COX-2、CCR7促进肿瘤转移机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章COX-2、CCR7表达与大肠癌转移的关系
     目的探讨COX-2、CCR7表达与大肠癌组织病理分化、浸润深度、淋巴转移等临床病理学参数的关系,并分析COX-2、CCR7表达的相关性。
     方法采用免疫组织化学方法对大肠癌组织80例、大肠癌癌旁组织40例石蜡包埋切片进行染色,检测COX-2、CCR7的表达,分析其在大肠癌组织的表达与临床病理学参数的关系,对COX-2、CCR7的表达进行相关性分析。
     结果在大肠癌组织,COX-2、CCR7均高表达,表达率分别为72.5%和67.5%,二者表达有相关性(P<0.05)。COX-2、CCR7的表达均与肿瘤的浸润深度、TNM分期、淋巴转移、肿瘤大小相关(P<0.05),与大肠癌患者的诊断年龄、性别等因素无关(P>0.05)。CCR7的表达与肿瘤的病理分化、肿瘤部位相关,但COX-2的表达与此无关。
     结论COX-2、CCR7在大肠癌组织高表达,二者表达有相关性。COX-2、CCR7的表达与大肠癌的浸润深度、TNM分期、淋巴转移、肿瘤大小等临床病理学参数有关。提示临床上联合检测COX-2和CCR7对大肠癌转移的预测可能会有所帮助。
     第二章COX-2、CCR7表达与乳腺癌转移的关系
     目的探讨COX-2、CCR7表达与乳腺癌组织病理分化、浸润深度、淋巴转移等临床病理学参数的关系,并分析COX-2、CCR7表达的相关性。
     方法采用免疫组织化学方法对乳腺癌组织80例、乳腺癌癌旁组织15例石蜡包埋切片进行染色,检测COX-2、CCR7的表达,分析其表达与临床病理学参数的关系,对COX-2、CCR7的表达进行相关性分析。
     结果在乳腺癌组织,COX-2、CCR7均高表达,表达率分别为42.5%和38.8%,二者表达有相关性(P<0.05)。COX-2、CCR7高表达均与肿瘤的病理分化、肿瘤大小、淋巴转移、TNM分期相关(P<0.05),与组织学分型、患者年龄无关。
     结论COX-2、CCR7在乳腺癌组织高表达,二者表达有相关性。COX-2、CCR7的表达与乳腺癌的病理分化、TNM分期、淋巴转移、肿瘤大小等临床病理学参数有关。提示临床上联合检测COX-2和CCR7对乳腺癌转移的预测可能会有所帮助。
     第三章COX-2对肿瘤细胞CCR7表达的调节
     目的探讨COX-2对肿瘤细胞CCR7表达的调节及其机制。
     方法用NS-398、PGE_2、Con A、EP受体激动/抑制剂作用于肿瘤细胞MDA-MB-231、SW620,RT-PCR、Western blot在mRNA和蛋白水平检测其对肿瘤细胞CCR7表达的影响,Fura-2/AM、趋化小室研究NS-398、PGE_2、Con A等化合物作用于肿瘤细胞MDA-MB-231、SW620后,其对CCL21刺激引起的胞内钙离子内流、趋化细胞和侵袭细胞的影响。
     结果在MDA-MB-231和SW620细胞,均可检测到COX-2高表达,CCR7在两者有不同程度的表达,EP_1、EP_2、EP_4受体表达于MDA-MB-231和SW620细胞,EP_3受体仅表达于前者。NS-398(10μmol/L)、AH-23848(10μmol/L)能抑制二者CCR7表达,抑制CCL21刺激的钙离子内流和趋化、侵袭能力,而PGE_2、Con A的作用则与其相反,SC-19220、17-phenyl trinor PGE_2、AH-6809阻断或激动其他EP受体后,没有观察到此变化。说明NS-398(10μmol/L)、AH-23848(10μmol/L)能降低MDA-MB-231、SW620细胞CCR7的功能性表达,抑制肿瘤的转移;PGE_2、Con A则能促进其功能性表达,促进肿瘤的转移。
     结论在MDA-MB-231、SW620细胞,抑制COX-2和EP_4受体能下调CCR7的功能性表达,为进一步研究COX-2、CCR7促进肿瘤转移的机制提供了理论基础,也提示COX-2与CCR7表达在肿瘤转移中有协同作用,及他们在肿瘤干预治疗中的潜在应用价值。
     第四章siRNA-CCR7对肿瘤细胞转移的影响
     目的体外实验探讨siRNA-CCR7对肿瘤转移的影响及其与VEGF-C、VEGF-D、VEGF-A的关系。
     方法运用siRNA实验技术,构建抑制CCR7表达的siRNA载体,稳定转染表达CCR7的肿瘤细胞株MDA-MB-231、SW620,在mRNA和蛋白水平检测其对肿瘤细胞CCR7的抑制作用和VEGF-C、VEGF-D、VEGF-A表达的变化;再用钙离子内流、趋化及侵袭实验检测其对肿瘤细胞趋化、侵袭能力的影响。
     结果稳定转染siRNA1、siRNA2的MDA-MB-231、SW620细胞,在mRNA、蛋白水平均能有效抑制肿瘤细胞CCR7的表达,并能抑制CCL21刺激的趋化和侵袭能力。在MDA-MB-231细胞,siRNA1、siRNA2能抑制肿瘤细胞CCR7、VEGF-C的表达,不影响MDA-MB-231、SW620细胞VEGF-D、VEGF-A的表达。SW620细胞没有检测到VEGF-C的表达。
     结论siRNA-CCR7能有效的抑制乳腺癌和大肠癌细胞的趋化和侵袭,抑制CCR7可下调VEGF-C表达。这一实验结果为我们进一步探讨CCR7在肿瘤转移中的作用及探讨CCR7化学抑制剂或中药成分具有重要启示作用。
Chapter one Correlation between the expression of COX-2 and CCR7in colorectal cancer and tumor metastasis
     Objective This study was designed to evaluate the coexpression ofCOX-2 and CCR7 in human colorectal cancer and determine theirrelationships and correlations with lymph node metastasis, tumordifferentiation, invasion depth, lymphatic metastasis and otherclinicopathologic parameters.
     Methods Tissue samples of primary tumors from 80 colorectalcancer patients and normal colorectal tissue samples from 40 colorectalcancer patients, undergoing paraffin imbedding slices wereimmunohistochemically examined for COX-2 and CCR7 expressions.
     Results COX-2 and CCR7 were highly expressed in colorectalcancer tissues, the positive rate of COX-2 and CCR7 in the primarytumor was 72.5%and 67.5%, respectively. A significant correlation wasfound between the expression scores of COX-2 and CCR7 (P<0.05), andboth also were correlated with several clinicopathologic parameters,including invasion depth, lymph node metastasis, TNM stage andprimary tumor size, but both were not related to patients' age, sex andother factors (P>0.05). In addition, only CCR7 expression was associatedwith histology and tumor site (P<0.05).
     Conclusions High expression of COX-2 and CCR7 in humancolorectal cancer was a significantly correlated. COX-2 and CCR7 weresignificantly associated with clinicopathologic parameters, includinginvasion depth, lymph node metastasis, TNM stage and primary tumorsize. This indicate that detection of COX-2 and CCR7 will be helpful topredicting the metastasis of colorectal cancer in clinic.
