基于部件神经网络模型的制冷系统混合仿真方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制冷空调装置仿真技术已经有了相当的发展,为制冷空调装置的设计节能优化等研究做出了巨大的贡献。基于部件物理模型的系统仿真方法具有很好的通用性和趋势控制能力,是常见的制冷装置仿真方法。在不同的阶段和不同的情况下,仿真技术需要满足不同的需求。随着时代的进步,人们对仿真的要求不断提高,除了准确性之外,计算速度和求解稳定性成为了新的明确的需求。
     为了进一步提高制冷系统装置仿真技术的计算速度和求解稳定性,本文在“面向部件”的制冷系统仿真研究的基础上,引入神经网络模型提出了基于部件神经网络模型的制冷系统混合仿真方法。“面向部件”的系统仿真和神经网络模型各有其显著的优缺点,需要在两者之间寻找一个契合点以扬长避短。混合仿真方法是仿真需求不断提升的产物,是基于部件物理模型的制冷系统模型之外的一个延伸和扩展。本文的主要研究内容包括:
     1.本文明确提出了基于部件神经网络模型的混合仿真方法。详细阐述了混合仿真方法的必要性和实现过程。在系统层面,混合仿真方法保持了“面向部件”的系统仿真结构的的灵活性,部件模型可以重复利用,而且可以方便地增减或修改部分辅助部件;在部件层面,部件神经网络模型有助于降低部件模型的复杂程度,提高计算速度。基于部件神经网络模型的混合仿真方法既考虑了制冷系统的灵活性,又兼顾了计算速度和稳定性。为制冷系统仿真提供了新的可供选择的方向。
     2.深入分析神经网络建模的五个基本步骤,针对各个步骤可能存在的风险和问题展开了神经网络方法的改进研究,从而尽可能地降低神经网络模型的过拟合风险、提高模型在大范围工况内的精度、改善模型的趋势等。本文所提出的改进方法主要包括:
     a)对数据样本进行恰当合理的处理以改善模型的训练精度和趋势合理性,比如增加理论点、保持数据样本随输出参数的分布均匀性等。
     b)采用和物理模型相结合的方式对神经网络模型的输入输出参数进行分析选择,避免了参数的冗余和不足。
     c)自定义多项式传递函数,从理论上证明了多项式神经网络模型和多项式函数的等价性,有效避免了神经网络模型的过拟合的风险。
     d)根据研究对象的特性,优化神经网络的结构,既显著提高了神经网络模型的灵活性,又提高了模型的训练效率。作者应用这些改进方法建立了若干相关部件性能的神经网络模型,包括容积式压缩机、螺杆压缩机的多项式神经网络模型、毛细管和短管流量特性的通用神经网络模型、翅片管冷凝器性能的神经网络模型和翅片管蒸发器性能的神经网络模型。这些模型在部件层面进行了充分的精度和趋势验证,可以满足系统仿真的需求。
     3.混合仿真方法的实例验证。在部件模型的基础上实现了制冷系统的混合仿真,并进行了实验验证和分析:
     a)模拟了带经济器的水冷冷水机组的性能预测。由于采用了高精度而且连续的螺杆压缩机的神经网络模型,水冷冷水机组的模型实现了从满负荷到卸载负荷的连续仿真,显著改善了水冷冷水机组的部分负荷下的预测精度,96%的点误差在±5%以内。作者基于此高精度的冷水机组模型展开了经济器开关最优切换点的研究。
     b)模拟了轻型商用空调的性能预测。由于部件神经网络模型避免了迭代,随着部件物理模型不断被神经网络模型替代,在保证系统模型精度的前提下混合仿真方法不断提高了系统模型的计算速度。最终,与基于部件物理模型的系统模型相比,基于四部件神经网络模型的混合仿真方法的计算速度提高了12倍左右。
     最后,作者简要阐述了本文工作存在的不足和进一步的研究设想。
Computational simulation on refrigeration and air-conditioning appliances has been fairly developed for several decades, and has made a huge contribution to the design of products, optimization and energy saving.“Component-oriented”system modeling, which bases on physics-based component models, has good generality to be applied to different systems and can give reasonable trends prediction. Computational simulation should meet different needs under different phase and conditions. Currently, the simulation speed and robustness are new and clear requirements besides accuracy.
