盐分和水分胁迫下菊芋的生理响应及其海水灌溉研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验由温室盆栽耐盐耐旱试验和大田海水灌溉试验两大部分组成:温室盆栽试验主要通过砂培的方法,研究了幼苗期菊芋在盐分和水分胁迫下的生理反应;大田试验在半干旱的山东莱州地区进行,研究了海水灌溉对菊芋及其土壤的影响。结果如下:
     NaCl处理下菊芋幼苗叶片无机离子总含量急剧增加,其中Na~+、Cl~-增加最多,占总计算渗透势(COP)的52-68%,总无机离子占COP的95-97%。而有机溶质总含量则稍有降低,约占COP的3-5%。PEG处理的无机离子含量高于对照,但低于等渗NaCl处理,有机溶质含量却都低于对照和等渗NaCl处理。结果还表明,随着NaCl浓度的递增,菊芋幼苗叶片电解质渗透率和丙二醛含量呈上升趋势;PEG处理下,电解质渗透率和丙二醛含量与对照无明显差异,但明显小于等渗NaCl处理。并且,菊芋幼苗叶片中Na~+、Cl~-含量的增加与电解质渗透率和丙二醛含量增大均呈正相关,其中电解质渗透率的增大与Na~+、Cl~-含量的增加达到显著水平。
     NaCl和PEG胁迫下,根、茎、叶的Na~+、Cl~-含量不断升高,而K~+含量保持稳定。其中,茎中Na~+含量高于根和叶。NaCl胁迫下,根、茎、叶的S_(K,Na)值随胁迫强度的增加而递增,茎中S_(K,Na)值小于根和叶。随着NaCl胁迫强度的增加,菊芋幼苗叶片的SOD和POD活性先上升后下降;PEG处理下,SOD活性分别高于对照和等渗NaCl处理31.1%和27.1%;而POD活性却分别低于对照和等渗NaCl处理26.0%和36.1%。
     海水灌溉下,菊芋的茎部具有明显的贮Cl~-、Na~+能力,在高浓度海水灌溉下菊芋整个植株对K~+具有较高的选择吸收性;菊芋地上部和块茎产量在30%海水处理范围内,没有减产趋势,在50%海水灌溉下减产幅度分别为37%和32%;可见,正常自然条件下的海水灌溉,对产量的影响主要和灌溉水的浓度有关,但只有在50%处理下才显著减产,低于50%产量并无差异。利用海水资源对菊芋进行灌溉不影响其块茎中菊糖的含量,菊芋块茎中菊糖含量范围为40%到65%左右。
     海水灌溉下,耕层土壤中盐分含量受降雨量影响很大,足够的降雨条件下,盐分不会积累,降雨量较低时,盐分积累明显,但在50%海水处理下趋于平衡状态;耕层土壤SAR值的变化情况和盐分含量变化情况相一致,在灌溉水中海水浓度大于50%时有所下降;土壤中主要盐离子为Cl~-和Na~+,0-60cm土层内,Na~+、Cl~-明显的向土壤底层迁移,其在土壤中的含量受降雨影响显著,而Ca~(2+)、Mg~(2+)和K~+在土壤中迁移能力较低,其含量受降雨影响较小;0-60cm层次土壤盐分的纵向分布在降雨量较低的条件下主要受灌溉水中海水浓度的影响,而在降雨充分的条件下,地面覆盖程度成为重要的影响
    
    盐分和水分胁迫下菊芋的生理响应及其海水灌溉研究
    因子之一。
My experiment can mostly include two sections: the first one was a pot experiment which was carried out in the greenhouse to study the physiological responses of Helianthus tuberosus L. seedlings to salt and water stress; the second one was a field experiment which was carried out in Laizhou, Shandong Province to study the effects of seawater irrigation on Helianthus tuberosus L. and soil. The results were as below:
    Under NaCl stress, the sum of inorganic ions had a significant increase and their contribution to the calculated osmotic potential (COP) was up to 95-97%. The great increase of Na+ and Cl- content accounted for 52-68% of COP, whereas the total content of organic solutes decreased slightly and their contribution to COP was about 3-5%. Under water stress, the content of inorganic ions were higher than that of CK, but lower than that of iso-osmotic NaCl treatment. Otherwise, the content of organic solutes were lower than that of both CK and iso-osmotic treatment under water stress. The results also showed that with the increasing of NaCl concentrations, both the electrolyte leakage and the content of MDA increased. And under water stress, both the electrolyte leakage and the content of MDA had no significant difference compared with those of CK, but were lower than those of iso-osmotic NaCl treatment. Furthermore, the content of Na+ and Cl- in the leaves was positively correlated with the electrolyte leakage an
    d the content of MDA of leaves, and the correlation levels of the content of Na+ and Cl" and the electrolyte leakage are significant.
