基于酵母菌催化的双极室微生物燃料电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物燃料电池(MFC)是利用微生物催化剂将其代谢能直接转化为电能的装置,具有原料广泛、反应条件温和、清洁高效等优点,在生物质能和环境保护领域展现了巨大的前景。目前该领域仍处于实验阶段,研究MFC的产电性能及影响因素,对其实际应用研究具有重要的指导意义。
     本文针对MFC输出功率低、成本高等问题,以酵母菌构建双极室微生物燃料电池,设计与搭建实验系统平台,并从菌种、电极特性、运行条件等方面对该电池模型的产电性能进行了对比研究;进而对电池运行影响因素进行分析与优化。论文的主要内容如下:
     第一章,介绍微生物燃料电池的发展和研究现状,讲述MFC的分类及其特点,并阐述课题的研究内容和研究意义。
     第二章。双极室微生物燃料电池实验系统设计。根据MFC的产电机理和电子传递机制,确定实验的研究方案,设计并构建实验反应系统。
     第三章,产电菌种的选择及其产电性能研究。通过对基于酵母菌催化MFC的产电实验,考察酵母菌作为MFC产电微生物的可行性,获得了高活性菌株2.39和Y20。实验分析表明,酵母菌代谢产生的电子主要通过外界电子介体进行传递;电能的输出主要依赖于吸附在电极表面的细胞,而与悬浮在溶液中的微生物无关;产电菌在电化学环境中会经历一个类似于自然选择的活化过程,经过电化学活化的微生物对葡萄糖的生物电化学催化活性会有显著的提高。
     第四章,研究与分析电极特性对产电性能的影响。首次尝试以常用的非贵金属材料铜、铝、铁等作为阳极,并通过实验,对阳极特性,阴极材料、表面积以及两电极间距离等对MFC的产电性能的影响进行分析。结果表明,铁阳极的电池性能最好,最大功率密度可达193mW·m~(-2);同时,有效地增大阳极表面积、表面粗糙度,均有利于产电菌的附着,提高电能输出;阴极要选择易于吸附氧气和电子的材料,本实验反应系统,阴极表面积的最佳值为25cm~2;当两极间距离在1~3cm,电池的输出最高。
     第五章,研究与分析运行条件对产电性能的影响。实验研究了微生物燃料电池内燃料浓度、介体的浓度、阴阳两极室的搅拌扩散、PEM膜面积、pH值、温度等参数对电池产电性能的影响,并对电池进行优化分析。
     第六章,文章最后对全文进行总结和展望,阐述主要的实验研究成果和将来的研究方向和工作重点。
Microbial fuel cell (MFC) is a device directly converting microbial metabolic energy into electricity with the microbial catalysts, which has the advantages of abundant fuel resource,mild reaction condition and high efficiency.So,the development of MFC in the fields of environmental protection and biomass energy will be greatly attractive. Although it is still in experimental stage, the study of factors affecting the performance of MFC provides a significant guidance for practical application.
     In the study,constructed a two-chambered MFC based on the mechanism of output and electron transfer processes.The experimental system test-bed was established,to research the performance of MFC through the effect of electricigens, anodic characters,operation conditions and so on.Then analyzed and optimized the performances and characters exhibited by MFC systems. Correspondingly, the thesis is divided into six chapters:
     Chapter 1: concerned with the development and research background of the MFC,recited its classify and characters, and introduced the meaning and content of the research.
     Chapter 2: designed the experimental system of microbial fuel cell with double-chamber. Made the project of experiment and constructed the system based on the mechanism of output and electron transfer processes.
     Chapter 3: chose the electricigens and researched on the power generation performance.Used glucose as fuel in microbial fuel cell to harvest electricity through the biocatalysis of Saccharomyces. It is proved that using Saccharomyces as electricigens is feasible and it is MFC with electron mediator. It also find that the microbe of 2.39 and Y20 are well provided with electrochemical activity.Furthermore,the performance of MFC is related to these adsorptive microorganism not the suspended microbe. The microorganism may undergo a Darwin-type of natural selection process in electrochemical environments and the bioelectrocatalytic activity of Saccharomyces toward glucose oxidation can be significantly improved by using electrochemical microbe.