     In order to meet these requirements, a new approach of refrigeration system simulation has been presented in the present work, namely, hybrid modeling of refrigeration system based on Neural Network (NN) component model. The hybrid modeling integrates the merits and avoids the shortcomings of“component-oriented”system modeling and NN modeling. The hybrid modeling is the product of new modeling requirement, and can be regarded as an extension of system model based on physics-based component model. In detail, the main contents of present work include:
     1. Propose the hybrid modeling of refrigeration system based on NN component model clearly. What is hybrid modeling, why propose and how to realize hybrid modeling are stated in detail. In system modeling level, the hybrid modeling keeps the generality of“component-oriented”system model; in component modeling level, NN model simplifies component model and remarkably increases simulation speed. The hybrid modeling shows many merits including the genrality, quick simulation and good robustness. Therefore, the hybrid modeling is a new alternative solution of refrigeration system modeling.
     2. Improvement of five steps in development of NN model. Deep analysis was carried out at first, and then corresponding improvement methods to overcome shortcomings and mitigate risks in each step were proposed respectively. NN model property is improved, including reduction of over-fitting risk, improvement of accuracy in a large range, prediction of tendency and so on. The main improvement methods include:
     a) Reasonable processing of data sample to improve model’s accuracy and trends, such as adding theoritical points, even distribution of training data along with outputs other than inputs, and so on.
     b) Choose input and output parameters based on analysis of physics-based model to avoid redundancy or omission parameters.
     c) Specify polynomial transfer function which is proved identical to polynomial correlation. Over-fitting risk is avoided by this way in theory.
     d) Optimize NN structure according to the property of the object.
     Through this way, both flexibility of neural network and training efficiency are improved.
     3. Application of the hybrid modeling. Develop refrigeration system modeling based on developed component models, and then do experimental validation and analysis:
     a) Performance simulation of two economized water-cooled screw chillers. Due to the accurate and continuous NN model of screw compressor, the chiller model can simulate from full load to unload continuously, and the prediction accuracy under part load conditions are improved obviously.
     b) Performance simulation of a light commercial air-conditioner. Since NN component model avoids iteration, its simulation speed is much quicker than physics-based model. In turns, the hybrid model of the light commercial air-conditioner based on four NN component models can save simulation time dramatically. Compared to physics-based system model, simulation speed is improved around 12 times, and system model runs more robustly under working conditions.
     Finally, the author summarizes the present work and proposes the further research ideas in the field.
引文
[1]陈芝久.制冷系统热动力学初探.制冷学报,1987, 4: 1-10.
    [2]陈芝久,阙雄才,丁国良.制冷系统热动力学.北京:机械工业出版社,1998.
    [3]黄国强,陈芝久. HFC134a汽车空调系统动态仿真.制冷学报, 1994, 3: 41-47.
    [4] Zhijiu Chen, etc. Dynamic simulation and Optimal Matching of a small-scale Refrigeration system. International Journal of Refrigeration, 1991, 11: 329-355.
    [5]丁国良.小型制冷装置动态仿真与优化, [博士论文].上海:上海交通大学动力与能源工程学院, 1993.
    [6]丁国良,张春路,卢智利,沈宇纲.家用冰箱部件模型的分析与建模思想.系统仿真学报, 2003, 15(2): 173-175.
    [7]丁国良,张春路.制冷空调装置仿真与优化.科学出版社,2001.
    [8]张春路.基于模型的制冷空调装置智能仿真方法基础研究, [博士论文].上海:上海交通大学动力与能源工程学院, 1999.
    [9]丁国良,张春路.制冷空调装置智能仿真.科学出版社,2002.
    [10]葛云亭.房间空调器系统仿真模型研究, [博士论文].北京:清华大学, 1997.
    [11] Khan, J., Zubair, S.M. Design and performance evaluation of reciprocating refrigeration systems. International Journal of Refrigeration, 1999, 22: 235–243.
    [12] Gordon J.M., Ng K.C. Thermodynamic modeling for reciprocating chillers. Journal of Apply Physics, 1994, 75(6): 2769-2774.
    [13] Solati, B., Zmeureanu, R., Haghighat, F. Correlation based models for the simulation of energy performance of screw chillers. Energy Conversion and Management, 2003, 44: 1903-1920.
    [14] MacArthur, J.W., Grald, E.W. Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data. International Journal of Refrigeration, 1989, 12(1): 29-41.
    [15] Jung, D.S., Radermacher, R. Performance simulation of a single- evaporator domestic refrigerator charged with pure and mixed refrigerants. International Journal of Refrigeration, 1991, 14: 223–232.
    [16] Lemos, M.J.S., Zaparoli E.L. Steady-state numerical solution of vapor compression refrigeration units. In: International Refrigeration conference at Purdue, Purdue University, 1996. 235-240.
