微生物燃料电池的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文致力于研究在设计的各种MFC环境的条件下,使用天然淡水沉积物作为功能微生物源,由微生物燃料电池方式直接将废弃有机质中的化学能转化为电能。同时,对于MFC在一些条件下所表现出来的性能特点也进行了探讨,获得了一系列有意义的结果:
     1、在模拟不同自然环境条件下,使用天然淡水沉积物作为微生物源制备出淡水沉积物微生物燃料电池,其输出性能与海洋沉积物微生物燃料电池输出性能接近。在沉积物中加入有机物质作为诱导条件时,由于加入有机物质的性质不同和加入模式影响,电池的输出性能表现出不同特点。
     2、在双池式微生物燃料电池的模型的建立中,使用铁氰化钾和空气共同作为阴极区氧化剂,天然沉积物作为阳极区微生物源,取得了较理想的结果。在此基础上,不加任何电子中介体,分别以葡萄糖和醋酸钠作为底物,制备出两种性能优良的MFC。醋酸钠MFC的输出电流约0.41 mA,电子效率约80%;葡萄糖MFC的输出电流约0.35 mA,电子效率约60%。对于MFC的电池组组装也进行了探讨,发现可以进行有效的组装来改善电能的输出。另外,在已经建立的以同一种有机物作为底物的平行性很好的四组MFC模型中,分别加入不同有机质,MFC的输出性能存在着明显差异性,并且,使用经过的简易驯化(在沉积物中加入有机污染物后放置一段时间)的沉积物作为功能微生物源的提供者时,电池效果也不尽相同。
     3、在系统地研究双池式葡萄糖MFC中,实验结果表明:工作电极对于功能菌种有强烈的选择和富集作用;工作温度在35℃时,电池达到最佳的输出性能。为了更好对比文献中的实验结果,我们选择30℃作为实验工作温度。在工作温度为30℃条件下对影响电池输出性能因素的考察中,结果表现出:有效的增大阳极面积,可以减小电流密度,从而提高电池的输出性能;阳极区阳极的位置变化对电池输出性能的影响很小;随着外接电阻的增大,电池的输出电流减小,库仑效率降低;在更换新鲜培养基模式下,底物浓度是控制电流输出和电量的主要因素;在持续加入有机物质累积模式下,由于微生物代谢作用而产生的中间产物(H+或者小分子酸)的逐渐累积,MFC的输出性能被严重削弱,最终导致MFC无效。另外,以葡萄糖MFC阳极作为工作电极,利用循环伏安的方法分别对葡萄糖MFC放电过程各个阶段以及全过程进行扫描,考察了阳极区内电极活性物质的产生及其变化特征,发现在电位为-0.4 V(相对于饱和甘汞电极)附近时,出现代表电极活性物质的氧化还原峰,并且随着放电过程进行,在循环伏安图上表现出氧化还原峰峰值的变化。
     4、采用简易的阴极制作方法(将石墨粉、高岭土、硫酸高铁粉和硫酸镍按质量比60:36:3:1混合,煅烧制成的极板作为阴极),覆于阴极表面的高岭土层作为离子交换膜,填充石墨颗粒(直径3mm)作为阳极,成功构建出输出性能优异的连续式空气阴极葡萄糖MFC,大大降低了成本。在考察阳极区溶液的流速对输出电流影响中,发现随着流速的增大,输出电流先增大后减小,当流速为0.2 ml/min时电池的输出电流最大(约0.75 mA)。在苯酚对电池输出性能影响的考察中,实验结果表明:仅使用苯酚作为能源时,随着苯酚浓度增大,输出电流逐步下降,然而,当苯酚浓度大于10 mM时,输出电流较为稳定(约0.3 mA),不再进一步降低;当使用苯酚和葡萄糖同时作为能源时,只有葡萄糖显著降解,苯酚浓度变化很小,同时,电池输出性能受苯酚影响也很小,当苯酚浓度增大到20mM时,电池输出电流仍然较高(约0.70mA)。
In this thesis, the research interest was focused on the direct conversion of chemical energy stored in abandoned organic matter to electricity in designed MFC systems in which natural freshwater sediment was used as the source of functional microorganism. Simultaneously, the performances and characters exhibited by these MFC systems were discussed under some given conditions, and some significant results were obtained as following:
     1. Fresh sediment MFCs were constructed with freshwater sediment as functional microorganism under different conditions simulating natual environment. The performance of the sediement MFCs presented in this thesis was close to that of marine sediment MFCs reported in recent years. When different organic compounds were added into the sediments, both the chemical properties of the organic matter and the mode by which the compounds were applied enable the induced MFC systems to exhibit characteristics different from that of the MFC systems without addition of exogenous organic compounds.
