利用Kelvin探针技术研究功能材料的光电行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:A Study on the Photoelectric Behavior of Functional Materials by Kelvin Probe Technique
  • 作者:肇启东
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2008
  • 导师:王德军
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-04-10
摘要
光生电荷行为的研究是与太阳能转换、发光材料、光催化、纳米/分子光电子器件、光敏传感器等研究领域密切相关的,是表面和界面科学的前沿课题.利用Kelvin探针技术研究功能材料的光电行为,在国际上正处于蓬勃发展的时期.本文利用Kelvin探针技术进行了无机功能材料:n型半导体材料ZnO的纳米棒阵列薄膜、p型半导体材料NiO,有机功能材料卟啉,以及卟啉/ZnO纳米棒阵列、NiO/ZnO复合材料等体系中光生电荷行为的研究,比较了Kelvin探针与锁相放大器系统在光伏测量上的特点.并从实验上探索了使用Kelvin探针进行纳米结构功能材料表面功函的测量.
Functional materials with photoelectric properties will play a crucial role in the development of advanced science and technology in future, such as in the fields of energy, information and biology. The performance of the photoelectric functional materials is essentially determined by the intrinsic structure of the materials, which is mainly reflected by the photo-induced electron transition and transfer behavior in microscopic view. Especially for developing the advanced materials with photo-to-electric converting function, it is of great significance to study the relationship between the photoelectric activity and the characteristics of the photo-induced charges and explore the mechanisms of influencing the behavior of the charges. These researches are also beneficial to the practical application of the functional materials. In recent years, the introduction of nanomaterials into various photoactive functional systems has been proved to promote their performance significantly. Therefore, it is essential to study the behaviors of the photo-induced charges at the interface and surface of the photoactive systems with nanostructure for exploring their novel operating mechanisms and constructing and perfecting the photoelectric systems with higher performance.
     The Kelvin probe method has been traditionally and widely applied in the measurement of surface work function. However, only a few examples can be observed domestically, which mainly focus on the corrosion of metals under atmosphere. There are relatively rare domestic reports on the photoelectric behavior of functional nanomaterials by the Kelvin probe method, which is in rapid progress internationally at present. Therefore, one of the aims of this thesis is to explore the application of macroscopic scanning Kelvin probe in the study of the photoelectric behaviors of functional nanomaterials as well as their surface work functions.
     In the first chapter of this thesis, the traditional characterizing techniques on the photo-induced charges and the applications correlated with the photo-induced charge are intensively reviewed. The state of the art of the research on one typical functional material, ZnO nanomaterial is described briefly. In the second chapter, the fundamental concept, instrumental principle and applications of Kelvin probe technique including Kelvin probe force microscope are introduced in detail. Then in the following four chapters, the main thesis work is included.
     We first prepare ZnO nanorods with different sizes. Especially, ZnO nanorod arrays on transparent and conductive ITO are fabricated via chemistry method. The Kelvin probe (SKP, purchased from KP technology, UK) is used to study the surface work function variation of these materials under light excitation on visible-ultraviolet spectrum. By examining the onset of the photovoltage response and its decay upon light off, the kinetics of the photovoltage evolution are analyzed. We further discuss the contributions of the surface and the interface between ITO and ZnO nanorods to the photovoltage response of the arrays. By comparison of the photovoltaic features of different sizes and orientations of the nanorods, we reveal the relations between the photovoltaic behaviors of the nanorods and the geometrical parameters: size and orientation.
     Subsequently, the effects of ethanol solvent and a liquid crystalline porphyrin, [5-(para-dodecyloxy)phenyl-10,15,20-tri-phenyl] porphyrin (DPTPP) on the photovoltage enhancement in the ZnO nanorods array were studied via comparison between different irradiation directions on the system. We demonstrate that the ethanol adsorption could induce the space charge region to expand towards the ZnO/ITO interface. In the absence of ethanol, the ZnO nanorods array with the DPTPP adsorption showed enhanced SPV with reduced attenuation rate of photogenerated charge carriers observed on Kelvin probe. We found the separation of photogenerated charges could be further improved when coating the surface with DPTPP and ethanol together. Furthermore, the SPV spectra patterns of the composite system with opposite light-incident directions reveal that the DPTPP molecules adsorbed just at the surface of ZnO nanorods adopt more monomeric alignment in contrast to the aggregative state in the DPTPP bulk.
     Next, the ZnO array with different thicknesses of NiO film covered is studied by Kelvin probe technique. We compare the surface work functions and the photovoltage spectra of ZnO nanorods film and ZnO nanorods films with increasing thickness of NiO film as well as pure NiO film on ITO substrate. The work function of as-prepared NiO film is 0.36 eV higher than the gold reference probe. There are potential applications in photocatalysis and sensors for the composite films.
     Lastly, the surface work functions of ZnO nanomaterials with different grain shapes and sizes are comparatively studied by Kelvin probe. The surface work function of commercial ZnO powder on two different substrates (Al and Pt) was measured by scanning Kelvin Probe. As for both of the two substrates, we observed the same phenomenon that the apparent surface work function gradually changed towards the coherent value with increased thickness of ZnO powder layer. We eventually obtained the value of 4.3 eV, which is consistent with that reported in literature. The difference on surface work function between bulk materials and nanoparticle powder is also discussed. The possible geometrical contributions to the surface work function are qualitatively analyzed. We found that the flower-like nanocrystal aggregates with stabs at surface exhibited the lowest surface work function. The best reproducibility of work function result was observed for the nanorods array grown on ITO substrate, which should be attributed to the good electric contact between the ZnO nanorods and the probe. These results demonstrate the validity and issues with the surface work function measurement of nanostructured semiconductors by a macroscopic Kelvin probe.
