贝母类药材的红外光谱分析与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贝母Bulbus·Fritillaria为百合科Liliaceae贝母属Fritillaria L.植物的干燥鳞茎,是常见的中药材之一。贝母在我国有2000多年悠久的使用历史,早在汉代的《神农本草经》就有记载,被列入中品,它有清热润肺,化痰止咳之功效,主治肺热燥咳、咯痰带血、痰多胸闷等症。
     由于与贝母同属的贝母属植物品种繁多,极易混淆,且不同部位及不同产地的贝母其化学成分各有差异,影响药理效应。所以迫切需要建立快速、准确的鉴别方法。红外光谱法是鉴别化合物和确定物质结构的常用手段之一。中药材的红外光谱图是其所含各成分的叠加谱,反映了中药材整体质量信息。
     本论文采用红外光谱三级宏观指纹鉴定法结合计算机分析比对软件等技术对中药贝母的质量进行了初步的分析与鉴定。主要研究成果有:(1)不同产地野生的川贝和平贝之间存在着较大差异,造成这种差异的原因是它们的气候条件、地形地貌、土壤等生长条件相差较大,因而引起所含化学成分含量差异较大。同一省内的非常相似,但也不完全相同。可见,产地不同对贝母化学成分的种类影响不大,但含量积累的影响较大。(2)不同种属贝母原药材粉末的一级鉴定中,川贝和浙贝在1647cm-1具有明显的特征峰,其它三种贝母的特征峰则在1654cm-1。在二级导数谱中,川贝在1647cm-1的谱峰最强,浙贝则变成1640cm-1和1628cm-1双峰,其它三种贝母基本一致都在1638cm-1和1627cm-1两处出峰。在二维相关谱的1200~1300cm-1波段范围内,有3个比较明显的自动峰,对应着贝母中=C-O-C-的特征振动,它们的交叉峰均为正。(3)对松贝、青贝和炉贝三种川贝母的心芽、鳞叶和整体鳞茎研究显示,松贝的心芽和鳞叶含有的有效成分明显不同于青贝和炉贝,心芽中同样含有淀粉和有效成分,因此这与药典中规定的,松贝、青贝和炉贝在入药时,并未除去心芽,还是相吻合的,同时还证明了松贝的质量明显好于后两者。(4)经水和甲醇提取后,原药材提取物中总生物碱和总皂苷等有效成分的相对含量得到了富集。川贝与其他几种贝母的水提物与醇提物的红外光谱中1100cm-1与1630cm-1附近的相对峰强度明显不同,这也与传统观念所认为的川贝的药效优于其他品种贝母的观点相一致。研究中还发现贝母水提物的红外光谱中有1120±5、618cm-1等硫酸盐的特征吸收峰,这与其加工过程中使用硫磺熏蒸等处理有关,说明通过红外光谱还可以对贝母中的硫残留进行检测。
     综上所述,红外光谱三级宏观指纹鉴定技术结合计算机比对软件技术在中药质量控制中具有良好的应用前景。
Bulbus Fritillariae (in Chinese named Beimu), referred to the bulbs of several Fritillaria species (Liliaceae), is a commonly used anti-tussive and expectorant herb in traditional Chinese medicine (TCM) for more than 2000 years which is also used as a dietary supplement in China.
     Because there are many varieties of herbal medicine, which are the same as Beimu belong to Fritillaria, they are quite similar, and different parts and producing areas of Beimu have diverse chemical constituents and drug effects. Therefore, rapid and accurate identification method can play a significant role on guaranteeing their curative effect. Infrared spectroscopy (IR) is one of the routine means to distinguish chemical compounds and confirm material structures. The IR spectra of Traditional Chinese Medicine (TCM) include spectra of each compound in the system, which shows the whole information of TCM.
