通信信号调制方式分类识别算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信技术正以日新月异的速度发展,其中以通信信号各种调制方式的变化和进步尤为突出,通信信号调制方式分类识别研究也相继发展起来。由于信号环境的日趋密集,使得常规的识别方法和理论很难适应实际需要,无法有效地对通信信号进行识别,对数字通信信号的识别研究提出了更高的要求。
     调制方式分类识别在合作领域和非合作领域都具有重要的意义。在合作领域中,调制方式分类识别是软件无线电通用接收机和认知无线电智能接收机的关键技术基础,同时也是瓶颈和核心。调制方式也广泛应用于政府实施有效无线频谱管理、监视民用信号等方面。在非合作领域中,调制方式分类识别更起到了关键的作用。未来战争是以信息优势为基础,这使得通信在战争中的地位变得尤为突出,通信对抗已经成为现代战中电磁领域斗争的焦点。
     通信对抗需要截获敌方的信号,掌握信号中承载的信息内容,而调制方式分类识别是这一过程的基础。在各种无线通信信号类型中,卫星通信信号占有很大的比例,因此能对卫星通信信号进行调制方式的分类识别具有很高的实用价值。由于卫星无线通信环境的复杂性,特别是战场环境下的不可预知性,使得传统的调制分类识别方法性能下降,难以满足现代战争的需要。因此非理想环境下的调制方式分类识别逐渐引起了人们的重视。
     在此背景下,本文重点对非理想情况中的大范围信噪比变化下和衰落信道下卫星通信信号的调制方式分类识别算法进行深入和系统的研究。首先,对盲信噪比估计进行研究。信噪比是信号质量的重要衡量标准,对后续的盲均衡和调制方式分类识别算法起到铺垫作用。提出基于子空间和联合信息标准的盲信噪比估计算法,不仅更适用于小样本估计,还可以扩大估计范围。这种算法既适用于加性高斯白噪声信道,也适用于衰落信道。其次,为减弱非理想信道对信号的影响,对信道盲均衡进行深入研究。分析在卫星信号截获中存在的星间链路信道和星地信道,并给出对应的数学模型。在信道盲均衡算法基础上,对超指数算法进行改进,提出一种新颖稳健的超指数算法。这种算法先对信号的噪声功率进行估计,并通过这个噪声功率估计值来减小噪声影响,然后采用二阶累积量和四阶累积量相结合的方法对信道进行均衡。该算法减弱了噪声,克服了原超指数算法在低信噪比下不能维持收敛的缺点,同时保持了收敛速度。
     再次,将支持向量机和神经网络进行比较,支持向量机不仅结构简单,而且有较强的泛化能力,它可以避免神经网络中的过学习、欠学习和局部最小点等缺陷。针对目前调制识别算法存在的问题,提出了基于支持向量机的三种调制方式分类识别的算法。第一种算法为支持向量机模糊网络,它将多个分类器的结果通过一种新的模糊积分融合在一起,使得算法可以在大的信噪比范围内对信号进行识别,尤其在低信噪比下的识别率比较高。第二种算法为支持向量机自适应调制分类识别算法,它需要借助第二章中的信噪比估计值来选择合适的分类器对信号进行分类,仅使用单个分类器就能够实现大范围信噪比识别能力。第三种算法是基于小波和小波支持向量机调制分类识别算法,将改进的重点放在训练过程上,提出一种改进的训练分类器的方法,来扩大单个分类器信噪比的识别范围。本文也分析了载波误差对识别正确率的影响,仿真结果表明调制方式分类识别算法允许在一定范围内的载波偏差,而且组合分类器比单个分类器具有更好的抑制载波偏差的能力。
     最后,利用调制方式分类识别试验系统,将部分调制分类识别算法移植到硬件平台上。由信号源发生器E4438产生信号,对算法在硬件平台上的性能进行深入的研究。本文也给出了调制方式分类识别试验系统与卫星测控通信地面站相结合,对某一在轨卫星侦收识别的结果,验证算法的工程可行性和有效性。
Communication technologies are developed at a very fast speed, and it is especially represented by the changes and improvements of various communication modulation types. Thus, the algorithms to classify and recognize communication signal modulations are developed. Because the signal environment is becoming more crowded, conventional methods can not meet the needs of real situations, which puts forward high demands for modulation classification and recognition of digital communication signals.
