SARI抑制上皮间质转化及肺腺癌转移的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前肺癌已成为癌症死亡的主要原因,在许多地区其发病率、死亡率都上升为恶性肿瘤的首位。其原因除了肺癌的生物学特性十分复杂,恶性程度较高外,更重要的是肺癌患者在临床诊断时已发生了局部或广泛的转移,肺癌发生、转移机制及相应的治疗研究是现代肿瘤研究的一个重要方向。近年来肺腺癌在肺癌中所占比例明显增加,成为最常见的组织学类型之一,且肺腺癌容易发生转移。
     上皮细胞间质转化(epithelial-mesenchyma transition, EMT)是以上皮细胞极性丧失及间质细胞特性获得为主要特征,存在于人体多个的生理病理过程中。EMT是上皮细胞来源肿瘤局部浸润和远处转移的一个重要途径,并且在其间扮演重要角色。目前,EMT在肿瘤转移中的作用成为研究热点,其发生及调控机制对于寻找恶性肿瘤浸润转移的靶点,进行临床干预有重要意义。
     激活蛋白-1抑制因子(SARI,受干扰素调节),是一种以亮氨酸拉链为基本结构,且含有I型干扰素诱导结构的早期反应基因,可以发挥选择性癌细胞生长抑制作用,常可在特定的正常细胞检测出表达,包括黑色素细胞,神经节细胞,胰腺间质细胞,乳腺及前列腺上皮细胞,但在其对应的上皮恶性肿瘤中而未见表达,所以通常认为SARI可作为一种肿瘤抑制基因。
     SARI在肺腺癌中的表达情况尚未见报道,本论文将通过3部分对SARI介导肺腺癌细胞EMT现象及在肺腺癌进展转移的过程中发挥的作用及机制加以阐述:
     第一部分探究了肺腺癌患者中SARI表达与EMT标志物的关系,我们按照术前PET-CT结果,将有淋巴结转移和无淋巴结转移的患者分别入组。根据术后肺癌TNM分期系统,共筛选了6例Ⅰ期腺癌患者,及7例Ⅲ期患者,采用常规H&E染色对有淋巴结转移的和无淋巴结转移组的肺腺癌标本及转移淋巴结病灶进行观察,发现原发病灶与转移灶癌细胞类型一致。与非转移组比较,在有淋巴结转移的肺腺癌患者中,可见SARI高表达及E-cadherin的缺失,却见vimentin、 P-GSK-3β及β-catenin表达增强。在所有被检验标本中,SARI和E-cadherin之间有显著的相关性(r=0.8390),而SARI和vimentin之间却是具有明显负相关(r=0.7255)。
     第二部分进一步探讨了SARI体外调节EMT的效应及其机制,我们在一系列肺腺癌细胞系检测了SARI的表达,发现在NCI-1650、NCI-H1299及CRL5908中SARI是高表达的;在NCI-H1975、 Calu-3及A549中相对较低表达;而在GLC-82、PG49及HTB-55中几乎不表达,当转染SARI至GLC-82及PG49细胞时,细胞形态发生改变,由长锤形的纤维细胞样的间质型(控制组)转化成卵石状上皮表型(实验组),相邻细胞间连接变得紧密,细胞极性也增强。在GLC-82及PG49细胞,SARI表达的效应是增强E-cadherin及降低vimentin的表达。相反,当内源性的SARI基因被敲除后,以肺腺癌NCI-H1650和NCI-H1299为例,二者可被检测到EMT的过程,细胞形态和生物标记物发生改变。
     为理解SARI调节EMT的可能机制,我们检测了SARI在GSK-3β-catenin信号通路中的效应。通过siRNA,使SARI基因表达下调,我们观察到胞浆内β-catenin的积聚及向胞核内的易位,同时连于胞膜的β-catenin表达也下降,此外,当转染SARI至GLC-82时,基于免疫沉淀实验,GSK-3p与SARI密切联系。由于SARI不是磷酸化酶,SARI激活GSK-3β的机制可能是由一个独立的磷酸化酶介导并与该复合物密切联系。而且基于Ser9(S9,负性调节部位)的磷酸化作用,GSK-3β水平显著升高及β-catenin/TCF转录活性(TOP/FOP)下降,同样的,通过瞬时转染SARI-siRNA至NCI-H1650细胞下调SARI的表达可以提高GSK-3p磷酸化作用(S9)及β-catenin/TCF转录活性,经Wnt培养液处理后,效果更加明显。因此,SARI通过减少S9的磷酸化作用来激活GSK-3β,从而调节GSK-3β-catenin信号。虽然Wnt仅轻微引发NCI-H1650细胞的EMT,但是当采用SARI-siRNA对细胞内SARI基因进行敲除后,EMT标记物显著增加。反之,恢复SARI在GLC-82细胞(不表达SARI)中的表达,可防止Wnt诱导的EMT。这表明SARI是Wnt介导的EMT的拮抗剂。由于SARI能激活GSK-3β活性,从而降解胞浆β-catenin及降低胞核β-catenin转录活性,但是对于过表达的β-catenin是否能逆转SARI的抑制作用却是未知的,我们在这方面做了检测。在转染SARI的细胞里,逐渐提高β-catenin cDNA剂量可提高β-catenin转录活性,恢复EMT的标记物,及改变细胞形态。相似的,在敲除SARI的NCI-H1650细胞里,过表达的β-catenin及过活跃的β-catenin转录可诱发EMT,呈现出剂量依赖性,细胞形态也发生了改变。
     第三部分通过原位动物模型,我们比较了敲除SARI基因的NCI-H1650及对照组细胞的转移潜质。在接种细胞前,测量并保证每个亚组里的萤光酶活性一致。采用生物发光成像技术(BLI)监测肿瘤的生长及转移的始动。一周后,BLI检测到在接种NCI-H1650-KD细胞的小鼠体内不同部位有明显的肿瘤转移损害,相反,对照组小鼠5周后仅见原发部位有肿物,并未见转移征象。免疫组织化学染色显示大部分的肿瘤细胞强烈表达vimentin,但却弱表达E-cadherin和细胞角蛋白。以上实验数据为SARI体内抑制肺腺癌转移提供强有力的证据。