     In this thesis, we have analyzed and identified the quality of Beimu via the multi-steps IR macro-fingerprint method and combined with the software of Computer Analysis Comparison. The main conclusions include:(1) Feral Bulbus Fritillariae Cirrhosae(CB) and feral Bulbus Fritillariae Ussuriensis(UB) of different origins are quite different, the reason of which is that they have quite different grown conditions of climatic conditions, topography, soil and so on. So, these distinction leads to the content of their chemical components. Beimu in the same province are quite similar but not the same. It is thus clear that the influence of the kind of Beimu chemical components by the different origins is not so big while it is big in the content accumulation. (2) The IR spectra of the different kinds of Beimu materials shows that CB and Bulbus Fritillariae Thunbergii (TB) both have a obvious peak at 1647 cm-1 while the peak of other three Beimu is at 1654 cm-1. In the second derivative IR spectra, CB has the strongest peak at 1647 cm-1, TB changed into two peaks at 1640 cm-1 and 1628 cm-1, while other three Beimu are quite similar at 1638cm-1 and 1627cm-1. The three peaks characteristic intensity in the region at 1200-1300cm-1 of the 2D-IR spectra correspond the stretching of the -C-O-C-groups. (3) The research of three different CB:Songbei(SB), Qingbei(QB), Lubei(LB) shows that the different parts of the bulbs contains different active principle. The bud and scale leaf of SB contain dissimilitude active principle with QB and LB. The bud also contains the same starch and active principle with the bulb. So, this is consistent with the rules of pharmacopeia that not remove the bud of CB when using them. Meanwhile, it is also identified that the quality of SB is much better than the other two. (4) The starch contained in the original medicinal extracts has greatly reduced, while the relative content of the effective components, such as the total alkaloid and saponins, has increased. The IR spectrums of the aqueous and alcohol extract of F. cirrhosae are distinctly different with the relatively peak intensity with the other Beimu at 1100cm-1 and 1630cm-1. And We can find peaks at 1120±5 and 618cm-1 in the IR spectrum of Beimu aqueous extract which are the characteristic absorption peaks of the sulfate, and this is related to the use of sulfur fumigation in the processing. And it is also show that the sulphur residue in Beimu can be identified by the FTIR.
     In a word, the multi-steps IR Macro-Fingerprint method and combined with the software of Computer Analysis Comparison have great applying foreground in the quality control of TCM area.
引文
[1]中国药典.2005,一部:25.
    [2]Lin C} Li P, Li S L, et al. Chromatographic analysis of Fritillaries isosteroidal alkaloids, the active ingredients of Beimu, the antitussive traditional Chinese medicinal herb, Journal of Chromatography A,2001,935,321~338.
    [3]Hues R, Sun S Q, Zhou Q, et al. Discrimination of Fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy, Journal of Pharmaceutical and biomedical analysis,2003,33,199~209.
    [4]Li S L, Lin q Chan S W, et al. Determination of the major isosteroidal in bulbs of Fritillaries by high-performance liquid chromatography coupled evaporative light scattering detection, Journal of Chromatography A,2001,207~214.
    [5]中国药典.2005,一部:25,65,95,205,242.
    [6]Li S L, Li P, Lin C, et al. Simultaneous determination of seven major isosteroidal alkaloids in bulb of Fritillaries by gas chromatography, Journal of Chromatography A,2000,873, 221~228.
    [7]Ren H, Chiu Y J, F. C. K. Pre-column derivatization and gas chromatographic determination of alkaloids in bulbs of Fritillaries. Journal of chromatography A,1999,859,183~192.
    [8]阮汉利,张勇慧,吴继洲.贝母属植物非生物碱成分研究进展.中草药,2002,33,858~860.
    [9]十晓琳,季晖,土长里等.贝母的药理作用研究概况.中草药,2000,31,313~315.
    [10]张鹏,徐仿周,吴继洲.贝母及其复方制剂中生物碱含量测定方法.医药导报,2004,23(4):261~263.