引文
[1] 周馨我,张公正,范广裕, 功能材料学,北京理工大学出版社,2002,第 1 版,1
    [2] Vincenzo Balzani, Alberto Credi, Margherita Venturi, Photochemical Conversion of Solar Energy, ChemSusChem, 2008, 1, 26
    [3] Nathan S. Lewis, et al. Basic Research Needs for Solar Energy Utilization, http://www.sc.doe.gov/bes/reports/files/SEU_rpt.pdf., Argonne National Laboratory, 2005, 4, 1
    [4] Martín G. Bellino, Diego G. Lamas, Noemí E. Wals?e de Reca, A Mechanism for the Fast Ionic Transport in Nanostructured Oxide-Ion Solid Electrolytes, Adv. Mater. 2006, 18, 3005
    [5] Hong Yang, Chengzhong Yu, Qunliang Song, Yongyao Xia, Fuyou Li, Zhigang Chen, Xianghong Li, Tao Yi, Chunhui Huang, High-Temperature and Long-Term Stable Solid-State Electrolyte for Dye-Sensitized SolarCells by Self-assembly, Chem. Mater. 2006, 18, 5173
    [6] Prasad Taranekar, Qiquan Qiao, Hui Jiang, Ion Ghiviriga, Kirk S. Schanze, John R. Reynolds, Hyperbranched Conjugated Polyelectrolyte Bilayers for Solar-Cell Applications, J. Am. Chem. Soc. 2007, 129, 8958
    [7] Yuan Gao, Chun-Chih Wang, Leeyih Wang, Hsing-Lin Wang, Conjugated Polyelectrolytes with pH-Dependent Conformations and Optical Properties, Langmuir 2007, 23, 7760
    [8] Chia-Yuan Chen, Shi-JhangWu, Chun-GueyWu, Jian-Ging Chen, and Kuo-Chuan Ho, A Ruthenium Complex with Super-High Light- Harvesting Capacity for Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed. 2006, 45, 5822
    [9] Sergey Makarov, Christian Litwinski, Eugeny A. Ermilov, Olga Suvorova, Beate R?der, Dieter W?hrle, Synthesis and Photophysical Properties of Annulated Dinuclear and Trinuclear Phthalocyanines, Chem. Eur. J. 2006, 12, 1468
    [10] Johannes A. A. W. Elemans, Richard van Hameren, Roeland J. M. Nolte, Alan E. Rowan, Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes Adv. Mater. 2006, 18, 1251
    [11] Yasuyuki Nakamura, Naoki Aratani, Hiroshi Shinokubo, Akihiko Takagi, Tomoji Kawai, Takuya Matsumoto, Zin Seok Yoon,Deok Yun Kim, Tae Kyu Ahn, Dongho Kim, Atsuya Muranaka, Nagao Kobayashi, Atsuhiro Osuka, A Directly Fused Tetrameric Porphyrin Sheet and Its Anomalous Electronic Properties That Arise from the Planar Cyclooctatetraene Core, J. Am. Chem. Soc. 2006, 128, 4119
    [12] Chang-Qi Ma, Elena Mena-Osteritz, Tony Debaerdemaeker, Martijn M. Wienk, Ren A. J. Janssen, Peter B?uerle, Functionalized 3D Oligothiophene Dendrons and Dendrimers - Novel Macromolecules for Organic Electronics, Angew. Chem. Int. Ed. 2007, 46, 1679
    [13] Youngkyoo Kim, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophenefullerene solar cells, Nature Materials, 2006, 5, 197
    [14] Stefan Ellinger, Ulrich Ziener, Ulf Thewalt, Katharina Landfester, Martin M?ller, Synthesis and Self-Organization of α ,ω-Substituted Oligothiophenes with Long, Branched Alkyl Substituents, Chem. Mater. 2007, 19, 1070
    [15] Zhan’ao Tan , Erjun Zhou , Yi Yang, Youjun He, Chunhe Yang, Yongfang Li, Synthesis, characterization and photovoltaic properties of thiophenecopolymers containing conjugated side-chain, European Polymer Journal, 2007, 43, 855
    [16] Peter J. Skabara, Rory Berridge, Igor M. Serebryakov, Alexander L. Kanibolotsky, Lyudmila Kanibolotskaya, Sergey Gordeyev, Igor F. Perepichka, N. Serdar Sariciftci, Christoph Winderd, Fluorene functionalised sexithiophenes—utilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells, J. Mater. Chem., 2007, 17, 1055
    [17] Markus Koppe, Markus Scharber, Christoph Brabec, Warren Duffy, Martin Heeney, Iain McCulloch, Polyterthiophenes as Donors for Polymer Solar Cells, Adv. Funct. Mater. 2007, 17, 1371
    [18] Zong-Quan Wu, Xue-Bin Shao, Chuang Li, Jun-Li Hou, Kui Wang, Xi-Kui Jiang, Zhan-Ting Li, Hydrogen-Bonding-Driven Preorganized Zinc Porphyrin Receptors for Efficient Complexation of C60, C70, and C60 Derivatives, J. Am. Chem. Soc. 2005, 127, 17460
    [19] Heli Lehtivuori, Helge Lemmetyinen, Nikolai V. Tkachenko, Exciplex-Exciplex Energy Transfer and Annihilation in Solid Films of Porphyrin-Fullerene Dyads, J. Am. Chem. Soc. 2006, 128, 16036
    [20] Durairaj Baskaran, Jimmy W. Mays, X. Peter Zhang, and Matthew S. Bratcher, Carbon Nanotubes with Covalently Linked Porphyrin Antennae Photoinduced Electron Transfer, J. Am. Chem. Soc. 2005, 127, 6916
    [21] Paul A. Liddell, Gerdenis Kodis, Joakim Andre′asson, Linda de la Garza, Subhajit Bandyopadhyay, Reginald H. Mitchell, Thomas A. Moore, Ana L. Moore, Devens Gust, Photonic Switching of Photoinduced Electron Transfer in a Dihydropyrene-Porphyrin-Fullerene Molecular Triad, J. Am. Chem. Soc. 2004, 126, 4803
    [22] Ilan Gur, Neil A. Fromer, Michael L. Geier, A. Paul Alivisatos, Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution, Science, 2005, 310, 462
    [23] Neil Robertson, Catching the Rainbow Light Harvesting in Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed. 2008, 47, 1012
    [24] Gavin Conibeer, Third-generation photovoltaics, Materials Today, 2007, 10,42
    [25] Gilles Dennler, Markus C. Scharber, Tayebeh Ameri, Patrick Denk, Karen Forberich, ChristophWaldauf, and Christoph J. Brabec, Design Rules for Donors in Bulk-Heterojunction Tandem Solar Cells, Adv. Mater. 2008, 20, 579
    [26] Xuan Wang, Linjie Zhi, Nok Tsao, ?eljko Tomovi?, Jiaoli Li, and Klaus Müllen, Transparent Carbon Films as Electrodes in Organic Solar Cells, Angew. Chem. Int. Ed. 2008, 47,2990
    [27] Johann Bouclé, Sabina Chyla, Milo S. P. Shaffer, James R. Durrant, Donal D. C. Bradley, Jenny Nelson, Hybrid Solar Cells from a Blend of Poly(3-hexylthiophene) and Ligand-Capped TiO2 Nanorods, Adv. Funct. Mater. 2008, 18, 622
    [28] Su-Chul Yang, Dae-Jin Yang, Junkyung Kim, Jae-Min Hong, Ho-Gi Kim, Il-Doo Kim, Hyunjung Lee, Hollow TiO2 Hemispheres Obtained by Colloidal Templating for Application in Dye-Sensitized Solar Cells, Adv. Mater. 2008, 20, 1059
    [29] Soon Hyung Kang, Sang-Hyun Choi, Moon-Sung Kang, Jae-Yup Kim, Hyun-Sik Kim, Taeghwan Hyeon, Yung-Eun Sung, Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency, Adv. Mater. 2008, 20, 54
    [30] Hyung-Jun Koo, Yong Joo Kim, Yoon Hee Lee, Wan In Lee, Kyungkon Kim, Nam-Gyu Park, Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells, Adv. Mater. 2008, 20, 195
    [31] Michael D. Kelzenberg, Daniel B. Turner-Evans, Brendan M. Kayes, Michael A. Filler, Morgan C. Putnam, Nathan S. Lewis, Harry A. Atwater, Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells, Nano Letters, 2008, 8, 710
    [32] 傅竹西,固体光电子学,中国科学技术大学出版社,1999 年 1 月第1 版,144
    [33] 黄春辉,光电功能超薄膜,北京大学出版社,2001 年,243
    [34] Polina O. Anikeeva, Jonathan E. Halpert, Moungi G. Bawendi, Vladimir Bulovic, Electroluminescence from a Mixed Red-Green-Blue Colloidal Quantum Dot Monolayer, Nano Letters, 2007, 7, 2196
    [35] Mingqian Tan, Prabhakaran Munusamy, Venkataramanan Mahalingam, Frank C. J. M. van Veggel, Blue Electroluminescence from InN@SiO2 Nanomaterials, J. Am. Chem. Soc. 2007, 129, 14122
    [36] Yu Liu, Masayoshi Nishiura,Yue Wang, Zhaomin Hou, π-Conjugated Aromatic Enynes as a Single-Emitting Component for White Electroluminescence, J. Am. Chem. Soc. 2006, 128, 5592