     Modulation classification and recognition is very significant for both cooperative and non-cooperative field. In cooperative field, modulation classification and recognition is the technical base for universal receiver based on software radio and intelligent receiver based on cognitive radio, and they are also the bottleneck and kernel. Besides, governments apply modulation classification and recognition to implement effective wireless frequency management, surveil civil signals and so on. In non-cooperative field, modulation classification and recognition plays a key function. In the future, wars mainly depend on the superiority of information, which makes communication more outstanding. Anti-communication is the focus in electromagnetic battle field.
     Anti-communication requires intercepting and capturing enemy’s signals and then getting the information embedded in signals. Modulation classification and recognition is the base of this process. In different kinds of wireless communication signal types, satellite communication signal occupies a big proportion. Thus, modulation classification and recognition for satellite communication signal has very high practical values. Because of the complexity of satellite wireless communication environment, especially the unpredictability of the battlefield, performances of traditional modulation classification and recognition algorithms become worse and can not meet the demands of wars. Thus, modulation classification and recognition algorithms for non-ideal situations have been paid much attention.
     Based on this background, the problem about modulation classification and recognition algorithms for wide range SNR and fading channels are deeply and systematically developed in this dissertation.
     Firstly, blind SNR estimation is investigated. SNR is an important criterion of signal quality and it is the groundwork for the following bind equalization and modulation classification and recognition. A blind SNR estimation algorithm is proposed based on signal subspace and combined information criterion. It not only fits for small sample estimation but also enlarges the range of estimation. What’s more, it can be applied in both AWGN channels and fading channels.
     Secondly, blind equalization is studied in details to reduce the affection of non-ideal channels. Inter-satellite link channel and satellite-land channel are analyzed and their mathematical models are presented. For blind equalization, super-exponential method (SEM) is improved and a novel robust super-exponential method (NRSEM) is proposed. In the method, noise power of intercepted signals is estimated which is used to decrease the influence of noise. Then second order and fourth order comulants are combined to equalize channels. Since noise is decreased effectively, the drawback of bad convergence property in low SNRs of the original SEM is overcame,and the convergence speed is promised.
     Thirdly, comparisons are made between SVM and neural networks and the results show that SVM has not only simple structure but also strong generalization ability. It avoids over-fitting, under-fitting and local minimum in neural networks. Three modulation classification and recognition algorithms by virtue of support vector machine (SVM) are presented aiming at the problems existing in present modulation recognition algorithms. The first algorithm is SVM fuzzy network. It uses several classifiers and fuses recognition results by a new fuzzy integral, which can widen the range of SNR for modulation recognition. Especially, it has good performance in low SNRs. The second algorithm is adaptive modulation classification and recognition based on SVM. It employs the SNR estimation in the second chapter to select suitable classifier to classify signals. This algorithm only uses single classifier to realize the modulation recognition in wide SNR range. The third algorithm is modulation recognition based on wavelet and wavelet SVM (WSVM). It puts forward an improved classifier training method, and also widen the SNR range of modulation classification with a single classifier. The effects of carrier frequency errors on the classification success rate are analyzed and computer simulations show that carrier frequency errors in a certain range can be accepted in modulation classification and recognition algorithms. What’s more, combined classifiers have better capability to overcome the affections of carrier frequency errors compared with single classifiers.
     Lastly, a modulation classification and recognition test system is emplyed and a simplified modulation classification and recognition algorithm is transferred to the hardware board. The performance on the hardware board is deeply investigated using the signal source generator E4438. Furthermore, the modulation recognition results of an in-orbit model satellite are given using modulation classification and recognition test system and remote sensing and controlling earth station in Harbin Institute of Technology, which proves the engineering validity of the algorithm.