     Chapter 4: studied the influence of electrode on electricity generation of MFC. For the first time tried to use the metal which is good at electric capability as anode of MFC,such as copper, aluminium, iron. Some factors of electrode that may affect the performance of the MFC were investigated. which were electrode material, the surface roughness, superficies and the electrode space.The results indicate that ,the performance of MFC which used iron electrode is best, with the maximum power density of 193 mW·m~(-2) ;and increase in the effective reaction surface of anode can enhance the power output,as well as increasing the anode surface roughness; the change of cathode superficies has little effect on the power generation of the MFC as it reaches 25cm~(-2); and the best distance of electron is 1~3cm.
     Chapter 5:research on the effecting of operation conditions on the performance of MFC.Studied the MFC output by the change which were, the consistence of mediators or fuel, inner stirring of the two chambers, superficies of exchange membrane, pH, temperature and so on. The result showed that the MFC output altered a lot by the change of operation parameters. Based on these, analyzed the optimization of MFC.
     At last, the sum up of the research content and the achievements of the thesis are mentioned, the directions for further working aims also pointed out.
引文
[1]赵媛,论能源开发利用对全球性环境问题的影响[J],世界地理研究.2000,09(4):89-94.
    [2]H.H.P.Fang,H.Liu,Effect of PH on Hydrogen Production from Glucose by a Mixed Culutre[J],Bioresour,Technol,2002.82(1):87-93.
    [3]农宝廉,燃料电池-高效、环境友好的发电方式[M],北京:化学工业出版社,2000.
    [4]Park D.H.,Zeikus J.G.,Electricity generation in microbial fuel cells using neutral red as an electronophore[J],Applied and Environmental Microbiology,2000,66(4):1292-1297.
    [5]Toki Ikeda,Kenji Kano,Bioelectmcatalysis-based applieationof quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells[J],Biochimicaet Biophysica Acta,2003,1647(1):121-126.
    [6]Veag C.A.,Fernandez I.,Mediating effect of ferric chelate compounds in microbial fuel cells with lactobaeillns plan tarnm,streptoeocius laetes,and erwina dissolvens[J],Bioelectrochem Bioeng,1987(12):217.
    [7]Park D.H.,Zeikus J.G.,Utilization of electrically reduced neutral red by Actinobacillus succinogenes:Physiological function of neutral red inmembrane-driven fumarate reduction and energy conservation [J],Journal of Bacteriology,1999(181):2403-2410.
    [8]Liu H.,Logan B.E.,Electricity generation using an air-cathode single chamber microbial fuel cell in t he presence and absence of a proton exchange membrane[J],Environmental Science and Technology,2004,38(14):4040-4046.
    [9]Tanaka K.,Vega C.A.,Tamamushi R.,Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells[J],Bioelectrochemistry and Bioenergetics,1983,11:289-297.
    [10]Akiba T.,Bennetto H.P.,Striling J.L.et al.,Electricity production from alkalophic organisms[J],Biotechnology Letters,1987,9:611-616.
    [11]Sibel D.,Roller H.,Bennetto P.,Delaney G.,Mason J.,Stirling J.,Thurston C.,Eleetron Transfer Coupling in Mierobial Fuel Cells:I,Comparison of Redox-mediator Reduction Rates and Respiratory Rates of Bacteria[J],Journal of Chemieal Teehnology & Bioteehnology,1984,34B:2-12.
    [12]Choi Y.,Jung E.,Kim S.et al.,Membrane fluidity sensoring microbial fuel cell[J],Bioelectrochem,2002,59:121-127.
    [13]Park D.H., Kim B.H., Moore B. et al., Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds [J], Biotechnology Techniques, 1997,11:145-148.
    [14]Rabaey K., Boon N., Siciliano S.D. et al., Biofuel cells select for microbial consortia that self-mediate electron transfer[J], Applied and Environmental Microbiology, 2004,70(9): 5373-5382.
    [15]Bond D.R., Holmes D.E., Tender L.M. et al.,Electrode-reducing microorganisms that harvest energy from marine sediments [J], Science, 2002,295:483-485.
    [16]Chang I.S., Jang J.K., Gil G.C. et al., Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor [J], Biosensors and Bioelectronics, 2004,19:607-613.
    [17]Ioannis A., Ieropoulos, John Greenman Chris Melhuish, John Hart, Comparative study of three types of microbial fuel cell [J], Enzyme and Microbial Technology 37 (2005):238-245.
    [18]Liu H., Grot S., Logan B.E., Electrochemically assisted microbial production of hydrogen from acetate [J], Environmental Science and Technology, 2005,39(11): 4317-4320.