    [17] Browne, M.W., Bansal, P.K. Challenges in modeling vapor-compression liquid chillers. ASHRAE Transactions, 1998, 104: 474-486.
    [18] Browne, M.W., Bansal, P.K. Steady-state model of centrifugal liquid chillers. International Journal of Refrigeration, 1998, 21(5): 343-358.
    [19] Browne, M.W., Bansal, P.K. An elemental NTU-e model for vapor- compression liquid chillers. International Journal of Refrigeration, 2001, 24(7): 612-627.
    [20] Browne, M.W., Bansal, P.K. Different modeling strategies for in situ liquid chillers. Proceedings of the Institution Mechanical Engineers, 2001, 215 Part A: 357-374.
    [21] Fu, L., Ding, G., Su, Z., Zhao, G. Steady-state simulation of screw liquid chillers. Apply Thermal Engineering, 2002, 22: 1731-1748.
    [22] Le, C.V., Bansal, P.K., Tedford, J.D. Three-zone system simulation model of a multiple-chiller plant. Applied Thermal Engineering, 2004, 24: 1995-2015.
    [23] Le, C.V., Bansal, P.K., Tedford, J.D. Tedford, Simulation model of a screw liquid chiller for process industries using local heat transfer integration approach, Proc. IMechE 219 Part E: Journal of Process Mechanical Engineering, 2005, 95-107.
    [24] Zhang, W.J., Zhang, C.L., Ding, G.L. Transient modeling of an air-cooled chiller with economized compressor. Part I: Model development and validation, Applied Thermal Engineering, 2009, 29: 2396-2402.
    [25] Koury, R.N.N., Machado, L., Ismail, K.A.R. Numerical simulation of a variable speed refrigeration system. International Journal of Refrigeration, 2001, 24: 192-200.
    [26] Harms, T.M., Braun, J.E., Groll, E.A. The impact of modeling complexity and two phase flow parameters on the accuracy of system modeling for unitary air conditioners. HVAC&R Research, 2004, 10(1): 5-20.
    [27] Sarntichartsak, P., Monyakul, V., Thepa, S. Modeling and experimental study on performance of inverter air conditioner with variation of capillary tube using R-22 and R-407C. Energy Conversion Management, 2007, 48(2): 344-354.
    [28] Rozhentsev, A. Refrigerating machine operating characteristics under various mixed refrigerant mass charges. International journal of refrigeration, 2008, 31: 1145-1155.
    [29] Hermes, C.J.L., Melo, C., Knabben, F.T., Goncalves, J.M. Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation. Applied Energy, 2009, 86: 1311-1319.
    [30] Masuda, M., Wakahara, K., Marsuki, K., 1991. Development of a multi-system air conditioner for residential use. ASHRAE Transactions 97, 127–131.
    [31] Lijima, H., Tanaka, N., Sumida, Y., Nakamura, T. Development of a new multi-system air conditioner with concurrent heating and cooling operation. ASHRAE Transactions, 1991, 97: 309–315.
    [32] Ito, S., Miura, N. Studies of a heat pump using water and air heat sources in parallel. Heat Transfer– Asian Research, 2000, 29 (6): 473–490.
    [33] Field, A. News, markets and technical developments in the AC/R industries as reported in the European media. Japan Air Conditioning, Heating and Refrigeration News, 2002, 34 (3): 5.
    [34] Ji, J., Chow, T.T., Pei, G., Dong, J., He, W. Domestic air conditioner and integrated water heater for subtropical climate. Applied Thermal Engineering, 2003, 23: 581–592.
    [35] Shao, S.Q., Shi, W.X., Li, X.T., Yan, Q.S. Simulation model for complex refrigeration systems based on two-phase fluid network– Part I: Model development. International Journal of Refrigeration, 2008, 31: 490-499.
    [36] Shao, S.Q., Shi, W.X., Li, X.T., Yan, Q.S. Simulation model for complex refrigeration systems based on two-phase fluid network– Part II: Model application. International Journal of Refrigeration, 2008, 31: 500-509.
    [37] Kalogirou, SA. Applications of artificial neural networks in energy systems. A review. Energy Conversion Management, 1999, 40: 1073-1087.
    [38] Ding, G.L. Recent developments in simulation techniques for vapor-compression refrigeration systems. International Journal of Refrigeration, 2007, 30: 1119-1133.
    [39] Yang, K.T. Artificial neural networks (ANNs): a new paradigm for thermal science and engineering. ASME Journal of Heat Transfer, 2008, 130: 1-18.