引文
1. 杨小牛, 楼才义, 徐建良. 软件无线电原理与应用. 北京, 电子工业出版社, 2001: 1~268
    2. R. J. Lachy, D. W. Upmal. Speakeasy: The Military Software Radio. IEEE Communication Magazine. 1995, (5): 36~38
    3. W.Tuttlebee. Software Radio-impacts and Implications. IEEE 5th International Symposium on Spread Spectrum Techniques and Applications Proceedings, Africa, 1998: 541~545
    4. T. Araujo, R. Dinis. Analytical Evaluation and Optimization of the Analog-to-Digital Converter in Software Radio Architectures. IEEE Transactions on Vehicular Technology. 2007, 56(4): 1964~1970
    5. E.Buracchini. The Software Radio Concept, Critical. IEEE Communication Magazine. 2000, 38(9): 138~143
    6. E.M.Woluarans, A.J.Truter. Software Radio Implementation Aspects. Information Systems for Enhanced Public Safety and Security, 2000: 38~42
    7. Wolf.W. Building the Software Radio. IEEE JNL Computer. 2005, (38): 87~89
    8. Sushil Jajodia, Paul Ammann, Catherine D.McCollum. Surviving Information Warfare Attacks. Computer. 1999, 32(4): 57~63
    9. Xiong Li, Jianhua, Yukun Cao. Multi-agent Model of Information Warfare System. IEEE International Symposium on Communications and Information Technology 2005, Beijing, 2005, 1: 573~576
    10. Lipinski, T. A. Information Warfare, American Style. Technology and Society Magazine, IEEE. 1999, 18(1): 10~19
    11. Yingwei Yao, H. Vincent Poor. Blind Detection of Synchronous CDMA in Non-Gaussian Channels. IEEE Transactions on Signal Processing, 2004, 52(1): 271~279
    12. A. Ramesh, A. Chockalingam, L.B. Milstein. SNR Estimation in Generalized Fading Channels and Its Application to Turbo Decoding. IEEE International Conference on Communication, Finland, 2001: 1094~1098
    13. 王宇飞, 康健, 刘义. Ka 波段卫星通信上行链路功率控制算法. 吉林大学学报, 2006, 24(5): 484~487
    14. 夏玮鑫, 俞中原. 模糊技术在第三代移动通信越区切换中的应用. 计算机仿真, 2005, 22(3): 181~183
    15. Peyman Razaghi, Babak H. Khalaj. A Novel Time-Frequency Receiver for Unknown Fast Fading Channels. WCNC 2004/IEEE Communications Society, Atlanta, 2004, 3: 1572~1577
    16. Bijoy Bhukania, Philip Schniter. On the Robustness of Decision-Feedback Detection of DPSK and Differential Unitary Space-Time Modulation in Rayleigh-Fading Channels. IEEE Transactions on Wireless Communications. 2004, 3(5): 1481~1489
    17. Claudio R. C. M. da Silva, Michel Daoud Yacoub. A Generalized Solution for Diversity Combining Techniques in Fading Channels. IEEE Transactions on Microwave and Techniques. 2002, 50(1): 46~50
    18. Yong Xiang, Van Khanh Nguyen, Nong Gu. Blind Equalization of Nonirreducible Systems Using the CM Criterion. IEEE Transactions on Circuits and Systems--II: Express Briefs. 2006, 53(8): 758~762
    19. 刘武兵. 卫星特殊干扰信号监测方法的研究. 中国无线电. 2007(1): 44~47
    20. T. Erta?, E. Dilavero?lu. Low-SNR asymptote of CRB on SNR Estimates for BPSK in Nakagami-m Fading Channels with Diversity Combining. Electronics Letters. 2003, 39(23):1680~1682
    21. Hua Jingyu, Hua Han, Meng Qingmin. A Scheme for the SNR Estimaiton and Its Application in Doppler Shift Estimation of Mobile Communication Systems. Vehicular Technology Conference, Los Angeles, 2004, 1: 24~27
    22. Dong-Joon Shin, Wonjin Sung, In-Kyung Kim. Simple SNR Estimation Methods for QPSK Modulated Short Bursts. Proceeding IEEE GLOBECOM, San Antonio, Texas 2001, 6:3644~3647
    23. A. Ramesh, A. Chockalingam, Laurence B. Milsten. SNR Estimation in Nakagami-m Fading with Diversity Combining and Its Application to Turbo Decoding. IEEE Transactions on Communications. 2002, 50(11): 1719~1724
    24. Shahram Talakoub, Behnam Shahrrava. Turbo Equalization with Iterative Online SNR Estimation. IEEE Communications Society/WCNC, USA, 2005, 2:1097~1102
    25. Bin Li, Rober A. Difazio, Ariela Zeira. New Results on SNR Estimation of MPSK Modulated Signals. The 14th IEEE 2003 International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings, Beijing, 2003: 2313~2377
    26. N. S. Alagha. Cramer-Rao Bounds of SNR Estimates for BPSK and QPSK Modulated Signals. IEEE Communication Letters. 2001, 5(1): 10~12
    27. Hua Xu, Zupeng Li, Hui Zheng. A Non-Data-Aided SNR Estimation Algorithm for QAM signals. The 14th IEEE 2003 International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings, Beijing, 2003, 2:1162~1165
    28. M. Andersin, N. B. Mandayam., R. D. Yates. Subspace Based Estimation of the Signal to Interference Ratio for TDMA Cellular Systems. VTC’96, Atlanta, 1996: 1155~1159
    29. M. Wax, T. Kailath. Detection of Signals by Information Theoretic Criteria. IEEE Transactions on ASSP. 1985, 33(2): 397~392
    30. D. R. Pauluzzi, N. C. Beaulieu. A Comparison of SNR Estimation Techniques for the AWGN Channel. IEEE Transactions on Communication. 2000, 48(10): 1681~1691.