    [37] Xianghong Li, Zhao Chen, Qiang Zhao, Li Shen, Fuyou Li, Tao Yi, Yong Cao, Chunhui Huang, Nonconjugated Dendritic Iridium(III) Complexeswith Tunable Pyridine-Based Ligands Synthesis, Photophysical, Electrochemical, and Electroluminescent Properties, Inorganic Chemistry, 2007, 46, 5518
    [38] Chih-Long Chiang, Shih-Min Tseng, Chin-Ti Chen, Chao-Ping Hsu, Ching-Fong Shu, Influence of Molecular Dipoles on the Photoluminescence and Electroluminescence of Dipolar Spirobifluorenes, Adv. Funct. Mater. 2008, 18, 248
    [39] Gonghu Li, Kimberly A. Gray, The solid–solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials, Chemical Physics, 2007, 339, 173
    [40] Jing Zhang, Qian Xu, Zhaochi Feng, Meijun Li, Can Li, Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2, Angew. Chem. Int. Ed. 2008, 47, 1766
    [41] Suil In, Alexander Orlov, Regina Berg, Felipe García, Sergio Pedrosa-Jimenez, Mintcho S. Tikhov, Dominic S. Wright, Richard M. Lambert, Effective Visible Light-Activated B-Doped and B,N-Codoped TiO2 Photocatalysts, J. Am. Chem. Soc. 2007, 129, 13790
    [42] Masayuki Yagi, Masao Kaneko, Molecular Catalysts for Water Oxidation, Chem. Rev. 2001, 101, 21
    [43] Masaya Matsuoka, Masaaki Kitano, Masato Takeuchi, Koichiro Tsujimaru, Masakazu Anpo, John M. Thomas, Photocatalysis for new energy production Recent advances in photocatalytic water splitting reactions for hydrogen production, Catalysis Today 2007,122, 51
    [44] Gopal K. Mor, Haripriya E. Prakasam, Oomman K. Varghese, Karthik Shankar, and Craig A. Grimes, Vertically Oriented Ti-Fe-O Nanotube Array Films, Nano Letters, 2007, 7, 2356
    [45] Peter Ritterskamp, AndriyKuklya, Marc-Andre Wustkamp, KlausKerpen, ClaudiaWeidenthaler, Martin Demuth, A Titanium Disilicide Derived Semiconducting Catalyst for Water Splitting under Solar Radiation - Reversible Storage of Oxygen and Hydrogen, Angew. Chem. Int. Ed. 2007, 46, 7770
    [46] Zhenhui Kang, Chi Him A. Tsang, Ning-Bew Wong, Zhendong Zhang, Shuit-Tong Lee, Silicon Quantum Dots A General Photocatalyst for Reduction, Decomposition, and Selective Oxidation Reactions, J. Am. Chem. Soc. 2007, 129, 12090
    [47] Giovanni Palmisano, Vincenzo Augugliaro, Mario Pagliaro, Leonardo Palmisano, Photocatalysis: a promising route for 21st century organicchemistry, Chem. Commun., 2007, 3425
    [48] Binil Itty Ipe, Christof M. Niemeyer, Nanohybrids Composed of Quantum Dots and Cytochrome P450 as Photocatalysts, Angew. Chem. Int. Ed. 2006, 45, 504
    [49] James P. McEvoy, Gary W. Brudvig, Water-Splitting Chemistry of Photosystem II, Chem. Rev., 2006, 106, 4456
    [50] Isao MATSUI, Nanoparticles for Electronic Device Applications: A Brief Review, Journal of Chemical Engineering of Japan, Vol.38, No.8, 535
    [51] Boon K. Teo, X. H. Sun, Silicon-Based Low-Dimensional Nanomaterials and Nanodevices, Chem. Rev. 2007, 107, 1454
    [52] Kuan-Ju Wu, Kung-Ching Chu, Chih-Yu Chao, Yang-Fang Chen, Chih-Wei Lai, Chia-Cheng Kang, Chun-Yen Chen, Pi-Tai Chou, CdS Nanorods Imbedded in Liquid Crystal Cells for Smart Optoelectronic Devices, Nano Letters, 2007, 7, 1908
    [53] Eli Rothenberg, Miri Kazes, Ehud Shaviv, Uri Banin, Electric Field Induced Switching of the Fluorescence of Single Semiconductor Quantum Rods, Nano Letters, 2005, 5, 1581
    [54] Rusen Yang, Yu-Lun Chueh, Jenny Ruth Morber, Robert Snyder,Li-Jen Chou, Zhong Lin Wang, Single-Crystalline Branched Zinc Phosphide Nanostructures Synthesis, Properties, and Optoelectronic Devices, Nano Letters, 2007, 7, 269
    [55] Yong Zhang, Lin-Wang Wang, Angelo Mascarenhas, "Quantum Coaxial Cables" for Solar Energy Harvesting, Nano Letters, 2007, 7, 1264
    [56] Samuel S. Mao, Nanolasers: Lasing from nanoscale quantum wires, Int. J. of Nanotechnology, 2004, 1, 42
    [57] Aneta J. Mieszawska, Romaneh Jalilian, Gamini U. Sumanasekera, Francis P. Zamborini, The Synthesis and Fabrication of One- Dimensional Nanoscale Heterojunctions, Small, 2007, 3, 722
    [58] Alexander G. Winbow, Aaron T. Hammack, Leonid V. Butov, Photon Storage with Nanosecond Switching in Coupled Quantum Well Nanostructures, Nano Letters, 2007, 7, 1349
    [59] Masayuki Suda, Masaru Nakagawa, Tomokazu Iyoda, Yasuaki Einaga, Reversible Photoswitching of Ferromagnetic FePt Nanoparticles at Room Temperature, J. Am. Chem. Soc. 2007, 129, 5538
    [60] Osamu Sato, Photoinduced magnetization in molecular compounds, J. Photoch. Photobio. C, 2004, 5, 203
    [61] Ho Sun Lim, Donghoon Kwak, Dong Yun Lee, Seung Goo Lee, KilwonCho, UV-Driven Reversible Switching of a Roselike Vanadium Oxide Film between Superhydrophobicity and Superhydrophilicity, J. Am. Chem. Soc. 2007, 129, 4128
    [62] Adam C. Whalley, Michael L. Steigerwald, Xuefeng Guo, Colin Nuckolls, Reversible Switching in Molecular Electronic Devices, J. Am. Chem. Soc. 2007, 129, 12590
    [63] Wojciech Macyk, Gra?yna Stochel, Konrad Szaci?owski, Photosensitization and the Photocurrent Switching Effect in Nanocrystalline Titanium Dioxide Functionalized with Iron(II) Complexes : A Comparative Study, Chem. Eur. J. 2007, 13, 5676
    [64] Stefan Hecht, Optical Switching of Hierarchical Self-Assembly: Towards “Enlightened” Materials, Small, 2005, 1, 26
    [65] Mathias O. Senge, Marijana Fazekas, Eleni G. A. Notaras, Werner J. Blau, Monika Zawadzka, Oliver B. Locos, Eimhin M. Ni Mhuircheartaigh, Nonlinear Optical Properties of Porphyrins, Adv. Mater. 2007, 19, 2737
    [66] Angela Mammana, Alessandro D’Urso, Rosaria Lauceri, Roberto Purrello, Switching Off and On the Supramolecular Chiral Memory in Porphyrin Assemblies, J. Am. Chem. Soc. 2007, 129, 8062
    [67] Brian Yuliarto, HaoShen Zhou, Takeo Yamada, Itaru Honma, Keisuke Asai, Synthesis of a Surface Photovoltage Sensor Using Self-Ordered Tin-Modified MCM-41 Films: Enhanced NO2 Gas Sensing, ChemPhysChem, 2004, 5, 261
    [68] Matthias Seydack, Nanoparticle labels in immunosensing using optical detection methods, Biosensors and Bioelectronics, 2005, 20, 2454
    [69] S J Pearton, B SKang, Suku Kim, F Ren, B P Gila, C R Abernathy, Jenshan Lin, S NG Chu, GaN-based diodes and transistors for chemical, gas, biological and pressure sensing, J. Phys.: Condens. Matter, 2004, 16, R961
    [70] Aleksandar Radu, Silvia Scarmagnani, Robert Byrne, Conor Slater, King Tong Lau, Dermot Diamond, Photonic modulation of surface properties a novel concept in chemical sensing, J. Phys. D: Appl. Phys. 2007, 40, 7238
    [71] Ronit Freeman, Ron Gill, Moritz Beissenhirtz, Itamar Willner, Self- assembly of semiconductor quantum-dots on electrodes for photo- electrochemical biosensing, Photochem. Photobiol. Sci., 2007, 6, 416
    [72] 方容川,固体光谱学,中国科学技术大学出版社, 2001 年 5 月第 1版,206
    [73] N. A. Schuster, A Phase-Sensitive Detector Circuit Having High Balance Stability, Rev. Sci. Instrum., 1951, 22, 254
    [74] S.R. Morrison, Changes of Surface Conductivity of Germanium with Ambient, J. Phys. Chem., 1953, 57, 860
    [75] F. Steinrisser, R. E. Hetrick, Electron Beam Technique for Measuring Microvolt Changes in Contact Potential, Rev. Sci. Instrum. 1971, 42,304.