    [40] Becthler, H., Browne, M.W., Bansal, P.K., Kecman, V. Neural networks - a new approach to model vapor-compression heat pumps. International Journal of Energy Research, 2001, 25(7): 591-599.
    [41] Swider, D.J., Browne, M.W., Bansal, P.K., Kecman, V. Modeling of vapor-compression liquid chillers with neural networks. Applied Thermal Engineering, 2001, 21: 311-329.
    [42] Ertunc, H.M., Hosoz, M. Artificial neural network analysis of a refrigeration system with an evaporative condenser. Applied Thermal Engineering, 2006, 26: 627-635.
    [43] Esen, H., Inalli, M., Sengur, A., Esen, M. Performance prediction of a ground-coupled heat pump system using artificial neural networks. Expert Systems with Applications, 2008, 35: 1940-1948.
    [44] Navarro-Esbr?, J., Berbegall, V., Verdu, Cabello, G., R., Llopis, R. A low data requirement model of a variable-speed vapor compression refrigeration system based on neural networks. International Journal of Refrigeration, 2007, 30: 1452-1459.
    [45] Sencan, A. Performance of ammonia–water refrigeration systems using artificial neural networks. Renewable Energy, 2007, 32: 314-328.
    [46] Yilmaz, S., Atik, K. Modeling of a mechanical cooling system with variable cooling capacity by using artificial neural network. Applied Thermal Engineering, 2007, 27: 2308-2313.
    [47] Arcaklioglu, E., Erisen, A., Yilmaz R. Artificial neural network analysis of heat pumps using refrigerant mixtures. Energy Conversion Management, 2004, 45: 1917-1929.
    [48] Swider, D.J. A comparison of empirically based steady-state models for vapor-compression liquid chillers. Applied Thermal Engineering, 2003, 23(5): 539-556.
    [49] Sha, W. Comment on‘‘Artificial neural network based modeling of heated catalytic converter performance’’by M. Ali Akcayol and Can Cinar [Applied Thermal Engineering 25 (2005) 23-41]. Applied Thermal Engineering, 2005, 27: 688-689.
    [50] ASHRAE. HVAC systems and equipment, Chapter 42. ASHRAE Handbook, 2000.
    [51]缪道平,吴业正.制冷压缩机.北京:机械工业出版社, 2004.
    [52]连生.涡旋压缩机.北京:机械工业出版社,1998.
    [53]吴业正.往复式压缩机数学模型及应用.西安:西安交通大学出版社, 1989.
    [54] Rasmussen, B.D., Jakobsen, A.. Review of compressor models and performance characterizing variables. Proceedings of the 2000 International Compressor Engineering Conference at Purdue (1): 515-522.
    [55] ARI. Positive displacement refrigerant compressors and compressor units. ARI 540-599, Air-conditioning and Refrigeration Institute, 1999.
    [56] Arthur, J.H., Beard, J.T., C. Bolton. Integration of compressor performance maps and NIST refrigerant database in an air conditioner thermal performance simulation model. Proceedings of the intersociety Energy Conversion Engineering Conference, 1997: 1265-1270.
    [57] Shao, S.Q., Shi, W.X., Li, X.T., Chen, H.J. Performance representation of variable-speed compressor for inverter air conditioners based on experimental data. International Journal of Refrigeration, 2004, 27: 805-815.
    [58]邵双全,石文星,李先庭,陈华俊.变频压缩机性能仿真建模. 2004, No.3.
    [59]奚东敏,谷波.变工况涡旋压缩机性能拟合方程的建立.制冷与空调, 2006, No.4.
    [60] Predrag, P., Howard, N.S. A semi-empirical method for modeling a reciprocating compressor in refrigeration system. ASHRAE Transaction 1995, 2: 367-382.
    [61] Dagmar, I.J., Douglas, T.R. Sanford, A.K.. A semi-empirical method for representing domestic refrigerator/freezer compressor calorimeter test data. ASHRAE Transaction 2000, 1: 122-130.
    [62] Kim, M.H., Clark, W.B. A simple approach to thermal performance analysis of small hermetic reciprocating compressors. ASHRAE Transaction 2001, 1: 109-119.
    [63] Ding, G.L., Li, H., Zhang, C.L. Study on thermodynamic model of a compressor with artificial neural networks. Chinese Journal of Mechanical Engineering, 1999, 12(1): 23-26.
    [64]王宝龙,石文星,李先庭.制冷空调用涡旋压缩机数学模型.清华大学学报(自然科学版), 2005, No.6.
    [65] Duprez, M.E., Dumont, E., Frère, M. Modeling of reciprocating and scroll compressors. International Journal of Refrigeration, 2007, 30: 873-886.