    31. Matzner R, Englberger F. A SNR Estimation algorithm Using Fourth-order Moments. Proceedings of the 1994 IEEE Symposium on Information Theory, Norway, 1994: 119.
    32. Ping Gao, Cihan Tepedelenlio?lu. SNR Estimation for Nonconstant Modulus Constellations. IEEE Transactions on Signal Processing. 2005, 53(3): 865~871.
    33. Dea-Ki Hong, Cheol-Hee Park, and Min-Chul Ju. SNR Estimation in Frequency Domain Using Circular Correlation. Electronics Letters. 2002, 38(25):1693~1694
    34. Bin Li, Robert DiFazio, and Ariela Zeira. A Low Bias Algorithm to Estimate Negative SNRs in an AWGN Channel. IEEE Communications Letters. 2002, 6(11): 469~472.
    35. Marvin K. Simon, Sam Dolinar. Improving SNR Estimation for Autonomous Receivers. IEEE Transactions on Communications. 2005, 53(6): 1063~1073
    36. A. Wiesel, J. Goldberg, H. Messer. Non-Data-Aided Signal-to-Noise-Ratio Estimation. ICC2002, USA, 2002: 197~201
    37. 许华, 郑辉. BPSK 信号盲信噪比估计的一种新算法. 通信学报. 2005, 26(2): 123~126, 135
    38. 赵燕, 葛临东. 多径瑞利衰落信道中的盲信噪比估计. 微电子学与计算机. 2005, 22(8): 158~160
    39. Fuyun Ling. On Training Fractionally Spaced Equalizer Using Intersymbol Interpolation. IEEE Transaction on Communication. 1987, 37(10): 1096~1099
    40. Scott L. Miller. An Adaptive Direct-Sequence-Code-Division-Multiple-Access Receiver for Multiuser Interference Rejection. IEEE Transaction on Communication. 1995, 43(4): 1746~1755
    41. Y.Sato. A Method of Self-recovering Equalization for Multiple Modulation Schemes. IEEE Transaction On Communication. 1975, 23: 679~682
    42. A. Benveniste, M. Goursat, G. Ruget. Robust Identification of a Nonminimum PhaseSystem: Blind Adjustment of a Linear Equalizer in Data Communiction. IEEE Transaction on Automatic Control. 1980, 25: 385~399
    43. D. N. Godard. Self-recovering Equalization and Carrier Tracking in Two-dimensional Data Communication Systems. IEEE Trans. on Communication. 1980, 28:1867~1875
    44. J. R. Treichter. Anew Approach to Multi-path Correction of Constant Modulus Signals. IEEE Trans. ASSP. 1983, 31: 459~471
    45. 徐金标, 葛建华, 王新梅. 一种新的盲均衡算法. 通信学报. 1995, 16(3): 78~82
    46. Sang Woo Kim, Chong-Ho Choi, An Enhanced Godard Blind Equalizer Based on the Analysis of Transient Phase, IEEE Trans. On signal processing. 2001, 81: 919~926
    47. Zhang Xiong, Li Linsheng; Zhuo Dongfeng. A New Adaptive Step-size Blind Equalization Algorithm based on Autocorrelation of Error Signal. 2004 7th International Conference on Signal Processing. 2004, 2(31): 1719~1722
    48. Zhang xiong, Zhou Dongfeng, Jia Zhigang. A Modified Blind Equalization Algorithm Based on Kurtosis of Output Signal. Radio Science Conference, 2004: 228~231
    49. D. Halzinakos, C. L. Nikias. Blind Decision Feedback Equalization Structures Based on Adaptive Cumulant Techniques. ICC’89, Boston, 1989: 1278~1282
    50. .D. Halzinakos, C. L. Nikias. Blind Equalization Using Tricepstrum-based Algorithm. IEEE Transaction on Communication. 1991, 39: 669~682
    51. Ofir shalvi, Ehud Weinstein. Super-Exponential Methods for Blind Deconvolution. IEEE Transactions on Information Theory. 1993, 39(2): 504~519