    [19]Min B., Cheng S., Logan B.E., Electricity generation using membrane and salt bridge microbial fuel cells[J], Water Research, 2005,39:1675-1686.
    [20]Min B., Logan B.E.,Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell [J], Environmental Science and Technology, 2004, 38(21): 5809-5814.
    [21]He Z., Minteer S.D., Angenent L.T., Electricity generation from artificial wastewater using an upflow microbial fuel cell[J], Environmental Science and Technology, 2005, 39(14): 5262-5267.
    [22] Jae Kyung Jang, The Hai Pham, Construction and Operation of a Novel Mediator-and Membrane-less Microbial Fuel Cell[J], Process Biochemistry,2004.39(8): 1007-1012.
    [23]Doo H.P., Gregory Z., Improved Fuel Cell and Electrode Designs for Producing Electricity from Microbial Degradation[J],Biotechnol,Bioeng,2003,81 (3):348-355.
    [24]Liu H., Ramnarayanan R., Logan B.E., Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J], Environmental Science and Technology , 2004, 38(7): 2281-2285.
    [25]Suzuki S.,Karube I.,Energy Produetion with Immobilized Cells [J]. Applied Biochemistey & Bioengineering. 1983,4(2):281-310.
    [26]Nguyet Thu Phung, Jiyoung Lee, Analysis of Microbial Diversity in Oligotrophic Microbial Fuel Cells Using 16S rDNA Sequences[J], FEMS Microbiology Letters,2004,(233):77-82.
    [27]Rabaey K.,Lissens G.,Siciliano S.D.et al.A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency[J],Biotechnology Letters,2003,25:1531-1535.
    [28]Rabaey K.,Boon N.,HBfte M.et al.,Microbial phenazine production enhances electron transfer in biofuel cells[J],Environmental Science and Technology,2005,39(9):3401-3408.
    [29]吴昌汉,偏远无电地区的小容量电源设施[J],天然气工业,2001,21(5):96-100.
    [30]Young-Gab Chun,Chang-Soo Kim,Performance of a Polymer Electrolyte Memebrane Fuel Cell with Thin Film Catalyst Electrodes[J],Journal of PowerSources,1998,(71):174-178.
    [31]Kim H.J.,Hyun M.S.,A Microbial Fuel Cell Type Lactate Biosensor using a Metal-reducing Bacterium,Shewanella Putrefaciens[J],Microbial Biotechnol,1999,(3):365-367.
    [32]段学农,程刚,分散式发电装置的现状及发展[J],电气时空,2004,(5):25-26.
    [33]张涛君,一种绿色能源--太阳能电池与燃料电池供电系统方案铁道通信信号,2003,39(7):1-5.
    [34]G.H.Rohrback,W.R.Scott,J.H.Canfield,Biochemical Fuel Cells.In Proceedings of the 16~(th) Annual Power Sources Conference,1962,18.
    [35]C.F.Thurston,H.P.Bennetto,G.M.Delaney,et al.,Glucose Metbaolism in a Microbial Fuel Cell.Stoichiomety of Product Formation in a Thionine Mediated Proteus Vulgaris Fuel Cell and its Relation to Coulombic Yields[J],J Gen Microbiol,1985,131:1393-1401.
    [36]Lithgow A.M.,Romero L.,Sanchez l C.,et al.,Interception of the electron transport chain in bacteria with hydrophilic redox me-diators[J],Chem Res Synop,1986,(5):178-179.
    [37]S.K.Chuadhuri and D.R.Lovely,Electriciy Generation by Direct Oxidation of Glucose in Mediator-Less Microbial Fuel Cells[J],Nautre Biotechnol,2003,21:1229-1232.
    [38]韩保祥,毕可万,采用葡萄糖氧化酶的生物燃料电池的研究[J],生物工程学报,1992,8(2):203-206
    [39]Gil G.C.,Chang I.S.,Kim B.H.et al.,Operational parameters affecting the performance of a mediator-less microbial fuel cell[J],Biosensors and Bioelectronics,2003,18:327-334.
    [40]Uwe S.,Juliane N.,Fritz S.,A Generation of Microbial Fuel Cells with Current Outputs Boosted by More Than One Order of Magnitude[J],Angew.Chem.Int.Ed.,2003,42:2880-2883.