    [76] R.S. Nakhmanson, Frequency dependence of the photo-EMF of strongly inverted Ge and Si MIS structures-1. theory, Solid State Electron. 1975, 18, 617.
    [77] Donchev, V.; Kirilov, K.; Ivanov, Ts.; Germanova, K. Surface photovoltage phase spectroscopy – a handy tool for characterisation of bulk semiconductors and nanostructures Mat. Sci. Eng. B, 2006, 129, 186.
    [78] Thomas Berger, Martin Sterrer, Slavica Stankic, Johannes Bernardi, Oliver Diwald, Erich Kno¨zinger, Trapping of photogenerated charges in oxide nanoparticles, Mat. Sci. Eng. C, 2005, 25, 664
    [79] Tracy L.Thompson, John T. Yates, Jr., Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes, Chem. Rev. 2006, 106, 4428
    [80] Andreas Mandelis, Photo-carrier radiometry of semiconductors: A novel powerful optoelectronic diffusion-wave technique for silicon process non-destructive evaluation, NDT&E International, 2006, 39, 244
    [81] Wang, Z. L. Zinc oxide nanostructures growth, properties and applications, J. Phys.: Condens. Matter. 2004, 16, R829.
    [82] D.C. Look, Recent advances in ZnO materials and devices, Materials Science and Engineering B, 2001, 80, 383
    [83] S.J. Peartona, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Superlattices and Microstructures, 2003, 34,3
    [84] Fan, Z.; Lu, J. G., Zinc Oxide Nanostructures: Synthesis and Properties J. Nanosci. Nanotechno. 2005, 5, 1561.
    [85] ?zgür ü, Alivov Y, Liu C, Teke A, Reshchikov M, Do?an S, Avrutin V, Cho S J and Morko? H A comprehensive review of ZnO materials and devices, J. Appl. Phys., 2005, 98, 041301
    [86] Gyu-Chul Yi, ChunruiWang and Won Il Park, ZnO nanorods: synthesis, characterization and applications, Semicond. Sci. Technol. 2005, 20, S22
    [87] S.J. Pearton , D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress inprocessing and properties of ZnO, Progress in Materials Science, 2005, 50, 293
    [88] Lubomir Spanhel, Colloidal ZnO nanostructures and functional coatings: A survey, J Sol-Gel Sci Techn, 2006, 39, 7
    [89] Vladimir A. Fonoberov, Alexander A. Balandin, ZnO Quantum Dots: Physical Properties and Optoelectronic Applications, Journal of Nanoelectronics and Optoelectronics, 2006, 1, 19
    [90] Dirk Ehrentraut , Hideto Sato, Yuji Kagamitani , Hiroki Sato, Akira Yoshikawa, Tsuguo Fukuda , Solvothermal growth of ZnO, Progress in Crystal Growth and Characterization of Materials, 2006, 52 , 280
    [91] Aleksandra B. Djuri?i?, Yu Hang Leung, Optical Properties of ZnO Nanostructures, Small, 2006, 2, 944
    [92] C. Klingshirn, ZnO: Material, Physics and Applications, ChemPhysChem 2007, 8, 782
    [93] Xudong Wang, Jinhui Song and Zhong Lin Wang, Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices, J. Mater. Chem., 2007, 17, 711
    [94] Lukas Schmidt-Mende, Judith L. MacManus-Driscoll, ZnO- nanostructures, defects, and devices, Materials Today, 2007, 10, 40
    [95] A. Ashrafia, C. Jagadish, Review of zinc blende ZnO Stability of metastable ZnO phases, J. Appl. Phys., 2007, 102, 071101
    [96] Dae-Kue Hwang, Min-Suk Oh, Jae-Hong Lim and Seong-Ju Park, ZnO thin films and light-emitting diodes, J. Phys. D: Appl. Phys. 2007, 40, R387
    [97] Yong Qin, Xudong Wang, Zhong Lin Wang, Microfibre–nanowire hybrid structure for energy scavenging, Nature, 2008, 451, 809
    [98] Q. H. Li, T. Gao, Y. G. Wang, T. H. Wang, Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements, Appl. Phys. Lett., 2005, 86, 123117
    [99] Vladimir A. Fonoberov, Khan A. Alim, Alexander A. Balandin, Faxian Xiu, Jianlin Liu, Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals, Physical Review B, 2006, 73, 165317
    [100] Litty Irimpan, Bindu Krishnan, A Deepthy, V P N Nampoori, P Radhakrishnan, Excitation wavelength dependent fluorescence behaviour of nano colloids of ZnO, J. Phys. D: Appl. Phys. 2007, 40, 5670
    [101] M. Schirra, A. Reiser, G. M. Prinz, A. Ladenburger, K. Thonke, R. Sauer,Cathodoluminescence study of single zinc oxide nanopillars with high spatial and spectral resolution, J. Appl. Phys., 2007, 101, 113509
    [102] X. W. Sun, J. Z. Huang,J. X. Wang, Z. Xu, A ZnO Nanorod Inorganic/Organic Heterostructure Light-Emitting Diode Emitting at 342 nm, Nano Letters, 2008, 8, 1219
    [103] Huijuan Zhou, Markus Wissinger, Johannes Fallert, Robert Hauschild, Felix Stelzl,Claus Klingshirn, Heinz Kalt, Ordered, uniform-sized ZnO nanolaser arrays, Appl. Phys. Lett., 2007, 91, 181112
    [104] Ye Sun, Michael N R Ashfold, Photoluminescence from diameter-selected ZnO nanorod arrays, Nanotechnology, 2007, 18, 245701
    [105] Ying-Song Fu, Xi-Wen Du, et al., Stable Aqueous Dispersion of ZnO Quantum Dots with Strong Blue Emission via Simple Solution Route, J. Am. Chem. Soc. 2007, 129, 16029
    [106] Johannes Fallert, et al. Surface-state related luminescence in ZnO nanocrystals, J. Appl. Phys., 2007, 101, 073506
    [107] Y. H. Park, Y. H. Shin, S. J. Noh, and Yongmin Kima, et al. Optical quenching of NiO/Ni coated ZnO nanowires, Appl. Phys. Lett., 2007, 91, 012102
    [108] Xiangyang Ma, Peiliang Chen, Dongsheng Li, Yuanyuan Zhang, and Deren Yang, Electrophotoluminescence of ZnO film, Appl. Phys. Lett., 2007, 91, 021105
    [109] Qifeng Zhang, Tammy P. Chou, Bryan Russo, Samson A. Jenekhe, Guozhong Cao, Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed. 2008, 47, 2402
    [110] Kurtis S. Leschkies, Ramachandran Divakar, Joysurya Basu, Emil Enache-Pommer, Janice E. Boercker, C. Barry Carter, Uwe R. Kortshagen, David J. Norris, Eray S. Aydil, Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices, Nano Letters, 2007, 7, 1793