     2. Good results could be obtained in double-chamber MFCs when potassium ferricyanide and air-oxygen were combined as oxidant in cathodic chamber, and the natural fresh sediment as innoculum in anodic chamber, and two types of excellent MFC systems, which utilized glucose and acetate as substrates respectively, had been constructed in this model double-chamber MFC setting, without addition of artificial electron mediators. For MFCs with acetate feeding, the current output and electron recovery achieved were 0.41 mA and 80% respectively, whereas current and electron recovery were 0.35 mA and 60% respectively for glucose-feeding MFCs.It also showed that the power output of MFC can be enhanced by connecting individual MFC into MFC stack. Moreover, in MFC systems which were constructed with the same organic matter as substrate, feeding different organic compounds gave rise to the variation of MFC performance in terms of substrate conversion. Additional study demonstrated that the performance of MFCs in which sediment that had been incubated for several weeks or months by simply adding organic contaminants were use as innoculum was also different.
     3. Systematic experiments demonstrated that working electrode in double-chamber MFC systems with glucose-feeding exhibited selective function for electricity-generating microorganism and these functional bacteria were found to enrich on the surface of graphite cloth electrode. The MFC systems were found to have maximal output power at temperature 35℃, however, 30℃was selected as experimental temperature in our experiments, in order to compare the results with most reported previously in literture. A wide range of factors that may affect the performance of the MFC systems were investigated intensitively, and the results indicated that increase in the effective reaction surface of anode enhanced the power output due to lowering the current density through the electrode; the position of anode in anodic chamber had little effect on the power generation by the MFC systems; current output and coulombic efficiency decreased with increasing external resistance. It was found that the mode by which the organic substrate was fed into the systmes also affected the electricity generation. For example, substrate concentration was showed to be the primary factors to control the power output and charge anount when the MFCs were operated in fed-batch mode, however, when the substrate was accumulatively added into the anodic chamber without redrawl of the medium, the performace of the MFCs was significantly decreased with final effectiveness due to the production of intermediate metablic products (i.e. proton and low mass organic acids). In further experiments, cyclic voltammogram method with anode of MFC as working electrode was used to characterize the production of compounds with electrochemical activity and to moniter the variation of amount of these metablic products. The measuement was performed in two different modes for the same MFC system, with one determing the medium sampled at different phase within an electricity-generating cycle, and the other continously following the whole process by the MFC. The results indicated a presence of redox peak at approximate -0.4 V (versus saturated calomel electrode), and the height of peak in voltammogram was found to change with the electricity-generationg process in MFCs.
     4. The air-cathode glucose-fed MFCs in continous mode, with excellent output performance, were constructed successfully through simple manufacture method of cathode (Graphite powder, the kleit, the iron sulfate and nickel sulfate were mixed according to stated proportion (60:36:3:1), which was made into the cathode material after calcining.). Brushing a layer of kleit on the surface of the cathode, it was used for the cation exchange membrane, graphite pellet (diameter 3mm) as the anode, for reducing the cost. The changing of output performance of the MFCs due to the influence of flow speed in anodic chamber was investigated, and the results showed that the maximal current output was 0.75 mA when the flow speed was 0.2 ml/min. The output performance due to the influence of phenol was also investigated, and the results indicated that the current output fall stpwise with the phenol cocentration ingcreasing when the phenol as only substacte. However, the current output was gradually stable (0.30 mA) when the concentration of phenol more than 10 mM. And when both phenol and glucose were used as substrate, glucose was remarkably degenerated though the concentration of phenol only has a little change. Simultaneously, the output performance was also stable with gradually ingcreasing phenol. And the current output was still maintaining high (0.70mA) when the concentration of phenol was 20 mM.
引文
[1] 李锦富.北京电子.2003,8:41-42.
    [2] Potter, M.C. Proceedings of the Royal Society B.1910,84: 260.
    [3] 韩保祥,毕可万. 生物工程学报.1992,8:203-206.
    [4] Milazzo G,Martin B.天津科学技术出版社.1990 :335.
    [5] Karyakin A A , Morozov S V . Electrochemistry Communications .2002 , 4 : 417- 420.
    [6] Evelyne S, Catherine M H, Chee S T. Bioelectrochemistry . 2002 ,55 :21-23.