    [41]Sangeun O.H.,Min B.,Logan B.E.,Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells[J],Environ.Sci.Technol.,2004,38:4900-4904.
    [42]Logan B.E.,Murano C.,Scott K.et al.,Electricity generation from L-cysteine in a microbial fuel cell[J],Water Research,2005,39(5):942-952.
    [43]Kim B.H.,Park HS.,Enrichment of Microbial Community Generating Electricity Using a Fuel-cell-type Electrochemical Cell[J],Appl Microbial Biotechnol,2004,(63):672-681.
    [44]Pham C.A.,Jung S.J.,Phung N.T.et al.,A Novel Electrochemically Active and Fe(Ⅲ)-reducing Bacterium Aeromonas Hydrophoila Related to CIostridium Butyricum Isolated from a Microbial Fuel Cell[J].FEMS Microbiol,Lett.,2003,223:129-134.
    [45]Logan B.E.,Penn State Improves Cost,Power Output of Microbial Fuel Cell[J],Fuel Cells Bulletin,2004,8:6.
    [46]Katz E.,Shipway A.N.,Willner I.,Handbook of Fuel Cells-Fundamentals[J],Technology and Applications.Ltd,London.2003,1:355-381.
    [47]Logan B.E.,Regan J M.,Microbial Fuel Cells Challenges and Applications[J],Environ Sci Technol,2006,40:5172-5180.
    [48]Xu M.,Guo J.,Cen Y.,et al.,Shewanella decolorationnis sp.nov,a dye-decoloraning bacterium isolated from an activated sludge of waste-water treatment plant.[J],Int J Syst Evol Microbiol,2005,55:363-368.
    [49]许玫英,郭俊,钟小燕等,一个降解染料的希瓦氏菌新种--中国希瓦氏菌[J],微生物学报,2004,44(5):561-566.
    [50]Meitzler D.E.,Biochemistry,The Chemical Reactions of Living Cells,Academic Press,1977.
    [51]Methé B.A.,The genome of Geobacter sulfurreducens:insights into metal reduction in subsurface environments[J],Science,2003,302:1967-1969.
    [52]Heidelberg J.F.,Paulsen I.T.,Nelson K.E.,et al.,Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J],Nat biotech,2002,20:1118-1123.
    [53]Gorby Y.A.,Yanina S.,McLean J.S.,et al.,Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR21 and other microorganisms[J],PNAS,2006,103:11358 -11363
    [54]Jonathan M.W.,Lovely D.R.,Anaerobic Benzene Degradation in Petroleum-contaminated Aquifer Sediments after Inoculation with a Benzene-oxidizing Enrichment[J],Appl Environ Microbiol,1998,64(2):775-778.
    [55]Korneel Rabaey,Willy Verstraete.Microbial fuel cells,A Novel Biotechnology for Energy Generation[J],Trends in Biotechnology,2005,(23):291-298.
    [56]Bennetto.H.P.Electricity Generation by Microorganisms[J],Biotechnology Education,1990,1(4): 163-168.
    [57]Rabaey K.,Clauwaert P.,Aelterman P.et al.,Tubular microbial fuel cells for efficient electricity generation[J],Environmental Science and Technology,2005,39(20):8077-8082.
    [58]Aelterman P,Rabaey K.,Pham H.T.,et al.,Continuous Electricity Generation at High Voltages and Currents Using Stacked Micrbial Fuel Cells[J],Envimmental Science Technology,2006,40:3388 -3394.
    [59]Cheng S.A.,I.Liu.H.,Logan B.E.,Increased power generation in a continuous flow MFC with advective flow through the porus anode and reduced electrode spacing[J],Environmental Science Technology,2006,40:2426-2432.
    [60]Makharia R.,Mathias M.F.,Bakerb D.R.,Measurment of Catalyst Layer Electrlyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy[J],Joural of the Electrochemical Society,2005,125(5):A970- A977.
    [61]莫志军,胡林会,朱新坚,燃料电池表观内阻的在线测量[J],电源技术,2005,29(2):95-98.
    [62]Menicucci J.,Beyenal H.,Marsili E.,et al.,Procedure for Determining Maximum Sustainable Power Generated by Micrbial Fuel Cells[J],Environmental Science Technology,2006,40(3):1062-1068.
    [63]Hoogers G.,Ed,Fuel Cell Technology Handbook.Boca Raton,Florida,CRC Press,2003.