     Chapter 2 Correlation between the expression of COX-2 and CCR7 inbreast cancer and tumor metastasis
     Objective This study was designed to assesse the coexpression ofCOX-2 and CCR7 in human breast cancer and analyze their relationships and correlations with lymph node metastasis and tumor differentiation,invasion depth, lymphatic metastasis and other clinicopathologicparameters.
     Methods Tissue samples of primary tumors from 80 breast cancerpatients and normal breast tissue samples from 15 breast cancer patients,undergoing paraffin imbedding slice were immunohistochemicallyexamined for COX-2 and CCR7 expressions. Then, we analyzed theirrelationships and correlations with clinicopathologic parameters.
     Results COX-2 and CCR7 were over expression in breast cancertissues, the positive rate of COX-2 and CCR7 in the primary tumor was42.5% and 38.8%, respectively. A significant correlation was foundbetween the expression scores of COX-2 and CCR7 (P<0.05), and bothalso were correlated with several clinicopathologic parameters, includinglymph node metastasis, histology, primary tumor size and TNM stage(P<0.05), but both were not related to histology type and patients' age(P>0.05).
     Conclusions The over expression of COX-2 and CCR7 in humanbreast cancer were correlated, COX-2 and CCR7 were significantlyassociated with clinicopathologic parameters, including lymph nodemetastasis, histology, primary tumor size, TNM stage. This resultsindicate that detection of COX-2 and CCR7 might be a co-marker ofprediction the metastasis of breast cancer.
     Chapter 3 Regulation of CCR7 expression in tumor cells by COX-2
     Objective To study the regulation of CCR7 expression by COX-2and its mechanism.
     Methods Detected the expression of CCR7 in mRNA and proteinlevels by RT-PCR, immune-histochemicaI and Western blot inMDA-MB-231 and SW620 cells, which incubated with NS-398、PGE_2、Con A、EP receptor agonists or antagonist, then investigated the effect ofthe influx of [ca~(2+)]_i, chemotacfic and invasive responses after the treatedtumor cells stimulated by CCL21, through Fura-2/AM and Chemotacticchamber.
     Results COX-2 was over expressed in MDA-MB-231 and SW620cells, CCR7 was expressed in these cells at different levels, EP_1, EP_2, EP_4receptors were expressioned in MDA-MB-231 and SW620 cells, but onlycan be detected the expression of EP_3 in MDA-MB-231 cells. In bothcells could be found the expressed of CCR7, and the calciummobilization, chemotactic and invasive responses activated by CCL21were significantly inhibited when treated with NS-398 (10μmol/L) andAH-23848 (10μmol/L). The negative results could be detected whentreated with PGE_2 (10μmol/L) and Con A (1mg/ml). There were notsignificant differences when treated with SC-19220、17-phenyl trinorPGE_2、AH-6809. These showed that NS-398, AH-23848 could reduce thefunctional expression of CCR7 in MDA-MB-231, SW620 cells, andpromote tumor metastasis, but PGE_2, Con A were the negative.
     Conclusions In the MDA-MB-231 and SW620 cells, the inhibitorsof COX-2 and EP_4 receptor can down-regulate the functional expressionof CCR7, will be helpful to further studying the mechanism of COX-2and CCR7 in promoting tumour metastasis, and indicate the synergiceffect of COX-2 and CCR7 in tumour metastasis and the potential role incancer therapy.
     Chapter 4 Silencing of CCR7 for Ihibition of tumor metastasis
     Objective To study the effect of siRNA-CCR7 in tumor metastasisand its relationship with VEGF-C, VEGF-D, VEGF-A in vitro.
     Methods Detected the varied expression of CCR7, VEGF-C,VEGF-D and VEGF-A in mRNA and/or protein levels in MDA-MB-231and SW620 cells stable transfected into siRNAs vectors targeted CCR7,then assessed the effect of the influx of [ca~(2+)]I, chemotactic and invasiveresponses after the stable transfected cells stimulated by CCL21, throughCa~(2+) Mobilization and Matrigel invasion assay.
     Results Inhibition of CCR7 expression at the mRNA and proteinlevels could be deteced in MDA-MB-231 and SW620 cells stabletransfected siRNA1, siRNA2 vectors, and the inhibiton of influx of [ca2+]i, chemotactic and invasive responses stimulated by CCL21 also could be found in these cells. In MDA-MB-231 cells, siRNA1, siRNA2 couldinhibit the expression of CCR7, VEGF-C, but not affected the expressionof VEGF-D, VEGF-A in both cells. The expression of VEGF-C inSW620 cells was not detected.
     Conclusions Inhibition of CCR7 expression by a siRNA impairschemotactic, invasion and VEGF-C expression of cancer cell lines. It willlay a solid basis for us to further study the role of CCR7 in tumourmetastasis and CCR7 specific inhibitor.
引文
[1] Anggard E, Matschinsky FM, Samuelsson B, et al. Prostaglandins enzymatic analysis. Science, 1969,163: 479-480
    [2] Nugteren DH, Van Dorp DA, Bergstrom S, et al. Absolute configuration of the prostaglandins. Nature, 1966; 212: 38-39
    [3] Feng L, Wang Z. Chemopreventive effect of celecoxib in oral precancers and cancers. Laryngoscope, 2006, 116(10): 1842-1845
    [4] Takaoka K, Kishimoto H, Segawa E, et al. Elevated cell migration, invasion and tumorigenicity in human KB carcinoma cells transfected with COX-2 cDNA. Int J Oncol, 2006, 29(5): 1095-1101
    [5] Kanaoka S, Takai T, Yoshida K. Cyclooxygenase-2 and tumor biology. Adv Clin Chem, 2007, 43: 59-78
    [6] Onguru O, Kurt B, Gunhan O, et al. Cyclooxygenase-2 (COX-2) expression and angiogenesis in intracranial ependymomas. Clin Neuropathol, 2006, 25(5): 216-220
    [7] Takashi Kuwano, Shintaro Nakao, Hidetaka Yamamoto, et al. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. The FASEB Journal, 2004, 18: 300-310
    [8] Fujimoto J, Toyoki H, Sato E, et al. Expression of cyclooxygenase-2 related to angiogenesis in uterine cervical cancers. J Biomed Sci, 2006,13(6): 825-832
    [9] Simeone AM, Nieves-Alicea R, McMurtry VC, et al Cyclooxygenase-2 uses the protein kinase C/ interleukin-8/urokinase-type plasminogen activator pathway to increase the invasiveness of breast cancer cells. Int J Oncol, 2007, 30(4): 785-792
    [10] Siironen P, Ristimaki A, Narko K, et al. VEGF-C and COX-2 expression in papillary thyroid cancer. Endocr Relat Cancer, 2006, 13(2): 465-473
    [11] Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 2004, 4: 71-78
    [12] Sonoshita M, Takaku K, Sasaki N, et al. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc (Delta716) knockout mice. Nat Med, 2001, 7:1048-1051
    [13] Chun KS, Akunda JK, Langenbach R.Cyclooxygenase-2 inhibits UVB-induced apoptosis in mouse skin by activating the prostaglandin E2 receptors, EP2 and EP4. Cancer Res, 2007, 67(5): 2015-2021