    Under NaCl and PEG stresses, the content of Na+, Cl- in root, stem and leaf increased but the content of K+ had no significant changes. The content of Na+ in stem is higher than that in root and leaf. With the concentration of NaCl increasing, the selective adsorption of K+ and Na+ (SK,Na) for root, stem and leaf gradually increased, and SK,Na for stem was lower than that for root and leaf. With the concentration of NaCl increasing, activities of SOD and POD in leaf increased at first then decreased As compared with under condition of control treatment and iso-osmotic NaCl stress, under PEG stress SOD activities in leaf increased 31.1% and 27.1%, but POD activities decreased 26.0% and 36.1% respectively.
    The stem of Helianthus tuberosus (L.) had the ability of containing high contents of Na+ and Cl-, and selectively absorbed K+ in high proportions seawater irrigation; The above and tubers yields of Helianthus tuberosus (L.) hadn't decreased until at the 50% proportions seawater irrigation where the yields decreased by 37% and 32% in contrast to
    
    
    freshwater-irrigated. It meant that through natural weather, reduction of yields was occurred by salinity of irrigation water but the reduction was not significant until the proportions of seawater in irrigation water were the same as 50% or above it. The irrigation with seawater hadn't affected the inulin contents hi Helianthus tuberosus (L.) tubers, and the contents of inulin in Helianthus tuberosus (L.) were from about 40% to 65%.
    Salt contents hi root zone soil were greatly influenced by rainfall. Salt buildup did not exist on the condition of enough rainfall, on the contrary salt accumulated obviously on the condition of low rainfall in the root zone soil. But on the later condition the trend of accumulation turned to be stable in the W3 treatment (Vseawater/ V Pure water=1)- In root zone soil, variation of SAR value accorded with total salt accumulations and sometimes decreased at the treatment where the V seawater/ V pure water>1. Contents of Cl- and Na+ which were the main ions and leached obviously in 0-60cm soil were greatly influenced by rainfall, but the rainfall did not affected the contents of Ca2+, Mg2+ and K+ whose ability of leaching is worse than that of Cl- and Na+ in the root zone soil obviously. The vertical distribution of salt ions in the 0-60cm soil were mainly affected by the ratio of V seawater/ V pure water in the irrigation water on the condition of not enough rainfall, but on the cont
引文
1.丁海媛,张耕耘,郭岩,等.运用RAPD分析标记水稻耐盐突变系的耐盐主效基因.科学通报,1998,43(2):418~421.
    2.龚继明,何平,钱前,等.水稻耐盐性QTL的定位.科学通报,1998,43(17):1847~1850.
    3.顾兴友,梅曼彤,严小龙,等.水稻耐盐性数量性状位点的初步检测.中国水稻科学,2000,14(2):65~70.
    4.郭房庆,汤章城.NaCl胁迫下抗盐突变体和野生型小麦Na~+、K~+累积的差异分析.植物学报,1999,41(5):515~518.
    5.贾英民,田洪涛.发酵菊芋汁生产果糖糖浆的研究.微生物学通报,1998,25(1):13~15.
    6.柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响.植物生理学报,1999,25(3):229~234.
    7.李合生主编.植物生理生化实验原理和技术.北京:高等教育出版社.2000.
    8.李美茹,刘鸿先,王以柔.氯化镧对水稻幼苗耐冷性的影响.热带亚热带植物学报,1997,5(4):62~64.