    [111] Alex B. F. Martinson, Jeffrey W. Elam, Joseph T. Hupp, Michael J. Pellin, ZnO Nanotube Based Dye-Sensitized Solar Cells, Nano Letters, 2007, 7, 2183
    [112] Julian Tornow, Klaus Schwarzburg, Transient Electrical Response of Dye-Sensitized ZnO Nanorod Solar Cells, J. Phys. Chem. C 2007, 111, 8692
    [113] Joshua Schrier, Denis O. Demchenko, Lin-Wang Wang, A. Paul Alivisatos, Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications, Nano Letters, 2007, 7, 2377
    [114] Xiaolei Wang, Fan Yang, Wen Yang, Xiurong Yang, A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface, Chem. Commun., 2007, 4419
    [115] C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles, Applied Catalysis A: General, 2006, 304, 55
    [116] T. Pauporté, J. Rathousky, Electrodeposited Mesoporous ZnO Thin Films as Efficient Photocatalysts for the Degradation of Dye Pollutants, J. Phys. Chem. C, 2007, 111, 7639
    [117] N. Sobana, M. Swaminathan, Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53, Solar Energy Materials & Solar Cells, 2007, 91, 727
    [118] Yuanhui Zheng, Chongqi Chen, Yingying Zhan, Xingyi Lin, Qi Zheng, Kemei Wei, Jiefang Zhu, Yingjie Zhu, Luminescence and Photocatalytic Activity of ZnO Nanocrystals Correlation between Structure and Property, Inorg. Chem. 2007, 46, 6675
    [119] Jang, E. S.; Won, J. H.; Hwang, S. J.; Choy, J. H. Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity, Adv. Mater. 2006, 18, 3309.
    [120] J. H. He, Yen H. Lin, Michael E. McConney, Vladimir V. Tsukruk, Zhong L. Wang, Gang Bao, Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization, J. Appl. Phys.,2007, 102, 084303
    [121] Seung-Eon Ahn, Hyun Jin Ji, Kanghyun Kim, Gyu Tae Kim, Chang Hyun Bae, Seung Min Park, Yong-Kwan Kim, Jeong Sook Ha, Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire, Appl. Phys. Lett., 2007, 90, 153106
    [122] S. Mridha, D. Basak, Ultraviolet and visible photoresponse properties of n-ZnO p-Si heterojunction, J. Appl. Phys., 2007, 101, 083102
    [123] Jens Reemts and Achim Kittel, Persistent photoconductivity in highly porous ZnO films, J. Appl. Phys., 2007, 101, 013709
    [124] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, ZnO Nanowire UV Photodetectors with HighInternal Gain, Nano Letters, 2007, Vol. 7, No. 4, 1003
    [125] Kai Wang, Yuriy Vygranenko, Arokia Nathan, ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study, J. Appl. Phys., 2007, 101, 114508
    [126] T T Chen, C L Cheng, S-P Fu, Y F Chen, Photoelastic effect in ZnO nanorods, Nanotechnology, 2007, 18, 225705
    [127] Xinjian Feng, Lin Feng, Meihua Jin, Jin Zhai, Lei Jiang, Daoben Zhu, Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films, J. AM. CHEM. SOC., 2004, 126, 62
    [128] Lin, Y. H.; Wang, D. J.; Zhao, Q. D.; Yang, M.; Zhang, Q. L., A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy, J. Phys. Chem. B 2004, 108, 3202
    [129] Lin Y H, Wang D J, Zhao Q D, Li Z H, Ma Y D, Yang M, Influence of adsorbed oxygen on the surface photovoltage and photoluminescence of ZnO nanorods, Nanotechnology, 2006, 17, 2110.
    [130] Lionel Vayssieres, On the design of advanced metal oxide nanomaterials, Int. J. of Nanotechnology, 2004, Vol.1, Nos. 1/2, 1
    [131] Kronik, L.; Shapira, Y., surface photovoltage phenomena theory, experiment, and applications, Surf. Sci. Rep., 1999, 37, 1.
    [132] 王佳, 水流彻, 使用 Kelvin 探头参比电极技术进行薄液层下电化学测量, 中国腐蚀与防护学报, 1995, 15, No.3, 153
    [133] 邹锋,韩薇, 利用 Kelvin 探针进行金属薄液层下电化学测量, 腐蚀科学与防护技术, 1995, 7,No.3,192
    [134]孙志华, 刘明辉, 李家柱, 张晓云, 陆峰, 王佳, 大气腐蚀电化学测定研究, 航空材料学报, 2000, 20, No. 3, 120
    [135] 屈庆, 严川伟, 曹楚南, 金属大气腐蚀实验技术进展, 腐蚀科学与防护技术, 2003, 15, No.4, 216
    [136] 王佳, 气相环境中无机盐微粒沉积金属表面的电位分布, 中国腐蚀与防护学报, 2004, 24, No.1, 1
    [137] 马腾, 王振尧, 韩薇,铝和铝合金的大气腐蚀,腐蚀科学与防护技术, 2004, 16, No.3,155
    [138] 王燕华, 张涛, 王佳, 王福, Kelvin 探头参比电极技术在大气腐蚀研究中的应用, 中国腐蚀与防护学报, 2004, 24, No.1, 59
    [139] 孙志华,刘明辉,陆峰,张晓云,邹礼明, "Kelvin 探头技术”的推广应用, 装备环境工程, 2006, 3, No.3, 121
    [1] 黄昆,韩汝琦,固体物理学,高等教育出版社,1988,第 1 版,p276,
    [2] Alan D. McNaught, Andrew Wilkinson, Compendium of Chemical Terminology-The Gold Book, 2nd Edition, by Blackwell Science, 1997
    [3] 钱佑华,徐至中,半导体物理,高等教育出版社,1999,第 1 版,297
    [4] Masamichi Fujihira, Kelvin probe force microscopy of molecular surfaces, Annu. Rev. Mater. Sci., 1999, 29,353
    [5] Allen J. Bard, Larry R. Faulkner, Electrochemical methods: fundamentalsand applications, 2nd ed., John Wiley & Sons, Inc., 2001 , p54
    [6] V. S. Bagotsky, Fundamentals of Electrochemistry, Second Edition, John Wiley & Sons, Inc., 2006
    [7] K. Jacobi, Electron work function of metals and semiconductors, Landolt-B?rnstein, Numerical Data and Functional Relationships in Science and Technology, Group III: Condensed Matter, Volume: 42 A Part 2,Springer, 2002
    [8] 曹立礼,材料表面科学,清华大学出版社,2007,第 1 版,p97
    [9] K. Wandelt, The local work function Concept and implications, Applied Surface Science, 1997, 111, 1
    [10] David Cahen, Antoine Kahn, Electronic energetics at surface and interfaces: concepts and experiments, Advanced Materials, 2003, 15, 271
    [11] Hiroyuki Kawano, Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces, Progress in Surface Science, 2008, 83, 1
    [12] Hisao Ishii, Kiyoshi Sugiyama, Eisuke Ito, Kazuhiko Seki, Energy Level Alignment and Interfacial Electronic Structures at Organic Metal and Organic, Advanced Materials, 1999, 11, 605
    [13] I.D. Baikie, Operation manual of the SKP Kelvin probe system, KP Technology Ltd, 2004, Manual Version SKP KP 4.3.