    52. Jo?o Gomes, Victor Barroso. A Super-Exponential Algorithm for Blind fractionally Spaced Equalization. IEEE Signal Processing Letters. 1996, 3(10): 283~285
    53. Ka Lok Yeung, Sze fong Yau. A Super-Exponential Algorithm for Blind Deconvolution of MIMO System. IEEE International Symposium on Circuits and Systems, Hong Kong, 1997, 4: 2517~2520
    54. Rolf Weber, Johann F. B?hme. Adaptive Super-Exponential Methods for Blind Multichannel Equalization. Sensor Array and Multichannel Signal Processing Workshop Proceedings, USA, 2002: 585~589
    55. 王峰, 赵俊渭, 陈华伟. 超指数判决反馈水声信道盲均衡算法实验研究. 生学学报. 2004, 29(5): 414~418
    56. 孙丽君, 孙超. 基于修正超指数迭代算法的双模式盲均衡算法仿真研究. 系统仿真学报. 2005, 17(11): 2604~2606
    57. M. Kawamoto, K. Kohno, Y. Inouye. Robust Super-Exponential Methods for Blind Equalization of SISO Systems with Additive Gaussian Noise. Proceedings of 2005 IEEE International Symposium on Circuits and Systems. 2005: 3031~3033
    58. M. Kawamoto, M. Ohata. Robust Super-Exponential Methods for Blind Equalization in the Presence of Gaussian Noise. IEEE Transactions on Circuits and Systems--II: Express Briefs. 2005, 52(10): 651~656
    59. Prasanna Kumer Sahu. Non-linear Channel Equalization Using Computationally Efficient Neuro-fuzzy Channel Equalizer. ICPWC’2002, India, 2002: 16~19
    60. Rafael Ferrari. Unsupervised Channel Equalization Using Fuzzy Prediction-error Filters. IEEE XIII Workshop on Neural Network for Signal Processing, Toulouse, 2003: 869~878
    61. 祖家奎, 赵淳生, 戴冠中. 非单点模糊逻辑系统在非线性信道中的应用. 控制与决策. 2004,19(4): 407~415
    62. M. Ghosh, C.L. Weber. Maximum-Likelihood Blind Equalization. Optical Engineering. 1992,(6): 1224~1228
    63. S.Chen, B. Mulgrew, S. Mclaughlin. Adaptive Bayesian Equalizer with Decision Feedback. IEEE Transaction on Signal Processing. 1993, (9): 2918~2927
    64. 李道本,陈少霞. 快速最小差错概率盲均衡算法. 电子学报. 1995, (4):17~20
    65. M.kerth, Chugg. Blind Acquisition Characteristics of PSP-Based Sequence Detectors. IEEE on Communication. 1998, (8):1518~1529
    66. P. C. Sapiano, J. D. Martin. Maximum Likelihood PSK Classifier. IEEE Military Communications Conference, MILCOM’96, Australia, 1996, 3: 1010~1014
    67. J. A. Sills. Maximum-likelihood Modulation Classification for PSK/QAM. IEEE Military Communications Conference Proceeding, MILCOM 1999, Atlantic, 1999, 1: 217~220
    68. G. Arulampalam, V. Ramakonar, A. Bouzerdoum, D. Habibi. Classification of Digital Modulation Schemes Using Neural Networks. Proceedings of the Fifth International Symposium on Signal Proceeding and Its Application, Australia, 1999, 2: 649~652
    69. V. Kalinlin, D. Kavalov. Application of a SAW Artificial Neural Network Processor to Digital Modulation Recognition. IEEE Ultrasonics Symposium, 2000, 1: 51~54
    70. Liedtke F F. Computer Simulation of an Automatic Classification Procedure for Digitally Modulated Communication Signals with Unknown Parameters. Signal Processing. 1984, 6(4): 311~323
    71. E. E. Azzouz, A. K. Nandi. Automatic Identification of Digital Modulation Types. Signal Processing. 1995, 47: 55~69
    72. A. K. Nandi, E. E. Azzouz. Modulation Recognition Using Artificial Neural Networks. Signal Processing. 1997,56: 165~175