    [66]张春路,丁国良。小型制冷压缩机热力计算神经网络方法的改进。流体机械,2001, 37(1): 75-77.
    [67] ASHRAE, ASHRAE handbook– Refrigeration. Atlanta: American Society of Heating. Refrigerating and Air-Conditioning Engineers, Inc. (2002) chapter 45.
    [68] Li, R.Y., Lin, S., Chen, Z.H. Numerical modeling of thermodynamic non-equilibrium flow of refrigerant through capillary tubes. ASHRAE Transactions, 1990, 96(1): 542-549.
    [69] Kuehl, S.J., Goldschmidt, V.W. Modeling of steady flows of R-22 through capillary tubes. ASHRAE Transactions 1991, 97(1): 139-148.
    [70] Escanes, F., Perez-Segarra, C.D., Oliva, A. Numerical simulation of capillary-tube expansion devices. International Journal of Refrigeration, 1995, 18(2): 113-122.
    [71] Bittle, R.R., Pate, M.B. A theoretical model for predicting adiabatic capillary tubeperformance with alternative refrigerants. ASHRAE Transactions, 1996, 102(2): 52-64.
    [72] Garcia-Valladares, O., Perez-Segarra, C.D., Oliva, A. Numerical simulation of capillary tube expansion devices behavior with pure and mixed refrigerants considering metastable region, Part I: mathematical formulation and numerical model. Applied Thermal Engineering, 2002, 22(2): 173-182.
    [73] Zhang, C.L., Ding, G.L. Modified general equation for the design of capillary tubes. ASME Journal of Fluids Engineering, 2001, 123(4): 914-919.
    [74] Zhang, C.L., Ding, G.L. Approximate analytic solutions of adiabatic capillary tube. International Journal of Refrigeration, 2004, 27(1): 17-24.
    [75] Wijaya, H. Adiabatic capillary tube test data for HFC-134a. Proc, The IIR-Purdue Refrigeration Conference, West Lafayette, 1992, Ind. 1: 63-71.
    [76] Fiorelli, F.A.S., Huerta, A.A.S., Silvares, O.M. Experimental analysis of refrigerant mixtures flow through adiabatic capillary tubes. Experimental Thermal and Fluid Science, 2002, 26: 499-512.
    [77] Fiorelli, F.A.S., Silvares, O.M. Refrigerant mixtures flow through capillary tubes: a comparison between homogeneous and separated-flow models. HVAC&R Research, 2003, 9(1): 33-53.
    [78] Yana Motta, S.F., Parise, J.A.R., Braga, S.L. A visual study of R-404A/oil flow through adiabatic capillary tubes. International Journal of Refrigeration, 2002, 25: 586-596.
    [79] Fukuta, M., Yanagisawa, T., Arai, T., Ogi, Y. Influences of miscible and immiscible oils on flow characteristics through capillary tube, part I: experimental study. International Journal of Refrigeration, 2003, 26: 823-829.
    [80] Garcia-Valladares, O. Review of numerical simulation of capillary tube using refrigerant mixtures. Applied Thermal Engineering, 2004, 24: 949-966.
    [81] Bansal, P.K., Rupasinghe, A.S. An empirical model for sizing capillary tubes. International Journal of Refrigeration, 1996, 19(8): 497-505.
    [82] Jung, D., Park, C., Park, B. Capillary tube selection for HCFC22 alternatives. International Journal of Refrigeration, 1999, 22(8): 604-614.
    [83] Chen, S.L., Liu, C.H., Cheng, C.S., Jwo, C.S. Simulation of refrigerants flowing through adiabatic capillary tubes, HVAC&R Research, 2000, 6(2): 101-115.
    [84] Trisaksri, V., Wongwises, S. Correlations for sizing adiabatic capillary tubes.International Journal of Energy Research, 2003, 27: 1145-1164.
    [85] Bittle, R.R., Wolf, D.A., Pate, M.B. A generalized performance prediction method for adiabatic capillary tubes. HVAC&R Research, 1998, 4(1): 27-43.
    [86] Melo, C., Ferreira, R.T.S., Neto, C.B., Goncalves, J.M., Mezavila, M.M. An experimental analysis of adiabatic capillary tubes. Applied Thermal Engineering, 1999, 19(6): 669-684.
    [87] Wei, C.Z., Lin, Y.T., Wang, C.C., Leu, J.S. Experimental study of the performance of capillary tubes for R-407C refrigerant. ASHRAE Transactions, 1999, 105(2): 634-638.