    [14] Kronik L, Shapira Y surface photovoltage phenomena theory, experiment, and applications, Surf. Sci. Rep. , 1999, 37, 1
    [15] Dieter K Schroder, Surface voltage and surface photovoltage: history, theory and applications, Meas. Sci. Technol., 2001, 12, R16
    [16] Vincenzo Palermo, Matteo Palma, and Paolo Samorì, Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy, Adv. Mater. 2006, 18, 145
    [17] C. Hückst?dt, S. Schmidt, S. Hüfner, F. Forster, F. Reinert M. Springborg Work function studies of rare-gas noble metal adsorption systems using a Kelvin probe, Physical Review B, 2006, 73, 075409
    [18] Tao He, Huanjun Ding, Naama Peor, Meng Lu, David A. Corley, Bo Chen, Yuval Ofir, Yongli Gao, Shlomo Yitzchaik, James M. Tour,Silicon Molecule Interfacial Electronic Modifications, J. Am. Chem. Soc. 2008, 130, 1699
    [19] Michael Thompson, Larisa-Emilia Cheran, Mingquan Zhang, Melissa Chacko, Hong Huo, Saman Sadeghi, Label-free detection of nucleic acid and protein microarrays by scanning Kelvin nanoprobe, Biosensors andBioelectronics, 2005 , 20, 1471
    [20] Larisa-Emilia Cheran, Saman Sadeghi, Michael Thompson, Scanning Kelvin nanoprobe detection in materials science and biochemical analysis, Analyst, 2005, 130, 1569
    [21] K. Wapner, B. Schoenberger, M. Stratmann, G. Grundmeier, Height- Regulating Scanning Kelvin Probe for Simultaneous Measurement of Surface Topology and Electrode Potentials at Buried Polymer Metal Interfaces , Journal of The Electrochemical Society, 2005, 152 ,3, E114
    [22] D. W. Reagor, S. Y. Lee, Y. Li, Q. X. Jia, Work function of the mixed-valent manganese perovskites, J. Appl. Phys., 2004, 95, 7971
    [23] Sven Rühle, David Cahen, Contact-free photovoltage measurements of photoabsorbers using a Kelvin probe, J. Appl. Phys., 2004, 96, 1556
    [24] David S. Warren, Yoram Shapira, Horst Kisch, A. James McQuillan, Apparent Type Reversal in Anatase TiO2 Nanocrystal Films, J. Phys. Chem. C, 2007, 111, 14286
    [25] Y. Zidon, Yoram Shapira, Th. Dittrich, L. Otero, Light-induced charge separation in thin tetraphenyl-porphyrin layers on Au, Physical Review B, 2007, 75, 195327
    [26] Y. Zidon and Yoram Shapira, Th. Dittrich,Illumination induced charge separation at tetraphenyl-porphyrin metal oxide interfaces, J. Appl. Phys.,2007, 102, 053705
    [27] Fungo F, Milanesio M E, Durantini E N, Otero L ,Dittrich Th.,Optically induced switch of the surface work function in TiO2/porphyrin –C60 dyad system, J. Mater. Chem.,2007,17,2107
    [28] Jihua Yang, David S. Warren, Keith C. Gordon, A. James McQuillan, Electronic states and photoexcitation processes of titanium dioxide nanoparticle films dip coated from aqueous Degussa P25 photocatalyst suspension, J. Appl. Phys., 2007, 101, 023714
    [29] Kelvin probe force and surface photovoltage microscopy observation of minority holes leaked from active region of working InGaAs/AlGaAs/ GaAs laser diode,J. Appl. Phys.,2007,101, 024504
    [30] János Mizsei, Vibrating capacitor method in the development of semiconductor gas sensors, Thin Solid Films,2005, 490, 17
    [31] N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to?,Sensors and Actuators B,2007, 121, 18
    [32] W. Li, D.Y. Li, Influence of surface morphology on corrosion and electronic behavior, Acta Materialia,2006, 54, 445
    [1] Satyanarayana V.N.T. Kuchibhatla, A.S. Karakoti, Debasis Bera, S. Seal, One dimensional nanostructured materials, Progress in Materials Science, 2007, 52, 699
    [2] Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H.Q. One-dimensional Nanostructures Adv. Mater. 2003, 15, 353.
    [3] Sirbuly, D. J.; Law, M. ; Yan, H. Q. ; Yang, P. D. Semiconductor Nanowires for Subwavelength Photonics Integration J. Phys. Chem. B 2005, 109, 15190.
    [4] Lu, J. G.; Chang, P. C.; Fan, Z. Y. Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications Mat. Sci. Eng. R. 2006, 52, 49.
    [5] Wu, Y.Y.; Yan, H.Q.; Yang, P. D. Semiconductor nanowire array potential substrates for photocatalysis and photovoltaics Top. Catal. 2002, 19, 197.
    [6] Heo, Y. W.; Norton, D. P.; Tien, L. C.; Kwon, Y. ; Kang, B. S.; Ren, F.; Pearton, S. J.; LaRoche, J. R. ZnO nanowire: growth and devices Mat. Sci. Eng. R. 2004, 47, 1.
    [7] Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-Temperature Ultraviolet Nanowire Nanolasers Science 2001, 292, 1897.
    [8] Park, W. I.; Yi, G..-C.; Kim, J.-W.; Park, S.-M. Schottky nanocontacts on ZnO nanorod arrays Appl. Phys. Lett. 2003, 82, 4358.
    [9] Ng, H. T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y. P.; Meyyappan, M. Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor Nano Lett. 2004, 4, 1247.
    [10] Lin, C. C.; Chen, H. P.; Chen S. Y. Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO film/Si wafer in aqueous solutions Chem. Phys. Lett. 2005, 404, 30.
    [11] Park, W. I.; Yi, G.-C. electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN Adv. Mater. 2004, 16, 87.
    [12] Wang, X. D.; Neff, C.; Graugnard, E.; Ding, Y.; King, J. S.; Pranger, L. A.; Tannenbaum, R.; Wang, Z. L.; Summers, C. J. photonic crystals fabricated using patterned nanorod arrays-ZnO-TiO2 Adv. Mater. 2005, 17, 2103.
    [13] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells Nat. Mater. 2005, 4, 455.
    [14] Liu, T. Y.; Liao, H. C.; Lin, C. C.; Hu, S. H.; Chen, S.Y. Biofunctional ZnO Nanorod Arrays Grown on Flexible Substrates Langmuir 2006, 22, 5804.
    [15] Xu, F.; Yuan, Z.Y.; Du, G. H.; Ren, T. Z.; Bouvy, C.; Halasa, M.; Su, B. L.Simple approach to highly oriented ZnO nanowire arrays large-scale growth, photoluminescence and photocatalytic properties Nanotechnology, 2006, 17, 588.
    [16] Yoon, S. H.; Yang, H. Kim, Y. S. Ordered growth of ZnO nanorods for fabrication of a hybrid plasma display panel Nanotechnology, 2007, 18, 205608.
    [17] Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-Current Nanogenerator Driven by Ultrasonic Waves, Science, 2007,316,102.