    [14] Yang L,' Huang Y, Porta R,et al. Host and Direct Antitumor Effects and Profound Reduction in Tumor Metastasis with Selective EP4 Receptor Antagonism.Cancer Res, 2006, 66(19): 9665-9672
    [15] Tammali R, Ramana KV, Singhal SS,et al. Aldose reductase regulates growth factor-induced cyclooxygenase-2 expression and prostaglandin E2 production in human colon cancer cells. Cancer Res, 2006, 66(19): 9705-9713
    [16] Fulton AM, Ma X, Kundu N. Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Res, 2006, 66(20): 9794-9797
    [17] Labile Togba Soumaoro, Hiroyuki Uetake, Tetsuro Higuchi,et al. Cyclooxygenase-2 Expression: A Significant Prognostic Indicator for Patients With Colorectal Cancer. Clinical Cancer Research, 2004, 1: 8465-8471
    [18] Ari Ristima¨ki, Anna Sivula, Johan Lundin, et al. Prognostic Significance of Elevated Cyclooxygenase-2 Expression in Breast Cancer. Cancer Research, 2002, 62: 632-635
    [19] Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell, 1995, 83: 493-501
    [20] Kakiuchi Y, Tsuji S, Tsujii M. Cyclooxygenase-2 activity altered the cell-surface carbohydrate antigens in colon cancer cells and enhanced liver metastasis. Cancer Res, 2002, 62: 1567-1572
    [21] Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA, 1997, 94: 3336-3340
    [22] Fernandez PM, Manyak MJ, Patierno SR. Effect of the cyclooxygenase-2 selective inhibitor NS398 on the secretion of matrix metalloproteinases (MMP-2 and MMP-9) and tissue inhibitors of metalloproteinase (TEV1P-1 and TIMP-2) from human prostate tumor cells. Proc Am Assoc Cancer Res, 2000, 41: 131-132
    [23] FolRmun J, Tumorangiogenesis: Therapeutic implications. N Engl J Med, 1971,285:1182
    [24] Tuomas Tammela, Berndt Enholm, Kari Alitalo,et al.The biology of vascular endothelial growth factors.Cardiovascular Research, 2005, 65: 550- 563
    [25] Su JL, Yen CJ, Chen PS, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer, 2007, 96(4): 541-545
    [26] Wissmann C, Detmar M. Pathways targeting tumor lymphangiogenesis. Clin Cancer Res, 2006,12(23): 6865-6868
    [27] Hamadu K, oike Y, Takakura N, et al. VEGF C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood, 2000, 96(12): 3793-3800
    [28] Valtola R, Saven P, Heikkialp. VEGFR-3 and its ligand VEGF C are associated with angiogenesis in breast cancer. Am J polthol, 1999, 154(5): 1381-1390
    [29] Guo X, Chen L, Lang R,Et al. Invasive micropapillary carcinoma of the breast: association of pathologic features with lymph node metastasis. Am J Clin Pathol, 2006, 126(5): 740-746
    [30] Adachi Y, Nakamura H, Kitamura Y, et al. Lymphatic vessel density in pulmonary adenocarcinoma immunohistochemically evaluated with anti-podoplanin or anti-D2-40 antibody is correlated with lymphatic invasion or lymph node metastases. Pathol Int, 2007, 57(4): 171-177
    [31] Ding S, Li C, Lin S, et al. Distinct roles of VEGF-A and VEGF-C in tumour metastasis of gastric carcinoma. Oncol Rep, 2007, 17(2): 369-375
    [32] Warburton G, Nikitakis NG, Roberson P, et al. Histopathological and Lymphangiogenic Parameters in Relation to Lymph Node Metastasis in Early Stage Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg, 2007, 65(3): 475-484
    [33] Loges S, Clausen H, Reichelt U, et al. Determination of microvessel density by quantitative real-time PCR in esophageal cancer: correlation with histologic methods, angiogenic growth factor expression, and lymph node metastasis. Clin Cancer Res, 2007, 13(1): 76-80
    [34] Li YS, Kaneko M, Amatya VJ, et al. Expression of vascular endothelial growth factor-C and its receptor in invasive micropapillary carcinoma of the breast. Pathol Int, 2006, 56(5): 256-261
    [35] Parr C, Jiang WG.Quantitative analysis of lymphangiogenic markers in human colorectal cancer. Int J Oncol, 2003, 23(2): 533-539
    [36] Hirakawa S, Brown LF, Kodama S, et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood, 2007,109(3): 1010-1017
    [37] Schoppmann SF, Fenzl A, Schindl M, et al. Hypoxia inducible factor-1 alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Treat, 2006, 99(2): 135-141
    [38] Nakamura Y, Yasuoka H, Tsujimoto M, et al. Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res, 2006,12(4): 1201-7,
    [39] Barnes NL, Warnberg F, Farnie G, et al.Cyclooxygenase-2 inhibition: effects on tumour growth, cell cycling and lymphangiogenesis in a xenograft model of breast cancer. Br J Cancer, 2007, 96(4): 575-582
    [40] Von Rahden BH, Brucher BL, Langner C, et al.Expression of cyclo-oxygenase 1 and 2, prostaglandin E synthase and transforming growth factor beta1, and their relationship with vascular endothelial growth factors A and C, in primary adenocarcinoma of the small intestine. Br J Surg, 2006, 93(11): 1424-1432
    [41] Tomozawa S, Nagawa H, Tsuno N, et al. Inhibition of haematogenous metastasis of colon cancer in mice by a selective COX-2 inhibitor JTE-522. Br J Cancer, 1999, 81: 1274-1279
    [42] Takahashi T, Kozaki K, Yatabe Y, et al. Increased expression of COX-2 in the development of human lung cancers. J Environ Pathol Toxicol Oncol, 2002, 21: 177-181
    [43] Zlotnik A. Chemokines and cancer. Int J Cancer, 2006,119(9): 2026-2029
    [44] Elke Scandella, Ying Men, Daniel F. Legler, et al. CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood, 2004, 103(5): 1595-1601
    [45] Elke Scandella, Ying Men, Silke Gillessen, et al. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood, 2002, 100(4): 1354-1361
    [46] Noelia Sa'nchez-Sa'nchez, Lorena Riol-Blanco, Gonzalo de la Rosa, et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic ceUs. Blood, 2004, 104(3): 619-625
    [47] Hirao M, Onai N, Hiroishi K, et al. chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res, 2000, 60(8): 2209-2217
    [48] Y. Nishioka et al. chemokine receptor-7 on dendritic cells is induced apoptosis after incubated with tumor cells. Cancer Res, 1999, 59: 4035-4041
    [49]Muller A, Homey B, Soto H, Ge N, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001,410(6824): 24-25
    [50] Tsuzuki H, Takahashi N, Kojima A, et al. Oral and oropharyngeal squamous cell carcinomas expressing CCR7 have poor prognoses. Auris Nasus Larynx, 2006, 33(1): 37-42
    [51] Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res, 2002, 62: 2937-2941
    [52] Schmausser B, Endrich S, Brandlein S, et al.The chemokine receptor CCR7 is expressed on epithelium of non-inflamed gastric mucosa, Helicobacter pylori gastritis, gastric carcinoma and its precursor lesions and up-regulated by H. pylori. Clin Exp Immunol, 2005,139 (2): 323-327