    [88] Kim, S.G., Kim, M.S., Ro, S.T. Experimental investigation of the performance of R22, R407C and R410A in several capillary tubes for air-conditioners. International Journal of Refrigeration, 2002, 25: 521-531.
    [89] Choi, J., Kim, Y., Kim, H.Y. A generalized correlation for refrigerant mass flow rate through adiabatic capillary tubes. International Journal of Refrigeration, 2003, 26(7): 881-888.
    [90] Choi, J., Kim, Y., Chung, J.T. An empirical correlation and rating charts for the performance of adiabatic capillary tubes with alternative refrigerants. Applied Thermal Engineering, 2004, 24(1): 29-41.
    [91] Zhang, C.L. Generalized correlation of refrigerant mass flow rate through adiabatic capillary tubes using artificial neural network. International Journal of Refrigeration, 2005, 28: 506-514.
    [92] Aaron, D.A., Domanski, P.A. Experimentation analysis and correlation of refrigerant-22 flow through short tube restrictors. ASHRAE transactions, 1990, 96 (1): 729-742.
    [93] Singh, G.M., Hrnjak, P.S., Bullard, C.W. Flow of refrigerant 134a through short tubes. HVAC&R Research, 2001, 7(3): 245-262.
    [94] Kim, Y., O’Neal, D.L., Yuan, X.L. Two-phase flow of HFC-134a and CFC-12 through short-tube orifices. ASHRAE Transactions, 1994, 100(2): 582-591.
    [95] Kim, Y., O’Neal, D.L. Two-phase flow of R-22 through short-tube orifices. ASHRAE Transactions, 1994, 100(1): 323-334.
    [96] Payne, W.V., O’Neal, D.L. Multiphase flow of refrigerant 410A through short tube orifices. ASHRAE Transactions, 1999, 105(2): 66-74.
    [97] Payne, W.V., O’Neal, D.L. Mass flow characteristic of R407C through short tubeorifices. ASHRAE Transactions, 1998, 104(1): 197-209.
    [98] Choi, J., Chung, J.T., Kim, Y. A generalization correlation for two-phase flow of alternative refrigerants through short tube orifices. International Journal of Refrigeration, 2004, 27: 393-400.
    [99] Kim, Y., Payne, V., Choi, J., Domanski, P. Mass flow rate of R-410A through short tubes working near the critical point. International Journal of Refrigeration, 2005, 28: 547-553.
    [100] Payne, V., O’Neal, D.L. A mass flow rate correlation for refrigerants and refrigerant mixtures flowing through short tubes. HVAC&R Research, 2004, 10(1): 73-87.
    [101] Yang, L., Zhang, C.L. Two-fluid model of refrigerant two-phase flow through short tube orifices. International Journal of Refrigeration, 2005, 28: 419-427.
    [102] Motta, S.Y., Braga, S.L., Parise, J.A.R. Critical flow of refrigerants through adiabatic capillary tubes: experimental study of zeotropic mixtures R407C and R404A. ASHRAE Transactions, 2000, 534-549.
    [103] Pacheco-Vega, A. Simulation of compact heat exchangers using global regression and soft computing. PhD thesis. 2002. University of Notre Dame.
    [104] Sastry, U.A. Solution of the heat transfer of laminar forced-convection in non-circular pipes. Applied Science and Research, 1964, A13: 269-280.
    [105] Sastry, U.A. Heat transfer and laminar forced convection in multiple connected cross-section. Indian Journal of Pure and Applied Physics, 1965, 3: 113-116.
    [106] Haji-Sheikh, A., Mashena, M., and Haji-Sheikh, M.J. Heat transfer coefficient in ducts with constant wall temperature. ASME Journal of Heat Transfer, 1983, 105: 878-883.
    [107] Yang, K.T. Artificial neural networks (ANNs): a new paradigm for thermal science and engineering. ASME J. Heat Transfer, 2008, 130: 1-18.
    [108] Bastani, A., Fiebig, M., and Mitra, N.K. Numerical studies of a compact fin-tube heat exchanger. in: Design and Operation of Heat Exchangers, Roetzel, W., Heggs, P.J. and Butterworth, D. (Eds.), Springer-Verlag, Berlin, 1992, 154-163.
    [109] Corberan, J.M., and Melon, M.G. Modeling of plate finned tube evaporators and condensers working with R134A. International Journal of Refrigeration, 1998, 21(4): 273-284.
    [110] Torikoshi, K., Xi, G., Nakazawa, Y., and Asano, H. Flow and heat transfer performance of a plate-fin and tube heat exchanger, first report: effect of fin pitch. in: Proceedings of the Tenth International Heat Transfer Conference, 1994, 411-416.