    9.李荣田,张忠明,张启发.RHL基因对粳稻的转化及转基因植株的耐盐性.科学通报,2002,47(8):613~617.
    10.林鸿宣,柳原城司,庄杰云,等.应用分子标记检测水稻耐盐性的QTL.中国水稻科学,1998,12(2):72~78.
    11.林植芳.丙二醛对菠菜叶片光合羧化酶和细胞保护酶活性的影响.植物学报,1989,31(11):860~866.
    12.刘晓麒,曹恩华.脂质过氧化引起的DNA损伤研究进展.生物化学与生物物理进展,1994,21(3):218~222.
    13.刘兆普,沈其荣,尹金来.滨海盐土农业.北京:中国农业科技出版社.1998,5.
    14.陆夫才.海水农业不是梦.中国海洋报,1997—04—13(1).
    15.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社.1999.
    16.吕殿录,华晓晶,龙锋.种植克沙菊芋治理沙漠.辽宁城乡科技,2001,1:9~10.
    17.吕庆,郑荣梁.干旱及活性氧引起的膜脂过氧化与脱酯化.中国科学(C辑),1996,26(1):26~30.
    18.马玉明,马世威,马文元.菊芋的开发利用价值.林业实用科技,2002,3:17~18.
    19.全国海水灌溉农业发展战略和技术开发研讨会材料.北京:中国高新技术研究会海洋分会,1999:3~201.
    20.孙兰菊,岳国峰,王金霞,等.植物耐盐机制的研究进展.海洋科学,2001,25(4):28~31.
    
    
    21.王宝山,赵可夫.小麦叶片中Na、K提取方法的比较.植物生理学通讯,1995,31(1):50~52.
    22.王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报,1997,14(增刊):25~30.
    23.王慧中,黄大年,鲁瑞芳,等.转mtlD/gutD双价基因水稻的耐盐性.科学通报,2000,45(7):724~729.
    24.王鸣刚,陈睦传,沈明山,等.小麦耐盐突变体筛选及生理生化特性分析.厦门大学学报(自然科学版),2000,39(1):111~114.
    25.王霞,王金满.海水灌溉农业发展状况及其前景.新疆农垦经济,2003,6:48~51.
    26.西北农业大学植物生理生化教研组编.植物生理学实验指导.西安:陕西科学技术出版社.1987.
    27.夏邦旗,乐观,陈月.菊芋及其食品加工技术.中国食物和营养,2000,4:34~35.
    28.肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究.西北植物学报,2000,20(5):818~825.
    29.许详明,叶和春,李国风.植物抗盐机理的研究进展.应用生态学报,2000,6(4):379~387.
    30.徐质斌.国内外海水灌溉技术的进展及对产业发展的建议.国际技术经济研究,2001,4(3):19~24.
    31.徐质斌.海水灌溉农业的展望与对策.农业现代化研究,2002,23(2):89~92.
    32.杨淑慎,高俊凤.活性氧、自由基与植物的衰老.西北植物学报,2001,21(2):215~220.
    33.衣海清.氯化镧对大豆叶片膜脂过氧化作用的影响.植物生理学报,1991,2(1):18~20.
    34.於丙军,刘友良.大豆耐盐性研究进展.大豆科学,2000,19(2):154~159.
    35.余叔文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社.1998,752~769.
    36.张邦定.菊芋的开发与栽培.四川农业科技,1997,5:39~40.
    37.张福锁.植物营养生态生理学和遗传学.中国科学技术出版社.1993,206~230.
    38.赵晨阳,郑荣梁.DNA氧化性损伤与端粒缩短.生物化学与生物物理进展,2000,27(4):351~354.
    39.赵耕毛,刘兆普,陈铭达,等.海水灌溉滨海盐渍土的水盐运动模拟研究.中国农业科学,2003,36(6):676~680.
    40.赵可夫.植物抗盐生理.北京:中国科学技术出版社,1996,25~27.
    41.赵可夫,王韶唐.作物抗性生理.北京:农业出版社.1990,253~254.
    42.郑文竹,姚炳新,魏文铃,等.从菊芋制备菊粉糖液的方法和菊汁干片成分分析.厦门大学学报(自然科学版),1996,35(1):112~115.