    [18] Meng, X. Q.; Zhao, D. X.; Zhang, J. Y.; Shen, D. Z.; Lu, Y. M.; Liu, Y. C.; Fan, X. W. Growth temperature controlled shape variety of ZnO nanowires Chem. Phys. Lett. 2005, 407, 91.
    [19] Tian Z R R, Voigt J A, liu J, Mckenzie B, Mcdermott M J, Rodriguez M A, Konishi H and Xu H F Complex and oriented ZnO nanostructures 2003 Nat. Mater. 2 821
    [20] Kong, B. H.; Kim, D. C.; Cho, H. K. Shape control and characterization of one-dimensional ZnO nanostructures through the synthesis procedure Physica B 2006, 376-377, 726.
    [21] Pan, N.; Wang, X.; Zhang, K; Hu, H.; Xu, B.; Li, F.; Hou, J. G. An approach to control the tip shapes and properties of ZnO nanorods Nanotechnology 2005, 16, 1069.
    [22] Zhao, Q.; Zhang, H. Z. ; Zhu, Y. W.; Feng, S. Q.; Sun, X. C.; Xu, J.; Yu, D. P. Morphological effects on the field emission of ZnO nanorod arrays Appl. Phys. Lett. 2005, 86, 203115.
    [23] Marotti, R. E.; Giorgi, P.; Machado, G.; Dalchiele, E. A. Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures Sol. Energ. Mat. Sol. C. 2006, 90, 2356
    [24] Fonoberov, V. A.; Alim, K. A.; Balandin, A. A.; Xiu, F.; Liu, J. Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals Phys. Rev. B 2006, 73, 165317.
    [25] Chen, C. W.; Chen, K. H.; Shen, C. H.; Ganguly, A.; Chen, L. C.; Wu, J. J.; Wen, H. I; Pong, W. F. Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime Appl. Phys. Lett. 2006, 88, 241905.
    [26] Wang, R. P.; Xu, G.; Jin, P. Size dependence of electron-phonon coupling in ZnO nanowires, Phys. Rev. B, 2004, 69, 113303.
    [27] Shalish, I.; Temkin, H.; Narayanamurti, V. Size-dependent surface luminescence in ZnO nanowires Phys. Rev. B 2004, 69, 24540.
    [28] Chen, C. Q.; Shi, Y.; Zhang, Y. S.; Zhu, J.;Yan, Y. J. Size Dependence of Young's Modulus in ZnO Nanowires Phys. Rev. Lett. 2006, 96, 075505.
    [29] Liao, L.; Lu, H. B.; Li, J. C.; He, H.; Wang, D. F.; Fu, D. J.; Liu, C.; Zhang, W. F. Size Dependence of Gas Sensitivity of ZnO Nanorods J. Phys. Chem. C 2007, 111, 1900.
    [30] Jang, E. S.; Won, J. H.; Hwang, S. J.; Choy, J. H. Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity Adv. Mater. 2006, 18, 3309.
    [31] Nonomura, K.; Komatsu, D.; Yoshida, T.; Minoura, H.; Schlettwein, D. Dependence of the photoelectrochemical performance of sensitised ZnO on the crystalline orientation in electrodeposited ZnO thin films Phys. Chem. Chem. Phys. 2007, 9, 1843.
    [32] Vayssieres, L.; Keis, K.; Lindquist, S. E.; Hagfeldt, A. Purpose-Built Anisotropic Metal Oxide Material 3D Highly Oriented Microrod Array of ZnO J. Phys. Chem. B 2001, 105, 3350.
    [33] Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D. ; Yang, P. D. Solution-Grown Zinc Oxide Nanowires Inorg. Chem. 2006, 45, 7535.
    [34] Claudia Pacholski, Andreas Kornowski, Horst Weller, Self-Assembly of ZnO: From Nanodots to Nanorods, Angew. Chem. Int. Ed. 2002, 41,1188.
    [35] Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djuri?i?, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L.; Ding, L.; Ge, W. K. Defects in ZnO Nanorods Prepared by a Hydrothermal Method J. Phys. Chem. B 2006, 110, 20865.
    [36] Yan, Y. F.; Al-Jassim, M. M.; Wei, S. H. Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO(100) surface Phys. Rev. B 2005, 72, 161307.
    [37] Muth, J. F.; Kolbas, R. M.; Sharma, A. K.; Oktyabrsky, S.; Narayan, J. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial J. Appl. Phys. 1999, 85, 7884.
    [38] Donchev, V.; Kirilov, K.; Ivanov, Ts.; Germanova, K. Surface photovoltage phase spectroscopy – a handy tool for characterisation of bulk semiconductors and nanostructures Mat. Sci. Eng. B 2006, 129, 186.
    [39] Chunming Jin, Ashutosh Tiwari, Roger J. Narayan, Ultraviolet- illumination-enhanced photoluminescence effect in zinc oxide thin films, J. Appl. Phys., 2005, 98,083707
    [1] Wu Y L, lim C S, Fu S, Tok A I Y, Lau H M, Boey F Y C and Zeng X T, Surface modifications of ZnO quantum dots for bio-imaging 2007 Nanotechnology 18 215604
    [2] Law M, Greene L E, Johnson J C, Saykally R and Yang P D, Nanowire dye-sensitized solar cells 2005 Nat. Mater. 4 455
    [3] Jiang C Y, Sun X W, lo G Q, Kwong D L and Wang J X, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode 2007 Appl. Phys. Lett. 90 263501
    [4] Lao C S, Li Y, Wong C P and Wang Z L, Enhancing the Electrical and Optoelectronic Performance of Nanobelt Devices by Molecular Surface Functionalization 2007 Nano Lett. 7 1323
    [5] Yang M, Wang D J, Peng L, Xie T F and Zhao Y Y, Photoelectric response mechanisms dependent on RuN3 and CuPc sensitized ZnO nanoparticles to oxygen gas 2006 Nanotechnology 17 4567
    [6] Yang M, Wang D J, Peng L, Zhao Q D, Lin Y H and Wei X, Surface photocurrent gas sensor with properties dependent on Ru(dcbpy)2(NCS)2-sensitized ZnO nanoparticles 2006 Sensors Actuators B 117 80
    [7] Campbell W M, Burrell A K, Officer D L and Jolley K W, Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell 2004 Coordin. Chem. Rev. 248 1363
    [8] Campbell W M, Jolley K W, Wagner P, Wagner K, Walsh P J, Gordon K C, Mende L S, Nazeeruddin M K, Wang Q, Gr?tzel M and Officer D L, Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells 2007 J. Phys. Chem. C 111 11760
    [9] Galoppini E, Rochford J, Chen H H, Saraf G, Lu Y C, Hagfeldt A and Boschloo G, Fast Electron Transport in Metal Organic Vapor Deposition Grown Dye-sensitized ZnO Nanorod Solar Cells 2006 J. Phys. Chem. B 110 16159
    [10] Gregg B A, 2003 Excitonic Solar Cells J. Phys. Chem. B 107 4688
    [11] Takagi S, Eguchi M, Tryk D A and Inoue H, Porphyrin photochemistry in inorganic organic hybrid materials Clays, layered semiconductors, nanotubes, and mesoporous materials 2006 J. Photoch. Photobio. C 7 104
    [12] Fungo F, Milanesio M E, Durantini E N, Otero L and Dittrich Th., Optically induced switch of the surface work function in TiO2 porphyrin–C60 dyad system 2007 J. Mater. Chem. 17 2107
    [13] Liu C Y and Bard A J, Optoelectronic Properties and Memories Based on Organic Single-Crystal Thin Films 1999 Acc. Chem. Res. 32 235
    [14] Natale C D, Paolesse R and Mantini A, Kelvin probe investigation of self-assembled-monolayers of thiol derivatized porphyrins interacting with volatile compounds 1998 Sensors Actuators B 48 368