    [111] Goering, D.J., Humphrey, J.A.C., and Greif, R. The dual influence of curvature and buoyancy in fully developed tube flows. International Journal of Heat Mass Transfer, 1997, 40(9): 2187-2199.
    [112] Ranganayakulu, C., and Seetharamu, K.N. The combined effects of wall longitudinal heat conduction, inlet fluid flow nonuniformity and temperature nonuniformity in compact tube-fin heat exchangers: a finite element method. International Journal of Heat Mass Transfer, 1999, 42(2): 263-273.
    [113] Yan, Y.Y., and Lin, T.F. Evaporation heat transfer and pressure drop of refrigerant R-134a in a plate heat Exchanger. ASME Journal of Heat Transfer, 1999, 118 (1): 118-127.
    [114] Srinivasan, V., and Shah, R.K. Condensation in compact heat exchangers. Journal of Enhanced Heat Transfer, 1997, 4(4): 237-256.
    [115] Kandlikar, S.G. A model for correlating of boiling heat-transfer in augmented tubes and compact evaporators. ASME J. Heat Transfer, 1991, 113 (4): 966-972.
    [116] Corberan, J.M., Melon, M.G. Modeling of plate finned tube evaporators and condensers working with R134A. International Journal of Refrigeration, 1998, 21(4): 273-284.
    [117] Ranganayakulu, C., Seetharamu, K.N. The combined effects of wall longitudinal heat conduction, inlet fluid flow nonuniformity and temperature nonuniformity in compact tube-fin heat exchangers: a finite element method. International Journal of Heat Mass Transfer, 1999, 42(2): 263-273.
    [118] Darrow, J.B., Lovatt, S.J., Cleland, A.C. Assessment of a simple mathematical model for predicting the transient behavior of a refrigeration system. In: XVIIIth Int. Cong. Refrigeration, Montreal, 1991, 1189-1192.
    [119] Murphy, W.E., Goldschmidt, V.W. Cycling characteristics of a residential air conditioner. Modeling of shutdown transients. ASHRAE Transactions, 1986, 92(1a): 186-201.
    [120] Welsby, P., Devotta, S., Diggory, P.J. Steady- and dynamic state simulations of heat-pumps. Part I: literature review. Applied Energy, 1988, 31: 189-203.
    [121] Salim, M., Sadasivam, M., Balakrishnan, A.R. Transient analysis of heat pump assisted ditillation systems I. The heat pump. International Journal of Energy Research, 1991, 15: 123-35.
    [122] Judge, J., Radermacher. R. A heat exchanger model for mixtures and pure refrigerant cycle simulations. International Journal of Refrigeration, 1997, 20: 244-55.
    [123] Theerakulpisut, S., Priprem, S. Modeling cooling coils. International Communications in Heat and Mass Transfer, 1998, 25: 127-37.
    [124] Lee, J.H., Bae, S.W., Bang, K.H., Kim, M.H. Experimental and numerical research on condenser performance for R22 and R407C refrigerants. International Journal of Refrigeration, 2002, 25: 372-82.
    [125]刘建.基于图论的翅片管式换热器三维稳态模型研究, [博士论文].上海:上海交通大学机械与动力工程学院, 2005.
    [126] Liu, J., Wei, W.J., Ding, G.L., Zhang, C.L., Fukaya, M., Wang, K.J., and Inagaki, T. A general steady state mathematical model for fin-and-tube heat exchanger based on graph theory. International Journal of Refrigeration, 2004, 27: 965-973.
    [127] Sen, M. and Yang, K.T. Applications of artificial neural networks and genetic algorithms in thermal engineering. Section 4.24, 2000, 620-661, in The CRC Handbook of Thermal Engineering, (Ed.) F. Kreith, CRC Press, Boca Raton, FL.
    [128] Thibault, J., and Grandjean, B. P. A. Neural Network Methodology for Heat Transfer Data Analysis. International Journal of Heat Mass Transfer, 1991, 34(8): 2063-2070.
    [129] Jambunathan, K., Hartle, S. L., Ashforth-Frost, S., and Fontama, V. N. Evaluating Convective Heat Transfer Coefficients Using Neural Networks. International Journal of Heat and Mass Transfer, 1996, 39(11): 1241-1256.
    [130] Sablani, S.S., Kacimov, A., Perret, J., Mujumdar, A.S., and Campo, A. Non-iterative estimation of heat transfer coefficients using artificial neural network models. International Journal of Heat and Mass Transfer, 2005, 48: 665-679.