    43.中国海岸带和海涂资源综合调查报告.北京:海洋出版社,1991,64~78.
    44. Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression
    
    of a vacuolar Na~+/H~+ antiport in Arabidopsis. Sicence, 1999, 285.
    45. Asada K. The water-water cyclein chloroplasts :scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol , 1999, 50: 601~639.
    46. Ayers R S, D W Westcot. Water quality for agricuture. In: Fao Irrigation and Drainage. Food and Agricuture Organization(FAO) of the United Nations. Rome, Italy. 1985,29.
    47. Bohra J S, Doerffling K. Potassium nutrition of rice oryza-sativa L. Varieties under sodium chloride salinity. Plant and Soil, 1993, 152 (2): 299~303.
    48. Bauder T A, Cardon G E, Waskom R M et al. Irrigation water quality criteria. Colorado state university cooperative extension. 2003, No. 0.506.
    49. Breckle. How do halophytes overcome salinity? In: Khan MA ed. Biology of salt tolerant plants. IA Ungar, 1995, 199~213.
    50. Bush D S. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Boil , 1995, 46: 95~122.
    51. Curtis P S, Lauchli A. The effect of moderate salt stress on leaf anatomy in hibiscus cannabinus (Kenaf) and its relation to leaf area. Am. J. Bot. 1987, 74:538~542.
    52. Davies W J , Zhang J. Root signal and the regulation of growth and development of plants in drying soil . Annu Rev Plant Physiol Plant Mol Boil , 1991, 42:55~76.
    53. Dinar A, Letey J, Vaux J. et al., Optimal ratios of saline and no-saline irrigation waters for crop production. Soil Sci. Soc. Am. J. 1986, 50:440~443.
    54. Emerson W W, Bakker A C. The comparative effects of exchangeable calcium, magnesium, and sodium on some physical properties of re-brown earth subsoils. Aust. J. Soil Res. 1973, 11:151~157.
    55. Ericson M C, Alfinito S H. Proteins produced during salt stress in tobacco cell culture[J]. Plant Physiol, 1984, 74: 504~509.
    56. Flowers T J, Troke P F, Yeo A R. The mechanism of salt tolerance in halophytes[J]. Annu Rev Plant Physiology, 1977,28: 75~91.
    57. Frenkel H, Goertzen J O, Rhoades J D. Effects of clay type and content exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Sci. Soc. Am. 1978, 42:32~39.
    58. Greenway H, Munns R. Mechanism of salt tolerance in non halophytes. Ann. Rev. Plant Physiol. 1980, 31:149~190.
    59. Hall JL ,et al . Evidence for the cytoplasmic locating of betaine in leaf cells of
    
    Suaeda maritime, planta, 1978 , 140:59~62.
    60. Harvey D M R. The effects of salinity on iron concentrations within the root cells of Zea mays L . Planta, 1985, 165:242~248.
    61. Hou Cai - Xia ,et al . Infuence of K+ to the accumulation of Glycine betatine of spaninach under salt stress. Acta Phytophysiologica Sinica , 1998 , 24 (2) :131~135.
    62. Hsiao T C, Acevedo E, Feveres E. Water stress, growth and osmotic adjustment. Philos trans Royal Soc London, 1976, 272: 479~500.
    63. Jabs T, Tschope M, Colling C , et al. Elicitor2stimulated ion fluxes and 02 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley . Proc Natl Acad USA , 1997, 94:4800~4805 .
    64. Jia Z, et al .Gene amplification at a locus encoding a putative Na + / H+ antiport confers sodium and lithium tolerance in fissionyeast . EMBO , 1992 , 11 :1631 -1640.
    65. Kafkafi U. Root growth under stress. In: Waisel Y. et al. (Eds.), Plant Roots—The Hadden Half. Marcel Dekker, New York. 1991, 375~391.
    66. King G J, Hussey C E JR, Turner V A. A protein induced by NaC1 in suspension cultures of Nicotiana tabacum accumulates in whole plant roots. Plant Mol Biol, 1986, 7: 441~449.