    73. A. K. Nandi, E. E. Azzouz. Algorithms for Automatic Modulation Recognition of Communication Signals. IEEE Transactions on Communications. 1998, 46(4):431~436
    74. Fabrizi P. M, Lopes L. B, Lockhart G. B. Receiver Recognition of Analogue Modulation Types. IERE Conf. Radio Receiver and Associated Systems, Bangor, Wales, 1986: 135~140
    75. Chan Y. T, Gadbois L. D. Identification of the Modulation Type of a Signal. Signal Process. 1989, 16(2): 149~154
    76. C. Louis, P. Sehier. Automatic Modulation Recognition with a Hierarchical Neural Network. IEEE Military Communications Conference, MILCOM’94, USA, 1994, 3: 713~717
    77. Ananthram Swami, Brian M. Sadler. Hierarchical Digital Modulation Classification Using Cumulants. IEEE Transactions on Communications. 2000, 48(3): 416~429
    78. M. L. D. Wong, A. K. Nandi. Automatic Digital Modulation Recognition Using Spectral and Statistical Features With Multi-layer Perceptions. International Symposium on Signal Processing and its Applications (ISSPA), Malaysia, 2001, 2:390~393
    79. 韩钢, 张文红, 李建东. 基于高阶累积量和支撑矢量机的调制识别算法. 系统工程与电子技术. 2003, 25(8): 1007~1011
    80. 范海波, 杨志俊, 曹志刚. 卫星通信常用调制方式的自动识别. 通信学报. 2004, 25(1):140~149
    81. 詹亚锋, 曹志刚, 马正新. M-QAM 信号的调制制式识别. 通信学报. 2004, 25(2): 68~74
    82. N. Ghani, R. Lamontagne. Neural Networks Applied to the Classification of Spectral Features for Automatic Modulation Recognition. IEEE Conference record. Communications on the Move Military Communications Conference, MILCOM’93, USA, 1993, 1: 111~115
    83. Gardner W. A, Spooner Chad M. Cyclic Spectral Analysis for Signal Detection and Modulation Recognition. IEEE Military Communications Conference, USA, 1988, 2: 419~424
    84. Lu Mingquan, Xiao Xianci, Li Leming. Cyclic Spectral Features Based Modulation Recognition. International Conference on Communication Technology Proceedings, Beijing, 1996, 2: 792~795
    85. N. P. Ta. A Wavelet Packet Approach to Radio Signal Classification. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, USA, 1994, 508~511
    86. K. C. Ho, Prokopiw, Y. T .Chan. Modulation Identification of Digital Signals by the Wavelet Transform. IEEE Processing Radar, Sonar Navig, 2000, 147:169~176
    87. 韩国栋, 蔡斌, 邬江兴. 调制分析与识别的谱相关方法. 系统工程与电子技术. 2001, 23(3): 34~36, 46
    88. 杨志俊, 范海波, 曹志刚. 基于谱分析的通信信号调制方式自动识别. 无线通信技术. 2003, 2: 30~33
    89. 罗明, 杨绍全. 带限 MPSK 信号的调制分类. 系统工程与电子技术. 2004, 26(8): 1015~1018
    90. Yaqin zhao, Chi Kwong Li, Zhilu Wu. An Efficient Parallel Decision Algorithm for Recognition of Modulation Systems in a Software Radio. The IEICE transactions on communications. 2004: 174~178
    91. 盛友招. 排队论及其在计算机通信中的应用. 北京, 北京邮电大学出版社, 1998: 129~138
    92. 常城, 孙尧. 基于神经网络实现多种数字信号调制方式的自动识别. 哈尔滨工程大学学报. 2003, 24(6): 651~655
    93. 孙建成, 张太镒, 刘枫. 基于支持向量机的多类数字调制方式自动识别算法. 西安交通大学学报. 2004, 38(6): 619~622
    94. 吕铁军, 郭双冰, 肖先赐. 给予模糊积分的通信信号调制识别方法研究. 电子学报. 2001, 29(6): 808~810
    95. Y. K. Kim, C. L. Weber. Generalized Single Cycle Classifier with Applications to SQPSK vs. 2kPSK. IEEE Military Communications Conference Proceedings, MILCOM’89, USA, 1989, 3: 754~758