    [131] Zdanuik, G.J., Chamra, L.M., Walters, D.K. Correlating heat transfer and friction in helically-finned tubes using artificial neural networks. International Journal of Heat and Mass Transfer, 2007, 50: 4713-4723.
    [132] Peng, H., and Ling, X. Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms. Applied Thermal Engineering,2008, 28: 642-650.
    [133] Domanski, P.A., Yashar, D. Optimization of finned-tube condensers using an intelligent system. International Journal of Refrigeration, 2007, 30: 482-488.
    [134] Pacheco-Vega, A., Diaz, G., Sen, M., Yang, K.T., and McClain, R.L. Heat rate predictions in humid air-water heat exchanger using correlations and neural networks. ASME Journal of Heat Transfer, 2001, 123: 348-354.
    [135] Pacheco-Vega, A., Sen, M., Yang, K.T. and McClain, R.L. Neural network analysis of fin-tube refrigerating heat exchanger with limited experimental data. International Journal of Heat and Mass Transfer, 2001, 44: 763-770.
    [136] Xie, G.N., Wang, Q.W., Zeng, M., Luo, L.Q. Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach. Applied Thermal Engineering, 2007, 27: 1096-1104
    [137] Islamoglu, Y. A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger––use of an artificial neural network model. Applied Thermal Engineering, 2003, 23: 243-249
    [138] Wu, Z.G., Zhang, J.Z., Tao, Y.B., He, Y.L., and Tao, W.Q. Application of artificial neural network method for performance prediction of a gas cooler in a CO2 heat pump. International Journal of Heat and Mass Transfer, 2008, 51: 5459-5464.
    [139] McIntosh I.B.D., Mitchell J.W., Beckman A. Fault detection and diagnosis in chillers part I: Model development and application. ASHRAE Transactions, 2000, 106(2): 268-82.
    [140] Jia, Y., Reddy, T.A. Characteristic physical parameter approach to modeling chillers suitable for fault detection, diagnosis, and evaluation. ASME Journal of Solar Energy Engineering, 2003, 125: 258-265.
    [141]伏龙.螺杆式制冷机组仿真的研究及应用, [博士论文].上海:上海交通大学机械与动力工程学院, 2003.
    [142]张伟江.蒸汽压缩式制冷系统动态特性通用建模方法及其在控制研究中的应用, [博士论文].上海:上海交通大学机械与动力工程学院, 2009.
    [143] Hornik, K., Stinchcombe M., and White, H., 1989. Multilayer feedforward networks are universal approximator. Neural Networks 2, 359-366.
    [144] Wang, W.J., Zhao, L.X., Zhang, C.L. Generalized Neural Network Correlation for Flow Boiling Heat Transfer of R22 and its Alternative Refrigerants inside HorizontalSmooth Tubes. International Journal of Heat and Mass Transfer, 2006, 49: 2458-2465.
    [145] MATLAB 2007. The MathWorks Inc. USA.
    [146]王智平,刘在德等.遗传算法在BP网络权值学习中的应用.甘肃大学学报, 2001, 27(2).
    [147]郭晓婷,朱岩.基于遗传算法的进化神经网络.清华大学学报,2000, 40(10).
    [148] Dabiri, A.E., Rice, C.K. A compressor simulation model with corrections for the level of suction gas superheat. ASHRAE Transactions, 1981, 87(2): 771-782.
    [149] Incropera, F.P., Dewitt, D.P., 1985. in: Fundamentals of Heat and Mass Transfer, second ed., John Wiley and Sons, New York, pp. 336.
    [150] Longo, G.A., Gasparella, A. Refrigrant R134a vaporization heat transfer and pressure drop inside a small brazed plate heat exchanger. International Journal of Refrigeration, 2007, 30: 821-830.
    [151] ARI Standard 550/590, Performance rating for water-chilling packages using the vapor compression cycles. ARI Standard (2003).
    [152] Gungor, K.E., Winterton, R.H.S. A general correlation for boiling in tubes and annuli. International Journal of Heat and Mass Transfer, 1986, 19: 351-358.
    [153] Pierre, B. Flow resistance with boiling refrigerants. Part I, ASHRAE Journal, 1964, 58-65.
    [154] Wang, C.C., Du, J.Y. A heat transfer and friction correlation for wavy fin and tube heat exchangers. International Journal of Heat and Mass Transfer, 1999, 42: 1919-1924.
    [155] REFPROP 7.0, 2002. Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Gaithersburg, MD 20899, USA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700