    [7] Ruzgas T , Csoêregi E , Emneus J. Anal. Chim. Acta .1996 ,330 :123-138.
    [8] Palmore G T R , Bertschy H. J. Electroanal. Chem. 1998 ,443 :155-161.
    [9] Tsujimura S , Tatsumi H , Ogawa J. J . Electroanal. Chem. . 2001 ,496 : 69-75.
    [10] Tayhas G,Palmore R , Kim H H. J . Electroanal. Chem. . 1999 ,464 : 110-117.
    [11] Willner I , Katz E. Angew. Chem. Int . Ed. . 2000 ,39 : 1180-1218.
    [12] Willner I , Willner B. Trends Biotechnol. 2001 ,19 : 222-230.
    [13] Katz E , Willner I , Kotlyar A B. J . Electroanal. Chem. 1999 ,479 : 64-68.
    [14] Katz E, Shipway A N, Willner I.Handbook of Fuel Cells-Fundamentals, Technology and Applications . Ltd.: London. 2003,1:355-381.
    [15] Gemma R, Kevin D, and Derek R. Nature letters. 2005,435:1098-1101.
    [16] 康峰,伍艳辉,李佟茗. 电源技术.2003, 28: 723-727.
    [17] 贾鸿飞,谢阳,王宇新. 电池. 2000, 30:86-89.
    [18] Tayhas G, Palmore R, Whitesides M. American Chemical Society. 1994:271-290.
    [19] Thurston C F, Bennetto H P, Delaney G M. J Gen Microbiol.1985,131:1393.
    [20] Bennetto H P, Delaney H P, Mason J R. Biotechnol Lett.1985,7:699.
    [21] Lithgow A M,Romero L, Sanchez I C. J Chem Res.1986,5:178.
    [22] Veag C A, Fernandez I. Bioelectrochem Bioeng.1987,17:217.
    [23] Derek R. Nature Reviews.Microbiology.2006, 4:497-507.
    [24] Tanaka K,Vega C A,Tamamushi R. Bioelectrochem Bioenerg.1983,11:289.
    [25] Akiba T, Bennetto H P, Striling J L. Biotechnol Lett.1987,9:611.
    [26] Kim H J, Park H S, Hyun M S. Enzyme Microbiol Technol.2002,30:145-152.
    [27] Reimers C E,Tender L M, Fertig S. Environ Sci Technol.2001,35:192-195.
    [28] Bond D R, Lovley D R. Appl Environ Microbiol.2003,69:1548-1555.
    [29] 微生物电池向化学能源发起挑战. 今日电子,2004,2:2.
    [30] Doo H P, Gregory Z. Biotechnol.Bioeng.2003, 81: 348-355.
    [31] Korneel R, Willy V. Trends Biotechnol.2005, 23: 292-298.
    [32] Micha? G, Gryzelda P. Microbial Sep. Purif. Technol.2005, 41: 321-328.
    [33] Chaudhuri S K, Lovley D R. Nat.Biotechnol.2003, 21: 1229-1232.
    [34] Uwe S, Juliane N, Fritz S.Angew. Chem. Int. Ed. 2003, 42: 2880-2883.
    [35] Oh S, Min B, Logan B E. Environ. Sci.Technol. 2004. 38: 4900-4904.
    [36] Logan B E, Cassandro M, Keith S. Water Res. 2005. 39: 942-952.
    [37] Kim H J, Park H S, Hyun M S. Appl. Environ. Microbiol. 2003, 63:672-681.
    [38] Pham C A, Jung S J, Phung N T. FEMS Microbiol. Lett.2003, 223: 129-134.
    [39] Logan B E. Penn State Fuel Cells Bulletin. 2004, 8: 6.
    [40] Min B, Logan B E. Environ. Sci. Technol. 2004, 38: 5809-5814.
    [41] Min B, Cheng S, Logan B E. Water Res. 2005,39: 1675-1686.
    [42] Kim H J, Hyun M S, Chang I S. Microbiol. Biotechnol. 1999, 3: 365-367.
    [43] Kim B H, Chang I S, Gil G C.Biotechnol. Lett.2003, 25: 541-545.
    [44] Angenent L T, Karim K, Al-Dahhan M H. Trends Biotechnol.2004, 22,477-484.
    [45] Logan, B E. Water Sci. Technol.2005,52, 31-37.
    [46] Liu H, Ramnarayanan R,Logan B E. Environ. Sci. Technol. 2004, 38, 2281-2285.