    96. Y. K. Kim, A. Polydoros. Digital Modulation Classification: the BPSK Versus QPSK Case. IEEE Communications Conference Proceedings, MILCOM’88, USA, 1988, 2: 431~436
    97. Y. Yang, S. S. Solimon. Suboptimal Algorithm for Modulation Classification. IEEE Transaction on Aerospace and Electronic Systems. 1997, 33(1): 38~45
    98. C. Schreyoegg, J. Reichert. Modulation Classification of QAM Schemes Using the DFT of Phase Histogram Combined with Modulus Information. IEEE Military Communications Conference Proceedings, MILCOM’97, USA, 1997, 3: 1372~1376
    99. B. F. Beidas, C. L. Weber. Asynchronous Classification of MFSK Signals Using the Higher Order Correlation Domain. IEEE Transaction on Communications. 1998, 46(4): 480~493
    100. D. M. Boiteau, C. J. Le Martret. A General Maximum Likelihood Frame Work for Modulation Classification. ICASSP’98, USA, 1998: 2165~2168
    101. Fio De Ridder, Rik Pintelon, Johan Schoukens. Modified AIC and MDL Model Selection Criteria for Short Data Records. IEEE Transactions on Instrumentation and Measurement. 2005, 54(1): 144~150
    102. Jorma Rissanen. MDL Denoising. IEEE Transactions on Infromation Theory. 2000, 46(7): 2537~2543
    103. Jiecheng Xie, Dali Zhang, Wenli Xu. Wavelet Denoising in Non Gaussian Noise using MDL Principle. Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, 2002, : 2075~2079
    104. H. Chen, T. Kirubarajan. MDL Approach for Multiple Low Observable Track Initiation. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(3): 862~882
    105. Piet M. T. Broersen. Finite Sample Criteria for Aautoregressive Order Selection. IEEE Transactions on Signal Procesing. 2000, 48(12):3550~3559
    106.HIROTUGU Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control. 1974: 716~721
    107.张贤达. 现代信号处理(第二版). 北京: 清华大学出版社, 2002: 263~274
    108. V. B. Herbert. Toward a Unified Theory of Modulation Part Ⅰ: Phase-Envelope Relationships. IEEE Proceeding, 1966, 53(3): 340~352
    109. V. B. Herbert. Toward a Unified Theory of Modulation Part Ⅱ: Zeros Manipulation. IEEE Proceeding, 1966, 54(5): 340~353
    110. B. Sch?lkopf, C. Burges, V. Vapnik. Extracting Support Data for a Given Task. In U. M. Fayyad and R. Uthurusamy, editors, Proceedings, First International Conference on Knowledge Discovery & Data Mining. AAAI Press, 1995
    111. C. Cortes, V. Vapnik. Support Vector Networks. Machine Learning. 1995, 20: 273~297
    112. E. Osuna, R. Freund, F. Girosi. Training Support Vector Machines: an Application to Face Detection. IEEE Conference on Computer Vision and Pattern Recognition, USA, 1997: 130~136
    113. H. Drucker, D. Wu, V. Vapnik. Support Vector Machines for Spam Categorization. IEEE Tans. on Neural Networks. 1999, 10(5): 1048~1054
    114.V. Vapnik 著. 许建华, 张学工译. 统计学习理论. 北京: 电子工业出版社, 2004: 1~559
    115. V. Vapnik, A. J. Chervonenkis. On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory Probab. 1971, 16: 264~280
    116.Nello Cristianini, John Shawe-Taylor 著. 李国正, 王猛, 曾华军译. 支持向量机导论. 北京: 电子工业出版社, 2004: 1~108
    117. Keerthi, S S and C J Lin. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel. Neural Computation. 2003, 15(7):1667~1689.