    [53] Kwak MK, Hur K, Park do J, et al. Expression of chemokine receptors in human gastric cancer. Tumour Biol, 2005, 26(2): 65-70
    [54] Ding Y, Shimada Y, Maeda M, et al.Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res, 2003, 9(9): 3406-3412
    [55] Heresi GA, Wang J, Taichman R, et al. Expression of the chemokine receptor CCR7 in prostate cancer presenting with generalized lymphadenopathy: report of a case, review of the literature, and analysis of chemokine receptor expression. Urol Oncol, 2005, 23(4): 261-267
    [56] Wang J, Xi L, Gooding W, Godfrey TE, et al. Chemokine receptors 6 and 7 identify a metastatic expression pattern in squamous cell carcinoma of the head and neck. Adv Otorhinolaryngol, 2005, 62: 121-133
    [57] Masai K, Iwashita Y, Tominaga M, et al. mRNA expression of chemokine receptors in hepatic and pancreatic tumor cell lines. Gan To Kagaku Ryoho, 2004, 31(8): 1261-1263
    [58] Lopez-Giral S, Quintana NE, Cabrerizo M, et al.Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination. J Leukoc Biol, 2004, 76(2): 462-471
    [59] Neslihan Cabioglu, M. Sertac Yazici, Banu Arun, et al. CCR7 and CXCR4 as Novel Biomarkers Predicting Axillary Lymph Node Metastasis in T1Breast Cancer. Clin Cancer Res 2005,11(16): 5686-5693
    [60] Andre F, Cabioglu N, Assi H, et al.Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol, 2006 Apr 20; [Epub ahead of print]
    [61] Wilson JL, Burchell J, Grimshaw MJ.Endothelins induce CCR7 expression by breast tumor cells via endothelin receptor A and hypoxia-inducible factor-1.Cancer Res, 2006, 66(24): 11802-11807
    [62] 黄俊辉。原发性乳腺癌VEGF-C、CXCR4表达与肿瘤淋巴管生成及淋巴转移机制的研究:[博士学位论文中南大学].长沙:中南大学, 2005
    [63] Yu YY, Ji J, Zhang Y, et al. Expression of vascular endothelial growth factor C and chemokine receptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis. World J Gastroenterol, 2004, 10 (6): 783-790
    [64] Half EE, Arber N.Chemoprevention of colorectal cancer: two steps forward,one step back? Future Oncol, 2006, 2(6): 697-704
    [65] Hawk, ET, Umar, A, Viner, JL. Colorectal cancer chemoprevention: an overview of the science. Gastroenterology, 2004, 126:1423-1447
    [66] Kotake K, Honjo S, Sugihara K, et al. Changes in colorectal cancer during a 20-year period: an extended report from the multi-institutional registry of large bowel cancer, Japan. Dis Colon Rectum, 2003, 46(Suppl): S32-43
    [67] V. oyer, TE, Sigurdson, ER, Hanlon, AL, et al. Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol, 2003, 21:2912-2919
    [68] Nathanson, SD. Insights into the mechanisms of lymph node metastasis.Cancer, 2003, 98:413-423
    [69] Rostom A, Dube C, Lewin G, et al. Nonsteroidal Anti-inflammatory Drugs and Cyclooxygenase-2 Inhibitors for Primary Prevention of Colorectal Cancer: A Systematic Review Prepared for the U.S. Preventive Services Task Force. Ann Intern Med, 2007, 146(5): 376-89
    [70] Higuchi T, Iwama T, Yoshinaga K, et al. A randomized, double-blind, placebo-controlled trial of the effects of Rofecoxib, a selective cyclooxygenase-2 inhibitor, on rectal polyps in familial adenomatous polyposis patients. Clin Cancer Res, 2003, 9:4756-4760
    [71] Seno H, Oshima M, Ishikawa T, et al. Cyclooxygenase-2 and prostaglandin E2 receptor EP2-dependent angiogenesis in APC△716 Mouse intestinal polyps. Cancer Res, 2002, 62:506-511
    [72] Oshima, M, Dinchuk, JE, Kargman, SL et al. Suppression of intestinal polyposis in knockout mice by inhibition of cyclooxygenase-2 (COX-2). Cell, 1996,87:803-809
    [73] Chell S, Kadi A, Williams AC, et al. Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochim Biophys Acta, 2006, 1766(1): 104-119
    [74] Lev-Ari S, Maimon Y, Strier L, Down-regulation of prostaglandin E2 by curcumin is correlated with inhibition of cell growth and induction of apoptosis in human colon carcinoma cell lines. J Soc Integr Oncol, 2006,4(1):21-26
    [75] Chell SD, Witherden IR, Dobson RR, et al. Increased EP4 receptor expression in colorectal cancer progression promotes cell growth and anchorage independence.Cancer Res, 2006, 66(6): 3106-3113
    [76] Schimanski CC, Schwald S, Simiantonaki N, et al. Effect of Chemokine Receptors CXCR4 and CCR7 on the Metastatic Behavior of Human Colorectal Cancer. Clinical Cancer Research, 2005,11: 1743-1750
    [77] Walser TC, Fulton AM. The role of chemokines in the biology and therapy of breast cancer. Breast Dis, 2004, 20: 137-143
    [78] Guo H, Tatsuguchi A, Shinji S, et al. Cyclooxygenase-2 expression correlates with membrane-type-1 matrix metalloproteinase expression in colorectal cancer tissue. Dis Colon Rectum, 2006, 49(8): 1184-92
    [79] Konturek PC, Rembiasz K, Burnat G, et al. Effects of cyclooxygenase-2 inhibition on serum and tumor gastrins and expression of apoptosis-related proteins in colorectal cancer. Dig Dis Sci, 2006, 51(4): 779-87
    [80] Gunther K, Leier J, Henning G,et al. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int J Cancer, 2005, 116(5): 726-733.
    [81] Khuder, S. A., and Mutgi, A. B. Breast cancer and NSAID use: a meta-analysis. Br. J.Cancer, 2001, 84: 1188-1192
    [82] Connolly EM, Harmey JH, O'Grady T, et al. Cyclo-oxygenase inhibition reduces tumour growth and metastasis in an orthotopic model of breast cancer. Br J Cancer, 2002, 87(2): 231-237
    [83] Yoshinaka R, Shibata MA, Morimoto J, et al. COX-2 inhibitor celecoxib suppresses tumor growth and lung metastasis of a murine mammary cancer. Anticancer Res, 2006, 26(6B): 4245-4254
    [84] Larkins TL, Nowell M, Singh S, et al. Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC Cancer, 2006, 10(6): 181
    [85] Lanza-Jacoby S, Miller S, Flynn J, Gallatig K, et al. The cyclooxygenase-2 inhibitor, celecoxib, prevents the development of mammary tumors in Her-2/neu mice. Cancer Epidemiol Biomarkers Prev, 2003,12(12): 1486-1491
    [86] Roche-Nagle G, Connolly EM, Eng M, et bal. Antimetastatic activity of a cyclooxygenase-2 inhibitor. Br J Cancer, 2004, 91(2): 359-365
    [87] Luan Y, Xu W. The function of the selective inhibitors of cyclooxygenase 2. Mini Rev Med Chem, 2006, 6(12): 1375-1381
    [88] Ranger GS, Thomas V, Jewell A, et al. Elevated cyclooxygenase-2 expression correlates with distant metastases in breast cancer. Anticancer Res, 2004, 24(4): 2349-2351
    [89] Shim JY, An HJ, Lee YH, et al. Overexpression of cyclooxygenase-2 is associated with breast carcinoma and its poor prognostic factors. Mod Pathol, 2003, 16(12): 1199-1204.
