微藻生物技术.全国第二届海洋生命活性物质与天然生化药物学术会议论文集,上海,p194-198.
    18.温少红,王长海,鞠宝.紫球藻细胞中AA, EPA及色素提取的研究.中国海洋药物.1999, 2: 28-31.
    19.温少红,王长海.光照和培养时间对紫球藻细胞脂肪酸含量的影响.中国海洋药物.2000, 1:47-50.
    20. Wang C H, et a1. Studies on high concentration culture of Porphyridium cruentum[J]. Proceedings of Young Asian Biochemical Engineers Community 1997, Tianjin University,1997, 37-39.
    21. Guil-GuerreroJL, Belarbi EH, Rebolloso-Fuentes MM. Eicosapentaenoic andarachidonic acids purification from the red microalga Porphyridium cruentum. Bioseparation. 2000,9(5):299-306.
    22. Shiran D,Khozin I, Heimer YM et a1.Biosythesis of eicosapentaenoic acid in the microalga Porphyridium cruentum. I: The use of externally supplied fatty acids. Lipids. 1996,31(12):1277-1282
    23. Khozin-Goldberg I, Hu ZhY, Adlerstein D et al. Triacylglycerols participate in the eukaryotic pathway of PUFAs biosynthesis in the red microalga Porphyridium cruentum. In Williams,JP, Mobashsher,UK and Nora WL(eds) Physiology,Biochemistry and molecular biology of plant lipids. Kluwer AcademicPublishers,Dodrecht,Netherlands,90-92.
    24. Khozin I. And C. Zvi, Differential response of microalgae to the substitutedpyridazinone. Phytochem. 1996,42(4):1025-1029.
    25. Khozin-Goldberg I, Bigogno C, Cohen Z. Salicylhydroxamic acid inhibits delta desaturation in the microalga Porphyridium cruentum. Biochim Biophys Acta.1999,1439(3):384-394.
    26. Khozin-Goldberg I, Hu ZhY, Adlerstein D et al. Triacylglycerols of the redmicroalgaPorphyridium cruentum can contribute to the biosynthesis of eukaryoticgalactolipids. Lipids. 2000, 35(8):881-889.
    27.王长云,管华诗.多糖抗病毒作用研究进展1.多糖抗病毒作用.生物工程进展.2000, 20 (1):17-20.
    28.王长云,管华诗.多糖抗病毒作用研究进展2.硫酸多糖抗病毒作用.生物工程进展.2000, 20 (2) : 3-8.
    29. Rebolloso Fuentes M M, Acien Fernandez G G, Sanchez Perez J A et al. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chemistry.2000,70:345-353.
    30. Geresh S, Mamontov A, Weinstein J. Sulfation of extracellular polysaccharides of red microalgae:preparation, characterization and properties. J Biochem Biophys Methods. 2002, 50 :179-187.
    31. Gloaguen V, Ruiz G, Morvan H. The extracellular polysaccharide of Porphyridium sp. an NMR study of lithium-resistant oligosaccharidic fragments. Carbohydr Res. 2004, 339(1):97-103.
    32.王长海,温少红,鞠宝.紫球藻多糖的提取和测定.中国海洋药物.1999, 18(1):22-25.
    33. Heaney- Kieras J, Chapman DJ. Structural studies on the extracellular polysaccharide of the red alga,Porphyridium.Carbohydr Res.1976,52:169-77.
    34. Heaney-Kieras J,Chapman DJ. The covalent linkage of protein to carbohydrate in the extracellular protein-polysaccharide from the red algaPorphyridium cruentum. Biochem J. 1977,165 (1):1-9.
    35. Arad(Mal is)S.Polysaccharides of red microalgae. In Cohen Z (ed). Chemicalsfrom Microalgae. Taylor and Francis, London, 1999:282-291.
    36. Minkova K, Michailov Y, Toncheva-Panova T et al.Antiviral activity of Porphyridium cruentum polysaccharide. Pharmazie. 1996, 51:3.
    37. Zou Ning, Richmond Amos. Effect of light-path length in outdoor flat platereactors on output rate of cell mass and of EPA in Nannochloropsis sp. J Biotechnol.1999,70:351-356.