    [11]王宪楷,主编.天然药物化学,北京:人民卫生出版社,1988:85
    [12]邢卫,赵勤,不同产地贝母总生物碱含量的比较.河北医科大学学报,1998,19(5):305
    [13]李萍,徐国钧,金蓉莺等.中药贝母类的研究XV-21种贝母总生物碱含量测定.中国药科大学学报,1990,21(5):319
    [14]宋福坤,赵勤.湖北贝母与川贝母总生物碱含量的比较.药学进展,1998,22(1):49
    [15]范桌文,金昌东,陈彩霞.3种贝母总生物碱含量的动态变化研究.中国中药杂志,1996,21(4): 211
    [16]中国科学院中国植物志编辑委员会.中国植物志,北京:科学出版社,1980,14:97
    [17]贾玉涛,刘志辉等.不同药物配伍对浙贝母生物碱含量影响的研究.时珍国医国药,2001,12(9):784~785
    [18]戴国友,刘志辉等.不同溶媒对浙贝母生物碱含量影响的研究.时珍国医国药,2001,12(9):774~780
    [19]蔡朝晖,董婷霞等.不同产地浙贝母的基因序列及生物碱含量比较.中药材,2001,24(3):154~157
    [20]马利琼,王晓铭等.17个不同产地的川贝母总生物碱的含量测定.华西药学杂志,2001,16(1):60~61
    [21]翟西峰,李大龙等.伊贝母不同组织培养物中总生物碱和西贝母碱含量比较.中草药,2001,32(1):31~33
    [22]李松林,林鸽.浙贝母总生物碱的月积累动态的研究.中国中药杂志,1999,24(10):592~594
    [23]张亚山,宫喜臣.伊犁贝母的栽培技术.特种经济动植物,2002,(6):26
    [24]张耀甲,程林.甘肃贝母属植物分类学研究.兰州大学学报(自然科学版),1998,34(2): 84
    [25]蒋爱华.贝母的薄层层析鉴别.黑龙江中医药,1998,(2):4-4
    [26]魏云洁,刘兴权.成龄伊贝母不同物候期总生物碱含量及折干率测定.中国林副特产1998,(1):12
    [27]宋福坤,赵勤.不同产地贝母总生物碱含量的比较.华西药学杂志,1997,12(4):259~261
    [28]李阳,周娅.宁夏贝母总生物碱影响小鼠免疫功能的初步研究.宁夏医学院学报,1997,19(3):1-4
    [29]辛宁.不同规格川贝母的总生物碱、西贝素含量测定.广西中医药,1997,20(3):45~46
    [30]刘杰书.湖北贝母的本草考证及其品质评价.湖北中医杂志,2001,23(7):5
    [31]郑萍,谢笑天.贝母中的生物硷——西贝素的薄层层析研究.云南师范大学学报,自科版1996,16(4):59~61
    [32]李阳,黎雪如.宁夏贝母总碱和蛇胆川贝液体外抗菌活性研究.宁夏医学杂志,1996,18(3):147~148
    [33]王化远,张安将.瓦布贝母生物碱的分离与鉴定.华西医科大学学报,1996,27(1):100~105
    [34]胡梅素,祝明.3种不同加工浙贝母总生物碱含量的比较.中国中药杂志,1995,20(3):157~158
    [35]邝翠仪,钟诗龙,3种不同加工川贝母有效成分的比较.中草药,2000,31(8):590~591
    [36]朱丹妮,谭丰萍.HPLC-ELSD分析测定贝母类药材中生物碱成分.药物分析杂志,2000,20(2):87~91
    [37]闰琳,李汉青.宁夏贝母总碱的镇咳与祛痰作用.宁夏医学院学报,1999,21(3):164~165
    [38]李松林,李萍.药用贝母中几种活性异甾体生物碱的分布.药学学报,1999,34(11):82~87
    [39]蓝日盛,辛宁.不同采收期及加工方法的川贝母有效成分含量测定.广西中医学院学报,2000,17(3):93~94
    [40]王安行.酸性染料两相滴定法测定浙贝母总生物碱的含量.中国现代应用药学,1998,15(3):50~51
    [41]李萍,王冲之等,贝母类药材生物碱及生物碱苷含量测定方法学研究.中国药学杂志,2003,6(38):415~417
    [42]尚志钧,刘晓龙.贝母药用历史及品种考察.中华医史杂志,1995,25(1):38~42
    [43]张娟,路金才.皂昔的提取方法及含量测定研究进展.中国现代中药,2006,8(3):25~28
    [44]赵德永.四种川贝母的总皂昔、总生物碱及西贝素的含量测定.中国中药杂志,1994,19(2):71
    [45]罗千明,吴子超、七叶神安片中三七叶总皂普测定方法的比较.中国药业,2001,10(8):16
    [46]张纪立,黄仪风,程荣珍等.绞股蓝皂营含量测定方法比较.中成药,1995,17(4):39-40
    [47]李萍,于晓琳等.贝母的药理作用研究概况.中草药,2000 31(4)317318
    [48]张治针,范崔生等.江西彭泽贝母化学成分的研究.中草药,1994 25(1),48
    [49]汪丽燕,韩传环等.皖贝与川贝和浙贝止咳祛痰的药理作用比较,安徽医学,1994,13(4):57~58
    [50]肖灿鹏,赵浩如等.中药贝母几种主要成分的体外抗菌活性,中国药科大学学报,1992,23(3):188~189
    [51]陈泽乃,药用植物中抗血小板活化因子成分的研究进展,中国中药杂志,1998,18(6):323~326.