    [90] Zhu L, Loo WT, Cheng CW, et al. Possible predictive markers related to micro-metastasis in breast cancer patients. Oncol Rep, 2006, 15(5): 1217-23
    [91] Park K, Han S, Shin E, et al. Cox-2 expression on tissue microarray of breast cancer. Eur J Surg Oncol, 2006, 32(10): 1093-1096
    [92] Singh B, Berry JA, Shoher A, et al. COX-2 overexpression increases motility and invasion of breast cancer cells. Int J Oncol, 2005, 26(5): 1393-1399
    [93] Hiraga T, Myoui A, Choi ME, et al. Stimulation of cyclooxygenase-2 expression by bone-derived transforming growth factor-beta enhances bone metastases in breast cancer. Cancer Res, 2006, 66(4): 2067-2073
    [94] Singh B, Berry JA, Shoher A, et al. COX-2 involvement in breast cancer metastasis to bone. Oncogene, 2007 Jan 8; [Epub ahead of print]
    [95] Denkert C, Winzer KJ, Hauptmann S. Prognostic impact of cyclooxygenase-2 in breast cancer. Clin Breast Cancer, 2004, 4(6): 428-433
    [96] Costa C, Soares R, Reis-Filho JS, et al. Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer. J Clin Pathol, 2002, 55(6): 429-434
    [97] Davies G, Salter J, Hills M, et al. Correlation between cyclooxygenase-2 expression and angiogenesis in human breast cancer. Clin Cancer Res, 2003, 9(7): 2651-2656
    [98] Lim SC. Role of COX-2, VEGF and cyclin D1 in mammary infiltrating duct carcinoma. Oncol Rep, 2003, 10(5): 1241-1249
    [99] Sivula A, Talvensaari-Mattila A, Lundin J, et al. Association of cyclooxygenase-2 and matrix metalloproteinase-2 expression in human breast cancer. Breast Cancer Res Treat, 2005, 89(3):215-220
    [100] Singh B, Berry JA, Shoher A, et al. COX-2 overexpression increases motility and invasion of breast cancer cells. Int J Oncol, 2005, 26(5): 1393-1399,
    [101] Singh B, Berry JA, Shoher A, et al. COX-2 induces IL-11 production in human breast cancer cells. J Surg Res, 2006,131(2): 267-275,
    [102] Chu AJ, Chou TH, Chen BD. Prevention of colorectal cancer using COX-2 inhibitors: basic science and clinical applications. Front Biosci, 2004, 9: 2697-2713
    [103] Yamac D, Celenkoglu G, Coskun U, et al. Prognostic importance of COX-2 expression in patients with colorectal cancer. Pathol Res Pract, 2005, 201(7): 497-502
    [104] Sun, Y., Tang, X. M., Half, E., et al. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome cdependent apoptotic pathway in human colon cancer cells. Cancer Res, 2002, 62: 6323-6328
    [105] Pamela L. Crowell, C. Max Schmidt, Michele T. Yip-Schneider, et al. Cyclooxygenase-2 Expression in Hamster and Human Pancreatic Neoplasial. Neoplasia, 2006, 8(6): 437 - 445
    [106] Ricchi P, Zarrilli R, Di Palma A, et al. Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br J Cancer, 2003, 88: 803 -807
    [107] Shaheen NJ, Straus WL, and Sandier RS. Chemoprevention of gastrointestinal malignancies with nonsteroidal antiinflammatory drugs.Cancer, 2002, 94:950 - 963
    [108]Terry MB, Gammon MD, Zhang FF, et al. Association of frequency and duration of aspirin use and hormone receptor status with breast cancer risk. JAMA, 2004,291:2433-2440
    [109] Jacobs EJ, Thun MJ, Connell CJ, et al. Aspirin and other nonsteroidal anti-inflammatory drugs and breast cancer incidence in a large U.S. cohort. Cancer Epidemiol Biomarkers Prev, 2005, 14: 261-264
    [110] Marshall SF, Bernstein L, Anton-Culver H, et al. Nonsteroidal anti-inflammatory drug use and breast cancer risk by stage and hormone receptor status. J Natl Cancer Inst, 2005, 97: 805-812
    [111] Yao M, Lam EC, Kelly CR,et al. Cyclooxygenase-2 selective inhibition with NS-398 suppresses proliferation and invasiveness and delays liver metastasis in colorectal cancer. Br J Cancer, 2004, 90(3): 712-719
    [112] Soumaoro LT, Uetake H, Takagi Y, et al. Coexpression of VEGF-C and COX-2 in human colorectal cancer and its association with lymph node metastasis. Dis Colon Rectum, 2006, 49(3): 392-398
    [113] Teri L Larkinsl, Marchele Nowell, Shailesh Singh,et al. Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC Cancer, 2006, 6:181-193
    [114] Kobayashi H, Uetake H, Higuchi T, et al. JTE-522, a selective COX-2 inhibitor, inhibits growth of pulmonary metastases of colorectal cancer in rats. BMC Cancer, 2005, 5:26-31
    [115] Samoha S and Arber N. Cyclooxygenase-2 inhibition prevents colorectal cancer: from the bench to the bed side. Oncology, 2005, 69 (1): 33 - 37
    [116] Ishizaki T, Katsumata K, Tsuchida A, et al. Etodolac, a selective cyclooxygenase-2 inhibitor, inhibits hver metastasis of colorectal cancer cells via the suppression of MMP-9 activity. Int J Mol Med, 2006, 17(2): 357-362
    [117] Holla VR, Mann JR, Shi Q, Du Bois RN. Prostaglandin E2 regulates the nuclear receptor NR4A2 in colorectal cancer.J Biol Chem, 2006, 281(5): 2676-82
    [118] Dubinett, S. M. Autocrine/paracrine PGE2 production by non-small cell lung cancer cells regulates MMP-2 and CD44 in COX-2-dependent invasion. J. Biol. Chem., 2002, 277: 50828-50833
    [119] Dannenberg AJ, Lippman SM, Mann JR, et al. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol, 2005, 23: 254 - 266
    [120] Gargi D Basu, Winnie S Liang, Dietrich A Stephan, et al. A novel role for cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells. Breast Cancer Research, 2006, 8(6): 69-81
    [121] Sheng H, Shao J, Dixon DA, et al. Transforming growth factorbetal enhances Ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem, 2000, 275: 6628-6635
    [122] Takanami. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: Correlation with lymph node metastasis. Int J Cancer, 2003,105(2): 186-189
    [123] Andre F, Soria JC, Assi H, et al. Expression of chemokine receptors by cancer cells. Bull Cancer, 2004, 91 (Suppl 4): 254-256
    [124] Moore MA. The role of chemoattraction in cancer metastases. Bioessays, 2001, 23(8): 674-676
    [125] Ming Li, Xiuyuan Wu, and Xiao-Chun Xu. Induction of Apoptosis in Colon Cancer Cells by Cyclooxygenase-2 Inhibitor NS398 through a Cytochrome c-dependent Pathway. Clinical Cancer Research, 2001, 7: 1010-1016
    [126] Alexander V. Timoshenko, Guoxiong Xu, et al. Role of prostaglandin E2 receptors in migration of murine and human breast cancer cells. Experimental Cell Research, 2003, 289: 265-274
    [127] Xiao-Qing Jia, Ning Zhong, Li-Hui Han, et al. Effect of NS-398 on colon cancer cells, World J Gastroenterol, 2005, 11(3): 353-356
    [128] Timoshenko AV, Chakraborty C, Wagner GF, et al. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer, 2006, 94(8): 1154-63.