    [64]梁鹏,范明志,曹效鑫,黄霞,王诚,微生物燃料电池表观内阻的构成和测量[J].环境科学,2007,28(8):1894-1898.
    [65]Niessen J.,Schr6der U.,Scholz F.,Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch[J],Electrochemistry Communications,2004,6:955-958.
    [66]邹勇进,孙立贤,徐芬,杨黎妮,以新亚甲基蓝为电子媒介体的大肠杆菌微生物燃料电池的研究[J],高等学校化学学报,2007(28):510-513.
    [67]王林山,李瑛,燃料电池第二版,北京:冶金工业出版社,2005.8.
    [68]Grzebyk M.,Pozniak G.,Microbial fuel cells(MFCs) with interpolymer cation exchange membranes[J],Separation and Purification Technology,2005,41:321-328.
    [69]Lovley DR.,Microbial fuel cells:novel microbial physiologies and engineering approaches[J],Current Opinion in Biotechnology,2006,17:327-332.
    [70]Kim H.J.,Park H.S.,Hyun M.S.et al.,A mediator-less microbial fuel cell using a metal reducing bacterium,Shewanella putrefaciens[J],Enzyme and Microbial Technology,2002,30:145-152.
    [71]Park H.S.,Kim B.H.,Kim H.S.,et al.,A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Clostridium butyricwn isolated from a microbial fuel cell[J],Anaerobe,2001,7:297-306.
    [72]Reimers C.E.,Tender L.M.,Fertig S.,et al.,Harvesting energy from the marine sediment-water interface[J],Environmental Science and Technology,2001,35(1):192-195.
    [73]Bond D.R.,Lovley D.R.,Electricity production by Geobacter sulfurreducens attached to electrodes [J],Applied and Environmental Microbiology,2003,69(3):1548-1555.
    [74]微生物电池向化学能源发起挑战[J],今日电子,2004,(2):2-2.
    [75]李明霞,酵母菌的研究.工业微生物学成就—庆祝方心芳先生八十诞辰,北京:科学出版社,1988.
    [76]徐达伍,王定昌,石瑞祥,利用味精废液生产单细胞蛋白实现无污染排放[J],轻功环保,1993,15(2):1-4
    [77]杜双奎,于修烛,李志西,曹孝斌,啤酒酵母菌的复壮与培养研究[J],中国酿造,2004(7):10-13.
    [78]Zhang T.,Cui C Z.,Chen S L.,et al.,A Novel Mediatorless Microbial Fuel Cell Based on Direct Biocatalysis of Escherichia coli[J],Chem Comm,2002,21:2257-2259.
    [79]Jean-Marc Ghigo,Are there biofilm-specific physiological pathways beyond a reasonable doubt Research in Microbiology[J],2003,154:1.
    [80]Kim J R.,Min B.,Logan B.E.,Evaluation of procedures to acclimate a microbial fuel cell for electricity production[J],Applied Microbiology and Biotechnology,2005,68(1):23-30.
    [81]Rabaey K.,Verstraete W.,Microbial fuel cells:novel biotechnology for energy generation[J],Trends in Biotechnology,2005,23(6):291-298.
    [82]沈慕昭,电化学基本原理及其应用,北京:北京师范大学出版社,1987.
    [83]Rhoads A.,Beyenal H.,Lewandowski Z.,Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant[J],Environmental Science and Technology,2005,39(12):4666-4671.
    [84]Katz E.,Willner I.,Kotlyar A.B.,A Noncompartmentalized Glucose Vertical Bar O2 Bioengineered Electrode Surface[J],Electroanal,Chem,1999,479:64-68.
    [85]Liu H,Cheng S,Logan B E.,Power generation in fed-batch microbial fuel cells as a function of ionic strength,temperature,and reactor configuration[J],Environmental Science and Technology, 2005.39(14):5488-5493
    [86]任南琪,发酵法生物制氢技术研究,哈尔滨:哈尔滨建筑大学,1994.
    [87]A.K.Shukla,P.Suresh,S.Berchmans,et al.,Biological Fuel Cells and Their Applications[J],Current Science,2004,87(4):455-468.
    [88]Nevin K.P.,Lovley D.R.,Mechanisms for Accessing Insoluble Fe(Ⅲ) Oxide during Dissimilatory Fe(Ⅲ) Reduction by Geothrix fermentans[J],Applied and Environmental Microbiology,2002,68(5):2249-2299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700