    [15] Lo C F, Luo L Y, Diau E W G, Chang I J and Lin C Y, Interfacial Electron Transfer between the Photoexcited Porphyrin Molecule and TiO2 Nanoparticles Effect of Catecholate Binding 2006 Chem. Commun. 1430
    [16] Huijser A, Savenije T J, Kroeze J E and Siebbeles L D A, Exciton Diffusion and Interfacial Charge Separation in meso Tetraphenylporphyrin TiO2 Bilayers Effect of Ethyl substituents 2005 J. Phys. Chem. B 109 20166
    [17] Zidon Y, Shapira Y and Dittrich Th, Illumination induced charge separation at tetraphenyl-porphyrin metal oxide interfaces 2007 J. Appl. Phys. 102 053705
    [18] 于苗,新型稀土卟啉液晶化合物的合成与功能研究,吉林大学,博士论文,2005
    [19] Yu M, Zhang W Y, Fan Y, Jian W P and Liu G F, [5-(p-alkoxy)phenyl-10, 15, 20-tri-phenyl] porphyrin and their rare earth complex liquid crystalline 2007 J. Phys. Org. Chem. 20 229
    [20] Donchev V, Kirilov K, Ivanov Ts and Germanova K, Surface photovoltage phase spectroscopy – a handy tool for characterisation of bulk semiconductors and nanostructures 2006 Mat. Sci. Eng. B 129 186
    [21] Dijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A, Influence of Adsorbed Oxygen on the Emission Properties of Nanocrystalline ZnO Particles 2000 J. Phys. Chem. B 104 4355
    [22] Li Q H, Gao T, Wang Y G and Wang T H, Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements 2005 Appl. Phys. Lett. 86 123117
    [23] Lin Y H, Wang D J, Zhao Q D, Li Z H, Ma Y D and Yang M, Influence of adsorbed oxygen on the surface photovoltage and photoluminescence of ZnO nanorods 2006 Nanotechnology 17 2110
    [24] Nelson J, Organic photovoltaic films 2002 Curr. Opin. Solid St. M. 6 87
    [25] Zimmermann J, Siggel U, Fuhrhop J H and R?der B, Excitonic Coupling between B and Q Transitions in a Porphyrin Aggregate 2003 J. Phys. Chem. B 107 6019
    [1] V. M. Aroutiounian, et al., Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting, Solar Energy, 2005, 78, 581
    [2] I. Hotovy, J. Huran, P. Siciliano, S. Capone, L. Spiess, V. Rehacek, Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification, Sensors and Actuators B, 2004, 103, 300
    [3] Mohammed Ashraf Gondal, et al., Laser induced photo-catalytic oxidation/splitting of water over α-Fe2O3, WO3, TiO2 and NiO catalysts: activity comparison Chemical Physics Letters 2004, 385, 111
    [4] Yongsheng Chen, et al., Preparation of a Novel TiO2-Based p-n Junction Nanotube Photocatalyst, Environmental Science & Technology, 2005, 39, 1201
    [5] J. Bandara, et al., The role of n-p junction electrodes in minimizing the charge recombination and enhancement of photocurrent and photovoltage in dye sensitized solar cells, Journal of Photochemistry and Photobiology A,2005, 170, 273
    [6] Hiromichi Ohta and Masahiro Hirano, Ken Nakahara, Hideaki Maruta, Tetsuhiro Tanabe, Masao Kamiya, Toshio Kamiya, Hideo Hosono, Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO, Appl. Phys. Lett.,2003, 83, 1029
    [7] Yukiaki Ishid and Atsushi Fujimori, Potential profiling of the nanometer-scale charge-depletion layer in n-ZnO/p-NiO junction using photoemission spectroscopy, Appl. Phys. Lett., 89, 153502, 2006
    [8] Bian-Hua Liu, Shu-Hong Yu, Shao-Feng Chen, Chun-Yan Wu, Hexamethylenetetramine Directed Synthesis and Properties of a New Family of a-Nickel Hydroxide Organic-Inorganic Hybrid Materials with High Chemical Stability, J. Phys. Chem. B, 2006, 110, 4039
    [9] Thammanoon Sreethawong, Sumaeth Chavadej, Supachai Ngamsinlapasathian, Susumu Yoshikawa, A modified sol–gel process-derived highly nanocrystalline mesoporous NiO with narrow pore size distribution, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 296, 222
    [10] Ying Wu, Yiming He, Tinghua Wu, Tong Chen, Weizheng Weng, Huilin Wan, Influence of some parameters on the synthesis of nanosized NiO material by modified sol–gel method, Materials Letters, 2007, 61, 3174
    [11] Xiong Wang, Li Li, Yan’ge Zhang, Shutao Wang, Zude Zhang, Linfeng Fei, Yitai Qian, High-Yield Synthesis of NiO Nanoplatelets and Their Excellent Electrochemical Performance, Crystal Growth & Design, 2006, 6, 2163
    [12] A. H. Madjid, J. M. Martinez, Thermionic Emission from Nickel Oxide, Physical Review Letters, 1972, 28, 1313
    [13] Akihiko Nakasa, Mami Adachi, Hisanao Usami, Eiji Suzuki, Yoshio Taniguchi, Fabrication of nickel oxide and Ni-doped indium tin oxide thin films using pyrosol process, Thin Solid Films, 2006, 498, 240
    [14] I-Min Chan, Franklin C.Hong, Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode, Thin Solid Films, 2004, 450, 304
    [1] K.Wandelt, The local work function: Concept and implications, Appl. Surf. Sci., 1997, 111: 1
    [2] R. Smoluchowski, Anisotropy of the Electronic Work Function of Metals, Phys. Rev., 1941, 60: 661
    [3] G. Norris Glasoe, Contact Potential Difference between Iron and Nickel and their Photoelectric Work Functions, Phys. Rev., 1931, 38: 1490
    [4] K. B. Sundaram ; Ashamin Khan, Work function determination of zinc oxide films J. Vac. Sci. Technol. A, 1997, 15(2): 428
    [5] K. Lee; J. H. Kim; S. Im, Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectric, Appl. Phys. Lett., 2006, 88: 023504
    [6] Ilan Riess, Costas G. Vayenas, Fermi level and potential distribution in solid electrolyte cells with and without ion spillover, Solid State Ionics, 2003, 159: 313
    [7] M. B?hmisch; F. Burmeister; A. Rettenberger; J. Zimmermann; J. Boneberg; P. Leiderer, Atomic Force Microscope Based Kelvin Probe Measurements: Application to an Electrochemical Reaction J. Phys. Chem. B, 1997, 101: 10162
    [8] W. G?pel; L. J. Brillson; C. F. Brucker, Surface point defects and Schottky barrier formation on ZnO(10 1_0), J. Vac. Sci. Technol, 1980, 17(5): 894
    [9] P. J. M?ller; S. A. Komolov; E. F. Lazneva; T. Egebjerg, Oxygen effect on the conductivity of the CuxO ZnO(0001) and (000 1_) systems, Appl. Surf. Sci., 1999, 142: 210
    [10] 林艳红,ZnO 纳米粒子的制备及其表面光电特性的研究,吉林大学,博士论文,2006, 6 月.
    [11] Q. Zhao; H. Z. Zhang;Y. W. Zhu; S. Q. Feng; X. C. Sun; J. Xu; D. P. Yu, Morphological effects on the field emission of ZnO nanorod arrays, Appl. Phys. Lett., 2005, 86: 203115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700