    67. Kriedmann P E. Stomatal and photosynthetic limitations to leaf growth. Aust. J. Plant Physiol. 1986, 13:15~31.
    68. Lauchli A, Epstein E. Plant response to saline and sodic conditions. In: Tanji KK (Ed.), Agricutural Salinity Assesment and Management. ASCE Manuals and Reports on Engineering Practice, 1990, 71:113~137.
    69. Levitt J. Responses of plants to environmental stress. New York: Academic Press. 1980: 375~393.
    70. Maas E V, S R Grattan. Crop yields as affected by salinity. In: R W Skaggs, J van Schilfgaarde, eds., Agricutural Drainage. Agron. Monograph 38. ASA, CSSA, Madison, WI.
    71. Mace J E, C Amrhein. Leaching and reclamation of a soil irrigated with moderate SAR waters. Soil Sci. Soc. Am.J. 2001, 65:199~204.
    72. 72. McNeal 8 L, N T Coleman. Effect of solution composition on soil hydraulic conductivity. Soil Sci. Soc. Am. Proc, 1966, 30:308~312.
    
    
    73. Moran J F, Becana M, Iturke-Onnaetxe I, et al. Drought induces oxidative stress in pea plants, Planta, 1994, 94:346~352.
    74. Munns R, Termaat A. Whole plant responses to salinity. Aust J Plant Physiology, 1986, 13: 143~160.
    75. Munns R, Tonnet M L, Shennan C, et al. Effect of high external NaCl congcentration on ion transport within the shoot of Lupinus albus, Ⅱ: Ions in phloem sap[J]. Plant Cell Environ, 1988, 11: 283~289.
    76. Papp J C, Ball M C, Terry N. A comparative study of the effects of NaCl salinity on resperation, photosynthesis, and leaf extention growth in beta Vulgaris L. (sugar beet). Plant Cell Environ. 1983, 6:675~693.
    77. Poole R J. Plasma membrane and tonoplast. In:Baker D A, Hall J L. Solute transport in plant cells and tissues. New York: John Willy and Sons, Inc, 1988, 83~105.
    78. Prisco J T, O' leay J W. The effects if humidity and cytokinin on growth and water relations of salt-stressed bean plants. Plant Soil, 1973, 39: 263~276.
    79. Qster J D. Sustainable use of saline-sodic irrigation waters. California plant and soil conference. 2001, Feb.
    80. Quirk J P. The significance of the threshold and turbidity concentrations in relation to sodicity and microstructure. Aust. J. Soil Res. 2001, In press.
    81. Quirk J P, R K Schofield. The effect of electrolyte concentration on soil permeability. Soil Sci, 1955, 6:163~178.
    82. Ramagopol S. Salinity stress induced Tissue-specific proteins in barley seedlings. Plant Physiol, 1987, 84:94~98.
    83. Reeve R C. The transmission of water by soils as influenced by chemical and physical properties. Int. Congr. Agr. Eng., Trans, 1960, 5:21~32.
    84. Rhoades J D, Kandiah A, Mashali A M. The use of saline waters for crops production. FAO, 1992, 42:133.
    85. Roger R L. Pressure regulation of the electrical properties of growing Arabidopsis thaliana root hairs. Plant Physiol, 1998, 112:1089~1100.
    86. Rowell D L, Payne D, Ahmad N. The effect of the concentration and movement of solutions on the swelling, dispersion and movement of clay in saline and alkali soils. J. soil Sci. 1969, 20 (1).
    87. Shainberg I, Levy G J. Physical-chenical effects of salts upon infiltration and water movement in soils. In: Wagenet R J, Baveye P, Stewart B A (Eds.), Interacting Processes
    
    in Soil Science, 1992, 38~93.
    88. ShainbergI, Rhoades J D, Prather R J. Effect of low electrolyte concentration on clay dispersion and hydraulic conductivity of sodic soil. Soil Soc. Sci. Am. J. 1981a, 45: 273~277.
    89. Shainberg I, Rhoades J D, Prather R J. Effect of mineral weathing on clay dispersion and hydraulic conductivity of sodic soil. Soil Soc. Sci. Am. J. 1981b, 45:287~291.