    [52]程远方,辜转荣,马海平.五类贝母药材形状、化学成分、现代药理及应用比较.中华临床医学研究杂志,2005,11(14):2038~2039
    [53]唐生斌,唐小鹏.贝母类药材的性状鉴别.中药材,2002,25(5):321~324
    [54]何斜.中药贝母的品种与性状区别.海峡药学,2002,14(6):55~56
    [55]孟燕,宋小军,李江平.川贝母与其易混品的鉴别.时珍国医国药,2002,13(9):532
    [56]王亚杰,李一波,李殿起.基于纹理的中药材贝母显微图像的识别.计算机工程与设计,2004,25(10):1676~1678
    [57]项秀兰,黄雪琳,张雅青,黄小键.8种贝母导数光谱检测.江西中医学院学报,1996,8(3):17
    [58]江菊球,胡清宇,李水福.贝母类中药紫外光谱聚类分析.时珍国药研究,1997,8(3):235
    [59]王波,谭睿,陈士林.红外光谱法快速鉴别川贝及其混淆品.中药材,2003,26(12):864~865
    [60]程存归,郭水良,陈宗良.FTIR直接测定法对川贝母和珠贝、小东贝的区别鉴定.中草药,2002,33(3):262~264
    [61]邓波,周玉荣,刘志宏,庞小峰.FT NIR与主成分分析在中药贝母鉴别和聚类中的应用研究.光谱实验室,2006,23(5):1013~1016
    [62]闰明,仲婕,麦迪娜,刘庆华,宋铁彬.六种野生贝母的裂解气相色谱分析鉴定.新疆中医药,1997,15(3):30~32
    [63]吴晓民,王艳红,郑友兰.平贝母药材的薄层色谱鉴别.人参研究,2006,18(3):28~29
    [64]刘震东,程世琼,王曙.聚酞胺薄膜色谱鉴别栽培的川贝母.华西药学杂志,2006,21(1):64~66
    [65]王曙,徐小平,谭昌勇,李涛.川贝母与其它贝母的薄层色谱鉴别.华西药学杂志,2002,17(3):219~221
    [66]程存归,刘幸海.差热分析法鉴定贝母类中药材的研究.中草药,2004,35(2):210~212
    [67]李玉锋,唐琳,陈放.8种贝母的RAPD分析.中成药,2006,28(10):1528~1529
    [68]刘惠娟,李萍,徐路珊,徐国钧.二十种贝母药材的蛋白质电泳鉴别.中药材,1992,15(11):23~25
    [69]吴忠,郑少珠.浙贝母、川贝母微量元素灰关联度分析及鉴别分类.中药材,1997,20(6):291~293
    [70]周玉新.现代中药鉴定技术.化学工业出版社,2000:230
    [71]王琪,胡鑫尧.三维光谱学——二维红外光谱和时间分辨光谱.光谱学与光谱分析,2000,20(2):175~179
    [72]Ernst R R, Bodenhausen G, Wakaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford:Oxford University Press,1987
    [73]吴强,王静.二维相关分析光谱技术.化学通报,2000,(8):45~53
    [74]Noda I. Two-dimensional infrared spectroscopy of synthetic and biopolymers. Bull. Am. Phys. Soc.1986,31:520
    [75]Noda I. Generalized Two-dimensional infrared spectroscopy. J. Am. Chem. Soc.1989, 111(21):8116~8118
    [76]Noda I. Generalized Two-dimensional correlation method applicable to infrared, raman, and other types of spectroscopy. Appl. Spectrosc.1993,47(9):1329~1336
    [77]Ozaki Y, Murayama K, and Wang Y. Application of two-dimensional near-infrared correlation spectroscopy to protein research. Vib. Spectrosc.1999,20 (2):127~132
    [78]Noda I, Liu Y L, Ozaki Y, et al. Two-dimensional fourier-transform near-infrared correlation spectroscopy studies of temperature-dependent spectral variations of oleyl alcohol. J. Phys. Chem.1995,99(10):3068-3073
    [79]Shen Y, Chen F E, Wu P Y, et al. A two-dimensional Raman spectroscopic study on the structural changes of a polythiophene film during the cooling process. J. Chem. Phys.2003,119 (12):11415~11419