    [129] Hongmiao Sheng, Jinyi Shao, M. Kay Washington, et al. Prostaglandin E2 Increases Growth and Motility of Colorectal Carcinoma Cells. The Journal of Biological Chemistry, 2001, 276(21): 18075-18081
    [130] Sugimoto, M Negishi, S Narumiya et al. During colon cancer development 3 EP Downregulation of prostaglandin E receptor subtype. Gut, 2004, 53: 1151-1158
    [131] Futaki, N., Arai, I., Hamasaka, Y., et al. Selective inhibition of NS-398 on prostanoid production in inflamed tissue in rat carrageenan-air-pouch inflammation. J. Pharm.Pharmacol., 1993, 45: 753-755
    [132] Futaki, N., Takahashi, S., Yokoyama, M., et al. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins, 1994, 47: 55-59
    [133] Masferrer, J. L., Zweifel, B. S., Manning, P. T., et al. Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and nonulcerogenic. Proc. Natl Acad Sci USA, 1994, 91: 3228-3232
    [134] Carsten Denkert, Martin Kobel, Stefan Berger, et al. Expression of Cyclooxygenase 2 in Human Malignant Melanoma. Cancer Research, 2001, 61, 303-308
    [135] Yuriko Kinugasa, Masashi Hatori, Hidetoshi Ito. Inhibition of cyclooxygenase-2 suppresses invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 and CD44. Clinical and Experimental Metastasis, 2005, 21: 737-745
    [136] Hansell CA, Simpson CV, Nibbs RJ. Chemokine sequestration by atypical chemokine receptors. Biochem Soc Trans, 2006, 34(Pt 6): 1009-1013
    [137] Slettenaar VI, Wilson JL. The chemokine network: a target in cancer biology? Adv Drug Deliv Rev, 2006, 58(8): 962-974
    [138] Dieu, M. C, Vanbervliet, B., Vicari, A., et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med., 1998, 188: 373-386
    [139] Hirao, M., Onai, N., Hiroishi, K., et al. CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res, 2000, 60: 2209-2217
    [140] Hiroya Takeuchi, Akihide Fujimoto, Maki Tanaka, et al. CCL21 Chemokine Regulates Chemokine Receptor CCR7 Bearing Malignant Melanoma Cells. Clinical Cancer Research, 2004, 10: 2351-2358
    [141] Zlotnik A. Chemokines in neoplastic progression. Semin Cancer Biol, 2004, 14(3): 181-185
    [142] Kakinuma T, Hwang ST. Chemokines, chemokines receptors, and cancer metastasis. J Leukoe Biol, 2006, 79(4): 639-651
    [143] Yulong He, Terhi Karpanen, Kari Alitalo. Role of lymphangiogenic factors in tumor metastasis. Biochimica Biophysica Acta, 2004, 1654: 3-12
    [144] Skobe, M, Hawighorst, T, Jackson, DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med, 2001, 7: 192-198
    [145] Stacker, SA, Caesar, C, Baldwin, ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med, 2001, 7: 186-191
    [146] Cao, Y, Linden, P, Farnebo, J, et al. Vascular endothelial growth factor-C induces angiogenesis in vivo. Proc Natl Acad Sci USA, 1998, 95: 14389-14394
    [147] Byeon, JS, Jung, HY, Lee, YJ, et al. Clinicopathological significance of vascular endothelial growth factor-C and cyclooxygenase-2 in esophageal squamous cell carcinoma. J Gastroenterol Hepatol, 2004,19: 648-654
    [148] Kyzas, PA, Stefanou, D, Agnantis, NJ. COX-2 expression correlates with VEGF-C and lymph node metastases in patients with head and neck squamous cell carcinoma. Mod Pathol, 2005, 18: 153-160
    [149] Ogawa, E, Takenaka, K, Yanagihara, K, et al. Clinical significance of VEGF-C status in tumor cells and stromal macrophages in non-small cell lung cancer patients. Br J Cancer, 2004, 91: 498-503
    [150] Mitsuhashi, A, Suzuka, K, Yamazawa, K, et al. Serum vascular endothelial growth factor (VEGF) and VEGF-C levels as tumor markers in patients with cervical carcinoma. Cancer, 2005,103: 724-730
    [151] Su JL, Yen CJ, Chen PS, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer, 2007 96(4): 541-545
    [152] Mandriota, SJ, Jussila, L, Jeltsch, M, et al. Vascular endothelial growth factor-C- mediated lymphangiogenesis promotes tumour metastasis. EMBO J, 2001, 20: 672-682
    [153] Cyclooxygenase-2 Induces EP1- and HER-2/Neu-Dependent Vascular Endothelial Growth Factor-C Up-Regulation: A Novel Mechanism of Lymphangiogenesis in Lung Adenocarcinoma. Cancer Research, 2004, 64: 554-564
    [154] Youngs SJ, Ali. SA, Taub DD et al. Chemokine induce migrational responses in human breast carcinoma cell lines. Int J Cancer, 1997, 71: 257-266
    [155] Schimanski CC, Bahre R, Gockel I, et al. Chemokine receptor CCR7 enhances intrahepatic and lymphatic dissemination of human hepatocellular cancer. Oncol Rep, 2006, 16(1): 109-113
    [156] Kodama J, Hasengaowa, Kusumoto T, Seki N, et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer.Ann Oncol, 2007,18(1): 70-76
    [157] Henry E. Wiley, Erik B. Gonzalez, Wusi Maki, Meng-tse Wu, et al. Expression of CC Chemokine Receptor-7 and Regional Lymph Node Metastasis of B16 Murine Melanoma. Journal of the National Cancer Institute, 2001, 93(21): 1638-1643
    [1] Chang YW, Marlin JW, Chance TW, Jakobi R. RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility. Cancer Res, 2006, 66(24): 11700-11708
    [2] Smith WL, Langenbach R. Why there are two cyclooxygenase isozymes. J Clin Invest, 2001, 107(12): 1491-1495
    [3] Pugh S, Thomas G. Patients with adenomatouspolyps and carcinomas have increased colonic mucosal prostaglandin E2. Gut, 1994, 35(5): 675-678
    [4] Brown JR, DuBois RN. COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol, 2005, 23(12): 2840-2855
    [5] Dempke W, Rie C, Grothey A, et al. Cyclooxygenase-2: a novel target for cancer chemotherapy? J Clin Invest, 2001, 127(7): 411-417
    [6] Rodrigues S, Bruyneel E, Rodrigue CM, et al. Cyclooxygenase 2 and carcinogenesis. Bull Cancer, 2004, 91 Suppl2:S61-76
    [7] Sheng H, Shao J, Dixon DA, et al. Transforming growth factor betal enhances Ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial, cells via stabilization of mRNA. J Biol Chem, 2000, 275:6628-6635
    [8] Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem, 2000, 69:145-182
    [9] Fux R, Schwab M, Thon KP, Gleiter CH, Fritz P. Cyclooxygenase-2 expression in human colorectal cancer is unrelated to overall patient survival. Clin Cancer Res, 2005, 11(13): 4754-4760
    [10] Yao M, Zhou W, Sangha S, Albert A, Chang AJ, Liu TC, Wolfe MM. Effects of nonselective cyclooxygenase inhibition with low-dose ibuprofen on tumor growth, angiogenesis, metastasis, and survival in a mouse model of colorectal cancer.Clin Cancer Res, 2005, 11(4): 1618-1628
    [11] Kobayashi H, Uetake H, Higuchi T, Enomoto M, Sugihara K. JTE-522, a selective COX-2 inhibitor, inhibits growth of pulmonary metastases of colorectal cancer in rats. BMC Cancer, 2005, 5:26
    [12] Pai R, Nakamura T, Moon WS, Tarnawski AS. Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. FASEB J, 2003, 17(12): 1640-1647
    [13] Tsutsui T, Tamura Y, Yagi E, et al. Involvement of genoroxic effects in the initiation of estrogen-induced cellular transformation studies using Syrian hamster embryo cells treated with 17beta-estradiol and eight of its metabolites. Int J Cancer, 2000, 86(1): 8-14
    [14] Liu CH, Chang SH, Narko K, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem, 2001, 276: 18563-18569
    [15] Labile Togba Soumaoro, Hiroyuki Uetake, Tetsuro Higuchi, et al. Cyclooxygenase-2 Expression: A Significant Prognostic Indicator for Patients With Colorectal Cancer. Clinical Cancer Research, 2004, 1: 8465-8471
    [16] Neufang G, Furstenberger G, Heidt M, et al. Abnormal differentiation of epidermidis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proc Natl Acad Sci USA, 2001, 98: 7629-7634
    [17] Muller-Decker L, Neufang G, Berger I, et al. Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc Natl Acad Sci USA, 2002,99:12483-12488
    [18] Sonoshita M, Takaku K, Sasaki N, et al. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc (Delta716) knockout mice. Nat Med, 2001, 7:1048-1051
    [19] Takashi Kuwano, Shintaro Nakao, Hidetaka Yamamoto, et al. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. The FASEB Journal, 2004,18(20): 300-310
    [20]Kanaoka S, Takai T, Yoshida K. Cyclooxygenase-2 and tumor biology. Adv Clin Chem, 2007,43: 59-78
    [21] Pai R, Soreghan B, Szabo IL, et al. Prostaglandin E2 transactivates EGF receptor a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med, 2002, 8(3):289-293
    [22] Shao J, Lee SB, Guo H, et al. Prostaglandin E2 stimulates the growth of colon cancer cells via induction of amphiregulin. Cancer Res, 2003, 63(17) 5218-5123
    [23] Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, uBois RN. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol, 2005, 23(2): 254-266
    [24] Buchanan FG, Wang D, Bargiacchi F, et al. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem, 2003, 278(37): 35451-35457
    [25] Wang S, Zhang YC, Ye YJ, Cui ZR, Fang WG. Correlation between Stat3 signal transduction pathway and expression of cyclooxygenase-2 in colorectal cancer cells. Zhonghua Yi Xue Za Zhi. 2005, 85(41): 2899-2904.