    90. Singh N K, Handa A K, Hasegawa P M, et al. Proteins associated with adaptationof cultured tobacco cells to NaCl. Plant Physiol, 1985, 79: 126~137.
    91. Somani L L. Crop production with saline water. In: Crop Production with Saline Water. Agro Botanical Publishers, India, 1991, 308.
    92. Stadtman E R. Oxidation of free amino acids and amino acid residues in proteins byradiolysis and by metal catalyzed reactions. Annu Rev Biochem, 1993, 62:797~821.
    93. Stephen R, Grattan. Irrigation water salinity and crop production. University of California agriculture and natural resources. 2002, Publication 8066.
    94. Tanji K. In: Tanji, K (Ed.), Agricuture Salinity Assessment and Management. 1990, 619.
    95. Tanji K, Yaron B. Managements of Water Use in Agricuture. Springer, Berlin. 1994, 320
    96. Vandamm E I et al. Microbial inulinase: Fermentation process, Properties, and application. Adv. in April. Microbiol, 1983, 29: 139~175.
    97. Varallyay G. Moisture states and flow phenomena in salt-affected soils. In: Proceedings of the Indohung. Seminar on management salt affectsd soils. 1977a, 85~102.
    98. Varallyay G. Soil water problems related to salinity and alkalinity in irrigated lands. In: Arid Land Irrigation in Developing Countries. Pergamon Press, Oxford, 1977b, 251~264.
    99. Varallyay G, Szabolcs I. Trans 10th international symposium on agrochimica. Water in agricuture. Agrochimica, 1974, 18:277~287.
    100. von Zglinicki T, Saretzki G, Docke W, et al. Telomere length predicats the replicative capability of human fibmblasts. Proc Natl Acad Sci USA, 1992, 89 (21): 10114~10118.
    101. Yahraus T, Xhandra L, Legendre L, et al. Evidence for a mechanically induced
    
    oxidative burst. Plant Physiol, 1995, 109:1259~1266.
    102. Zhao Ke-Fu, et al. Effects of salinity on the contents of osmotica of monocotyledenous halophytes and their contribution to osmotic adjustment. Acta Botanica Sinica. 1999, 41 (12):1287~1292.
    103. Stadtman E R. Oxidation of free amino acids and amino acid residues in proteins byradiolysis and by metal catalyzed reactions. Annu Rev Biochem, 1993, 62:797~821.
    104. Stephen R, Grattan. Irrigation water salinity and crop production. University of California agriculture and natural resources. 2002, Publication 8066.
    105. Tanji K. In: Tanji, K (Ed.), Agricuture Salinity Assessment and Management. 1990, 619.
    106. Tanji K, Yaron B. Managements of Water Use in Agricuture. Springer, Berlin. 1994, 320
    107. Vandamm E I et al. Microbial inulinase: Fermentation process, Properties, and application. Adv. in April. Microbiol, 1983, 29: 139~175.
    108. Varallyay G. Moisture states and flow phenomena in salt-affected soils. In: Proceedings of the Indohung. Seminar on management salt affectsd soils. 1977a, 85~102.
    109. Varallyay G. Soil water problems related to salinity and alkalinity in irrigated lands. In: Arid Land Irrigation in Developing Countries. Pergamon Press, Oxford, 1977b, 251~264.
    110. Varallyay G, Szabolcs I. Trans 10th international symposium on agrochimica. Water in agricuture. Agrochimica, 1974, 18:277~287.
    111. von Zglinicki T, Saretzki G, Docke W, et al. Telomere length predicats the replicative capability of human fibmblasts. Proc Natl Acad Sci USA, 1992, 89 (21): 10114~10118.
    112. Yahraus T, Xhandra L, Legendre L, et al. Evidence for a mechanically induced oxidative burst. Plant Physiol, 1995, 109:1259~1266.
    113. Zhao Ke-Fu,et al. Effects of salinity on the contents of osmotica of monocotyledenous halophytes and their contribution to osmotic adjustment. Acta Botanica Sinica. 1999, 41(12):1287~1292.
    114. Zhu JE. Genetic analysis of plant salt tolerance using Arabidopsis. Plant phisiol, 2000, 124:941~948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700