    38.顾宁淡,刘宇峰.紫球藻胞外多糖抗辐射的生物学活性研究.海洋科学.2002, 26(12):53-56.
    39. Fabregas J, Garcia D, Fernandez-Alonso Met al.In vitro inhibition of the replication ofhaemorrhagic septicaemia virus (VHSV) and African swine fever virius (ASFV) by extracts from marine microalgae. Antiviral Res.1999,44(1):67-73.
    40. Huleihel M,Ishanu V, Tal J et al.Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. J Appl Phycol.2001,13 (2):127-134.
    41. Ginzberg A, Cohen M, Sod-Moriah UA et al. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Apll Phyco1.2000, 12(3/5):325-330.
    42.肖华山,谢志强,郭建生等.5种不同形式氮源对紫球藻生长影响的研究.福建师范大学学报.2001, 17 (42) : 78-80.
    43. Monika S, et al. Increase of content of polyunsatured fatty acids in Porphyridium cruentumby low-temperature stress and acetate supply[J]. Journal of Plant Physiology, 1994, 143(4-5).
    44. Cohen Z, Vonshan A, Boussia S et al. The effect of temperature and cell concentration on the fatty acid composition of outdoor cultures of Porphyridiumcruentum. In Stadle T, Mollion J,Verdus M-C, Karamanos Y, Morvan H, ChristiaenD(eds.), Algal Biotechnology. Elsevier Applied Science, London, 1988:421-430.
    45. Gudin C, Chaumont D. Cell fragility一the key problem of micro-algae massproduction in closed photobioreactors. Biores Techno1.1991,38:145-155.
    46. Anderson DB, Eakin DE. Aprocess for the production of polysaccharides frommicroalgae. Biotechnol Bioeng Symp.1985,15:532-547.
    47. Lee YK, Tan HM. Effect of temperature, light intensity and dilution rate on thecellular composition of red alga Porphyridium cruentum in light limited chemostat cultures. MIRCEN J. 1988, 4:231一237.
    48. Iqbal M, Zafar SI,Stepan-Sarkissian Get al. Indoor mass cultivation of red alga Porphyridium cruentum in different types of bioreactors: effect of scale-up and vessel shape. J Ferment Bioeng.1993, 75(1):76-78.
    49. Akimoto, Masamichi, Shirai A et al. Carbon dioxide fixation and polyunsaturated fatty acid production by the red alga Porphyridium cruentum. Appl Biochem Biotechnol. 1998,73(2-3):269-278.
    50. Merchuk JC, Ronen M, Giris S et al. Light/dark cycles in the growth of the red microalga Porphyridium sp. Biotechnol Bioeng.1998,59:705-713.
    51. Muller-Feuga A, Guedes RL, Herve A et al. Comparison of artificial light photobioreactors and other production systems using Porphyridium cruentum. J Appl Phycol.1998,10:83-90.
    52. Rubio FC, Fernandez FGA, Perez JAS et al. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng.1999, 62:71-86.
    53. Singh S, Arad(Malis) S,Richmond A. Extracellyular polysccharide production in outdoor mass cultures of Porphyridium sp. In flat plate glass reactors. J ApplPhyco.2000, 12:269-275.
    54.王长海,欧阳藩.紫球藻的光生物反应器培养.化工冶金.2000,21(1):47-51.
    55. Merchuk JC, Gluz M, Mukmenev I. Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp. J Chemical Technol Biotechno1.2000,75(12):1119-1126.
    56. Wu X, Merchuk JC. Simulation of algae growth in a bench-scale bubble column reactor. Biotechnol Bioeng. 2002,80(2):156-168.
    57. Muller-Feuga A, Gue'des RL, Pruvost J. Benefits and limitations of modeling for optimization of Porphyridium cruentum cultures in an annular photobioreactor. J Biotechnol. 2003,103:153-163.
    58. Muller-Feuga A, Pruvost J, Le Guedes R. Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum.Biotechnol Bioeng. 2003, 84(5): 544-551.
    59.王长海,鞠宝,温少红等.紫球藻的载体培养研究.应用与环境生物学报。1999, 5 (5):496-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700