    [26] Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer, 2002, 2(10)727-739
    [27] Jones MK, Wang H, Peskar BM, et al. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs:insight into mechanisms and im-plications for cancer growth and ulcer healing.Nat Med, 1999, 5(12): 1418-1423
    [28] Mcginty A, Chang YM, Sorokin A, et al. Cyclooxygenase-2expression inhibits trophic withdrawal apoptosis in nerve growth factor-differentiated PC12 cells. J Biol Chem, 2000, 275: 12095-12101
    [29] Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res, 2000, 60(5): 1306-1311
    [30] Soumaoro LT, Uetake H, Takagi Y, et al. Coexpression of VEGF-C and Cox-2 in human colorectal cancer and its association with lymph node metastasis. Dis Colon Rectum, 2006, 49(3): 392-398
    [31] Ishizaki T, Katsumata K, Tsuchida A, Wada T, Mori Y, Hisada M, Kawakita H, Aoki T. Etodolac, a selective cyclooxygenase-2 inhibitor, inhibits liver metastasis of colorectal cancer cells via the suppression of MMP-9 activity. Int J Mol Med, 2006, 17(2): 357-362
    [32] Kakiuchi Y, Tsuji S, Tsujii M. Cyclooxygenase-2 activity altered the cell-surface carbohydrate antigens in colon cancer cells and enhanced liver metastasis. Cancer Res, 2002, 62(5): 1567-1572
    [33] Kim R, Emi M, Tanabe K. Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responsesCancer. Biol Ther, 2005,4(9): 924-933
    [34] Stolina M, Sharma S, Lin Y, et al. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol, 2000,164:361-70
    [35] Dubois RN, Shao J, Tsujii M, et al. G1 delay in cells overexpressing prostaglandin endoperoxide synthase-2. Cancer Res, 1999, 56(4): 733-737
    [36] Yamac D, Celenkoglu G, Coskun U, et al. Prognostic importance of COX-2 expression in patients with colorectal cancer. Pathol Res Pract, 2005, 201(7): 497-502
    [37] Liu ZJ, Yu JP, et al. Expressions of cyclooxygenase-2 and cholecystokinin-B receptor mRNA in human colonic cancer and their significances. Ai Zheng, 2005, 24(2): 237-240
    [38] Zimmermann KC, Sarbia M, Weber AA, et al.Cyclooxygenase-2ex-pression in human esophageal carcinoma.Cancer Res, 1999, 59(1): 198-204
    [39] Tucker ON, Dannenberg AJ, Yang K, et al. Cyclooxygenase-2expres-sion is up-regulated in human pancreatic cancer.Cancer Res, 1999, 59(5): 987-990
    [40] Koga H, Sakisaka S, Ohishi M, et al. Expression of cyclooxygenase-2in human hepatocellular carcinoma:relevance to tumor dedifferentiation. Hepatology, 1999, 29(3): 688-696
    [41] Howe LR, Dannenberg AJ. A role for cyclooxygenase-2inhibitors in the prevention and treatment of cancer. Semin Oncol, 2002, 29(3): 111-119
    [42] Kobayashi H, Uetake H, Higuchi T, Enomoto M, Sugihara K. JTE-522, a selective COX-2 inhibitor, inhibits growth of pulmonary metastases of colorectal cancer in rats. BMC Cancer, 2005, 5: 26
    [43] Koga H, Sakisaka S, Ohishi M, Kawaguchi T, et al. Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation. Hepatology, 1999, 29(3): 688-696
    [44] Alfred S-L Cheng, Henry L-Y Chan, Wai K Leung, et al. Expression of HBx and COX-2 in chronic hepatitis B, cirrhosis and hepatocellular carcinoma: implication of HBx in upregulation of COX-2. Modern Pathology, 2004, 17: 1169-1179
    [45] Reilly TP, Brady JN, Marchick MR, et al. A protective role for cyclooxygenase-2 in drug-induced liver injury in mice. Chem Res Toxicol, 2001, 14(12): 1620-1628
    [46] Bertagnolli MM. COX-2 and cancer chemoprevention: picking up the pieces. Recent Results Cancer Res, 2007,174: 73-78
    [47] Takahashi T, Rozaki K, Yatabe Y, et al. Increased expression of COX-2 in the development of human lung cancers. J Environ Pathol Toxicol Oncol, 2002, 21(2): 177-181
    [48] Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 2004,4(1): 71-78
    [49] Shiotani H, Denda A, Yamamoto K, et al. Increased expression of cyclooxygenase-2 protein in 4-nitroquinoline-1-oxide-induced rat tongue carcinomas and chemopreventive efficacy of a specific inhibitor, nimesulide. Cancer Res, 2001, 61(4): 1451-1456
    [50] Holla VR, Mann JR, Shi Q, DuBois RN. Prostaglandin E2 regulates the nuclear receptor NR4A2 in colorectal cancer. J Biol Chem, 2006, 281(5): 2676-2682
    [51] Zhou Y, Ran J, Tang C, et al. Effect of Celecoxib on E-cadherin, VEGF, Microvessel Density and Apoptosis in Gastric Cancer. Cancer Biol Ther, 2007, 6(2): [Epub ahead of print]
    [52] Kishi K, Petersen S, Petersen C, et al. Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Cancer Res, 2000, 60(12): 1326-1331
    [53] Pyo H, Choy H, Amorino GP, et al. A selective cyclooxygenase-2 inhibitor, NS-398, enhances the effect of radiation in vitro and in vivo preferentially on the cells that express cyclooxygenase-2. Clin Cancer Res, 2001, 7(10): 2998-3005
    [54] He TC, Chan TA, Vogelstein B, et al. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell, 1999, 99: 335-345
    [55] Roma AA, Prayson RA. Expression of cyclooxygenase-2 in ependymal tumors. Neuropathology, 2006, 26(5): 422-428
    [56] Nystrom ML, McCulloch D, Weinreb PH, et al. Cyclooxygenase-2 inhibition suppresses alphavbeta6 integrin-dependent oral squamous carcinoma invasion. Cancer Res, 2006, 66(22): 10833-10842
    [1] Zlotnik, A., and Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, 12:121-127
    [2] Zlotnik A. Chemokines and cancer. Int J Cancer, 2006, 119(9): 2026-2029
    [3] Muller A, Homey B, Soto H, Ge N, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410(6824): 24-25
    [4] Kakinuma T, Hwang ST.Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol, 2006, 79(4): 639-651
    [5] Walser TC, Fulton AM. The role of chemokines in the biology and therapy of breast cancer. Breast Dis, 2004, 20:137-143
    [6] Dieu, M. C., Vanbervliet, B., Vicari, A., et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med., 1998, 188:373-386