    118. L Devroye, L Gyr?fi, G Lugosi. A Probablistic Theory of Pattern Recognition. New York: Springer, 1996.
    119. M. R. Azimi-Sadjadi, S. A. Zekavat. Cloud Classification Using Support Vector Machine. Processing of the 2000 IEEE Geoscience and Remote Sensing Symposium, IGRASS2000, USA, 2000, (2): 669~671
    120. C.W. Hsu, C. J. Lin. A Comparison of Methods for Multi-class Support Vector Machines. IEEE Transactions on Neural Networks. 2002, (13): 415~425
    121. J. C. Platt, N. Cristianini, J. Shawe Taylor. Large Margin DAGs for Multiclass Classification. In Advances in Neural Information Processing Systems, MIT Press. 2002, 12: 547~553
    122. M. Carmo Lanca, J. N. Marat-Mendes. The Fractal Analysis of Water Trees an Estimate of the Fractal Dimension. IEEE Transactions on Dielectrics and Electrical Insulation. 2001, 8(5): 838~844
    123. Zhongxiang Huang, Zuomin Lin. The Fractal Dimension and Fractal Interval for Freeway Traffic Flow. IEEE Intelligent Transportation Systems Conference Proceedings, USA, 2000: 1~4
    124. Gexiang Zhang, Weidong Jin, Laizhao Hu. Fractal Feature Extraction of Radar Emitter Signals. Asia-Pacific Conference on Environmental Electromagnetics, CEEM, Dalian, 2003: 161~164
    125. Lü Tiejun, Guo Shuangbing, Xiao Xianci. Study on Fractal Features of Modulation Signals. Science in China (Series F). 2001, 44(2): 152~158
    126. Hadjileontiadis, L. J. Wavelet-based Enhancement of Lung and Bowel Sounds Using Fractal Dimension Thresholding-part Ⅰ : Methodology. IEEE Transactions on Biomedical Engineering. 2005 52(6): 1143~1148
    127. Yaoqun Xu, Mengshu Guo. A Class of Fuzzy Integral Equations with Volterra andFredholm Integral Operators. Proceedings of 5th World Congress on Intelligent Control and Automation, China, 2004,3: 2046~2050
    128. Xizhao Wang, Junfen Chen. Multiple Neural Networks Fusion Model Based on Choquet Fuzzy Integral. Proceedings of 3th International Conference on Machine Learning and Cybernetics, China, 2004, 4: 2024~2027
    129. Keun Chan Kwak, Witold Pedrycz. Face Recognition using Fuzzy Integral and Wavelet Decomposition Method. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics. 2004, 34(4): 1666~1675
    130. Tuan D. Pham. Combination of Multiple Classifiers using Adaptive Fuzzy Integral. Proceedings of the 2002 IEEE International Conference on Artificial Intelligence Systems, ICAIS’02, Australia, 2002: 50~55
    131. K. F. Leung, F. H. F. Leung, H. K. Lam. Neural Fuzzy Network and Genetic Algorithm Approach for Cantonese Speech Command Recognition. The IEEE International Conference on Fuzzy Systems. 2003, 1:208~213
    132. Wang Xizhao, Wang Xiaojun. A New Methodology for Determining Fuzzy Densities in the Fusion Model Based on Fuzzy Integral. Proceedings of Third International Conference on Machine Learning and Cybernetics, Shanghai, 2004, 4: 2028~2031
    133. I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: SIAM, 1992: 53~167
    134. S.Mallat, Characterization of Signals from Multiscale Edges. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14: 710~732
    135. S Pittner, S V Samarthi. Feature Extraction From Wavelet Coefficients for Pattern Recognition Tasks [J]. IEEE Transactjion Pattern analysis and machine intelligence. 1999, 21(1): 1484~1489
    136. Y Mallet, D Coomans, J Kautsky. Classification Using Adaptive Wavelets for Feature Extraction [J]. IEEE Transaction Pattern analysis and machine intelligence. 1997, 19(10): 1058~1066.
    137. K. A. Wahid, V. S. Dimitrov, G. A. Jullien. An Analysis of Daubechies Discrete Wavelet Transform Based on Algebraic Integer Encoding Scheme. International Workshop on Digital and Computational Video, USA, 2002, 37~34
    138. Vassilis Spiliotopoulos, N. D. Zervas, C. E. Androulidakis. Quantizing the 9/7 Daubechies Filter Coefficients for 2D DWT VLSI Implementations. Digital Signal Processing. 2002, 1: 227~231
    139. Li Zhang, Wei Dazhou, Li Chengjiao. Wavelet Support Vector Machine. IEEETransaction on Systems, Man, and Cybernetics. 2004, 1(34): 34~39
    140.Cui Wanzhao, Zhu changchun, Bao Wenxing. Least Squares Wavelet Support Vector Machines and Its Application to Nonlinear System Identification. Journal Of Xi An Jiaotong University. 2004, 6(38): 562~567

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700