    [47] Tender L M,Reimers C E,Lovley, D R. Nat.Biotechnol. 2002,20,821-825
    [48] Bond D R, Holmes D E, Tender L M, Lovley D R. Science. 2002,295: 483–485
    [49] Bond D R,Lovely D R. Appl. Environ. Microbiol. 2003, 6:548-1555.
    [50] Liu H,Logan B E. Environ. Sci. Technol. 2004, 38: 4040-4046.
    [51] Rabaey K,Lissens G,Siciliano S D,Verstraete W.Biotechnol.Lett. 2003, 25: 1531 -1535.
    [52] Lovley D R,John D. Nature. 1996,382: 445 - 448.
    [53] Rabaey K, Clauwaert P and Versteraete W . Environ. Sci. Technol. 2005, 39(20) : 8077-8082.
    [54] Hong L,Shaoan Ch , Logan B E. Environ. Sci.Technol. 2005. 39: 5488-5493.
    [55] Ioannis I, John G, John H. Journal of Power Sources. 2005,145:253–256.
    [56] Hong L,Shaoan Ch , Logan B E. Environ. Sci.Technol. 2005. 39: 658-662.
    [57] Logan B E,Murano C and Scott K.Water Res. 2005,39:942-952.
    [58] Kim H J, Park H S,KimB H. Enzyme Microbiol.Tech. 2002,30: 145–152.
    [59] Park H S, Kim B H,Kim H S. Anaerobe. 2001,7:297–306.
    [60] Pham, C A, Jung S J,Phung N T. FEM Microbiol. Lett. 2003, 223:129–134.
    [61] Barton S C, Gallaway J, Atanassov P.Chem.Rev.2004, 104: 4867-4886.
    [62] Chaudhuri S K, Loveley D R. Nature Biotechnilogy.2003, 21:1229-1232.
    [63] Kostka J E. Appl.Environ.Microbiol.2002, 68:6256-6262.
    [64] Kim B H, Kim H J, Hyun S, Park D H. J.Microbiol.Biotechnol. 1999,9:127-131.
    [65] Juliane N,Miriam R, Fritz S. Electrochemistry Communications.2004,6:571-575.
    [66] Juliane N, Uwe S,Scholz. Electrochemistry Communications.2004,6:955-958.
    [67] Sangeun Oh , Book M, Logan B. Environ. Sci. Technol.2004, 38:4900-4904.
    [68] Tayhas G, Palmore R, Whitesides M. American Chemical Society. 1994:271-290.
    [69] Rabaey K, Boon N, Verstraete.Environ. Sci. Technol. 2005,39:3401-3408.
    [70] Holmes D E, Bond D R, Lovley D R.Microb.Ecol. 2004,8:78-190.
    [71] 孙敏,陈剑虹.中国医学工程.2004,3:93-94.
    [72] Cord-Ruwisch R, Oliver B, Garcia J L.. Curr. Microbiol. 1986, 13: 285-289.
    [73] Sung A L, Youngjin Ch, Seunho J. Bioelectrochemistry.2002,57: 173-178.
    [74] Thurston C F, Bennetto, H P, Mason J R. J. Gen. Microbiol.1985,131:1393- 1401.
    [75] Jae K J. Process Biochemistry.2004,39: 1007-1012.
    [76] Eun J Ch, Ellington A D. Bioelectrochemistry. 2007,70:165-172
    [77] Nicolas M, Fei M, Adam H. J. Electroanalytical Chemistry.2005, 574:347-357.
    [78] Geun-Cheol G,Byung H K. Biosensors and Bioelectronics. 2003,18:327-334.
    [79] Youngjin Ch, Eunkyoung J,Sunghyun K. Bioelectrochemistry.2003, 59:121- 127.
    [80] Larminie J,Dicks A. Fuel Cell Systems Explained.2000.
    [81] Park D H, Zeikus J G. J.Bacteriology. 1999,181: 2403-2410.
    [82] Hong L,Shaoan Ch,Logan B E. Environ. Sci.Technol. 2005. 39: 658-662.
    [83] Prasad D, Sivaram T K, Yegnaraman V. J. Power Sources. 2006, 160: 991-996.
    [84] Allison R, Haluk B,Zbigniew L. Environ. Sci. Technol.2005, 39:4666-4671.
    [85] Zhen H, Norbert W, Minteer S D. Environ. Sci. Technol.2006, 40:5212-5217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700