    [7] Hirao, M., Onai, N., Hiroishi, K., et al. CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res., 2000, 60: 2209-2217
    [8] Gunn, M. D., Kyuwa, S., Tam, C., et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med., 1999, 189:451-460
    [9] Elke Scandella, Ying Men, Daniel F. Legler, et al. CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood, 2004, 103(5): 1595-1601
    [10] Elke Scandella, Ying Men, Silke Gillessen, et al. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells.Blood, 2002, 100(4): 1354-1361
    [11] Noelia Sanchez-Sanchez, Lorena Riol-Blanco, Gonzalo de la Rosa, et al.Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood, 2004, 104(3): 619-625
    [12] Hirao M, Onai N, Hiroishi K, et al. chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res', 2000, 60(8): 2209-2217
    [13] Y. Nishioka et al. chemokine receptor-7 on dendritic cells is induced apoptosis after incubated with tumor cells. Cancer Res, 1999, 59: 4035-4041
    [14] Andre F, Cabioglu N, Assi H, et al. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol, 2006 Apr 20, [Epub ahead of print]
    [15] Neslihan Cabioglu, M. Sertac Yazici, Banu Arun, et al. CCR7 and CXCR4 as Novel Biomarkers Predicting Axillary Lymph Node Metastasis in T1 Breast Cancer. Clin Cancer Res, 2005, 11(16): 5686-5693
    [16] Cabioglu N, Gong Y, Islam R, et al. Expression of growth factor and chemokine receptors: new insights in the biology of inflammatory breast cancer. Ann Oncol, 2007 Mar 9; [Epub ahead of print]
    [17] Henry E. Wiley, Erik B. Gonzalez,Wusi Maki, et ah Expression of CC Chemokine Receptor-7 and Regional Lymph Node Metastasis of B16 Murine Melanoma Journal of the National Cancer Institute, 2001, 93(21): 1638-1643
    [18] Hiroya Takeuchi,l Akihide Fujimoto,et ah CCL21 Chemokine Regulates Chemokine Receptor CCR7 Bearing Malignant Melanoma Cells. Clinical Cancer Research, 2004, 10, 2351-2358
    [19] Ding Y, Shimada Y, Maeda M, et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res, 2003, 9(9): 3406-3412
    [20] Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res, 2002, 62: 2937-2941
    [21] Schmausser B, Endrich S, Brandlein S, et al. The chemokine receptor CCR7 is expressed on epithelium of non-inflamed gastric mucosa, Helicobacter pylori gastritis, gastric carcinoma and its precursor lesions and up-regulated by H. pylori. Clin Exp Immunol, 2005, 139 (2): 323-327
    [22] Yu YY, Ji J, Zhang Y, et al. Expression of vascular endothelial growth factor C and chemokine receptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis. World J Gastroenterol, 2004, 10 (6): 783-790
    [23] Kwak MK, Hur K, Park do J, et al. Expression of chemokine receptors in human gastric cancer. Tumour Biol, 2005, 26(2): 65-70
    [24] Schimanski CC, Schwald S, Simiantonaki N, et al. Effect of Chemokine Receptors CXCR4 and CCR7 on the Metastatic Behavior of Human Colorectal Cancer. Clinical Cancer Research, 2005, 11: 1743-1750
    [25] Gunther K, Leier J, Henning G,et al. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int J Cancer, 2005, 116(5): 726-733.
    [26] Till KJ, Lin K, Zuzel M, et al. The chemokine receptor CCR7 and alpha 4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood, 2002, 99(8):2977-2984.
    [27] Ghobrial EM, Bone ND, Stenson MJ, et al. Expression of chemokine receptors CXCR4 and CCR7 and desease progression in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma, Mayo Clin Proc, 2004, 79(3): 318-325
    [28] Lopez-Giral S, Quintana NE, Cabrerizo M, et al. Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination. J Leukoc Biol, 2004, 76(2): 462-471
    [29]Coreione A, Arduino N, Ferretti E, et al. CCL19 and CXCL12 Trigger in vitro chemotaxis of human mantle cell lymphoma B cells, Clin Cancer Res, 2004, 10(3): 964-971
    [30] Hopken UE, Foss HD, Meyer D, et al. Up-regulation of the chemokine receptor CCR7 in classical but not in lymphocyte-predominant Hodgkin disease correlates with distinct dissemination of neoplastic cells in lymphoid organs. Blood, 2002,99(4): 1109-1116.
    [31] Takanami. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: Correlation with lymph node metastasis. Int J Cancer, 2003, 105(2): 186-189
    [32] Tsuzuki H, Takahashi N, Kojima A, et al. Oral and oropharyngeal squamous cell carcinomas expressing CCR7 have poor prognoses. Auris Nasus Larynx, 2006, 33(1): 37-42
    [33] Wang J, Xi L, Gooding W, Godfrey TE, et al. Chemokine receptors 6 and 7 identify a metastatic expression pattern in squamous cell carcinoma of the head and neck. Adv Otorhinolaryngol, 2005, 62: 121-133
    [34] Masai K, Iwashita Y, Tominaga M, et al. mRNA expression of chemokine receptors in hepatic and pancreatic tumor cell lines. Gan To Kagaku Ryoho, 2004, 31(8): 1261-1263
    [35] Heresi GA, Wang J, Taichman R, et al. Expression of the chemokine receptor CCR7 in prostate cancer presenting with generalized lymphadenopathy: report of a case, review of the literature, and analysis of chemokine receptor expression. Urol Oncol, 2005, 23(4): 261-267
    [36] Schimanski CC, Bahre R, Gockel I, et al. Chemokine receptor CCR7 enhances intrahepatic and lymphatic dissemination of human hepatocellular cancer. Oncol Rep, 2006,16(1): 109-113
    [37] Kodama J, Hasengaowa, Kusumoto T, Seki N, et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol, 2007, 18(1): 70-76
    [38] Yu YY, Ji J, Zhang Y, et al. Expression of vascular endothelial growth factor C and chemokine receptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis. World J Gastroenterol, 2004, 10 (6): 783-790
    [39] Wilson JL, Burchell J, Grimshaw MJ. Endothelins induce CCR7 expression by breast tumor cells via endothelin receptor A and hypoxia-inducible factor-1. Cancer Res, 2006, 66(24): 11802-11807

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700