    [80]Noda I and Marcott C. Two-dimensional raman (2D Raman) correlation spectroscopy study of non-oxidative photodegradation of β~carotenet. J. Phys. Chem. A.2002,106 (14):3371~3376
    [81]Geng L, Cox J M and He Y. Dynamic two-dimensional fluorescence correlation spectroscopy. Generalized correlation and experimental factors. Analyst.2001,126 (8):1229~1239
    [82]Choi H C, Jung Y M, Noda I, et al. A study of the mechanism of the electrochemical reaction of lithium with CoO by two-dimensional soft X-ray absorption spectroscopy (2D XAS),2D Raman, and 2D heterospectral XAS-Raman correlation analysis. J. Phys. Chem. B.2003,107 (24):5806~5811
    [83]Shen Y and Wu P Y. Two-dimensional ATR-FTIR spectroscopic investigation on water diffusion in polypropylene film:Water bending vibration. J. Phys. Chem. B.2003,107 (18):4224~4226
    [84]Musto P. Two-dimensional FTIR spectroscopy studies on the thermal-oxidative degradation of epoxy and epoxy-bis(maleimide) networks. Macromolecules.2003,36 (9):3210~3221
    [85]Schultz C P, Fabian H, and Mantsch H H. Two-dimensional mid-IR and near-IR correlation spectra of ribonuclease A:Using overtones and combination modes to monitor changes in secondary structure. Biospectroscopy.1998,4(5):S19-S29
    [86]Amari T and Ozaki Y. Generalized two-dimensional attenuated total reflection/infrared and near-infrared correlation spectroscopy studies of real-time monitoring of the initial oligomerization of bis(hydroxyethyl terephthalate). Macromolecules.2002,35 (21):8020~8028
    [87]Izawa K, Ogasawara T, Masuda H, et al. Two-dimensional correlation gel permeation chromatography study of octyltriethoxysilane sol-gel polymerization process. Macromolecules. 2002,35(1):92~96
    [88]Wu Y Q, Jiang J H, and Ozaki Y. A new possibility of generalized two-dimensional correlation spectroscopy:Hybrid two-dimensional correlation spectroscopy. J. Phys. Chem. A.2002,106 (11):2422~2429
    [89]孙素琴,周群,秦竹.中药二维相关红外光谱鉴定图集.北京,化学工业出版社,2003
    [90]吴瑾光.近代傅里叶变换红外光谱技术及应用(第一卷).北京,科学技术文献出版社,1994:239
    [91]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用(修订版).北京,科学出版社,2001:457
    [92]孙素琴,郁鉴源,胡鑫尧.分子光谱法直接无损鉴别生药材的最新进展.光谱学与光谱分析,1999,19(6):841~843
    [93]孙素琴,周群,胡鑫尧等.分子振动光谱法与中药研究的最新进展.光谱学与光谱分析,2000,20(2):199~202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700