     结论:
     SARI蛋白的表达在有淋巴结转移的和无淋巴结转移的原发肺腺癌标本出现表达差异,在有淋巴结转移的肺腺癌组织中明显下调,却见vimentin、p-GSK-3β及β-catenin等EMT密切相关指标表达增强,在肺腺癌进展过程中SARI基因介导的EMT发挥了关键作用。其机制可能为SARI拮抗Wnt信号通路介导的EMT过程,由于SARI能激活GSK-3p活性,从而降解胞浆β-catenin及降低胞核β-catenin转录活性,从而发挥拮抗作用,同样,过表达的β-catenin是能逆转SARI的抑制作用,进一步体内证实SARI可以进一步抑制腺癌细胞的转移,为SARI体内抑制肺腺癌转移提供强有力的证据。SARI可以通过拮抗Wnt信号通路介导的EMT过程,发挥抑制肺腺癌进展及转移的作用,为进一步认识肺腺癌的分子病理机制及新一类的靶向治疗提供实验依据。
Lung cancer is the leading cancer all over the world, and lung adenocarcinoma is the most common kind of lung cancer. In the absence of metastasis, lung adenocarcinoma is largely a treatable disease. Thus, early diagnosis of patients who develop lung adenocarcinoma metastasis could reduce the mortality and morbidity associated with this disease. The development of metastasis depends on the migration and invasion of cancer cells from the primary tumor into the surrounding tissues. To acquire such invasive abilities, carcinoma cells may acquire unique phenotypic changes such as epithelial-mesenchymal transition (EMT). EMT is a highly conserved cellular process that allows polarized, generally immotile epithelial cells to convert to motile mesenchymal-appearing cells. This process was initially recognized during several critical stages of embryonic development and has more recently been implicated in promoting carcinoma invasion and metastasis. During EMT,3major changes occur:(i) morphological changes from a cobblestone-like monolayer of epithelial cells to dispersed, spindle-shaped mesenchymal cells with migratory protrusions;(ii) changes in the differentiation markers from cell-cell junction proteins and cytokeratin intermediate filaments to vimentin filaments and fibronectin; and (iii) acquisition of invasiveness through the extracellular matrix. Decreased E-cadherin expression or gain of vimentin expression is closely correlated with various indices of lung adenocarcinoma progression, including the grade, local invasiveness, dissemination into blood, and tumor relapse after radiotherapy.
     SARI, also known as suppressor of AP-1, is regulated by IFN and has been implicated in cell-growth inhibition and apoptosis. SARI is down-regulated in various types of human cancers and plays an important role in tumor development.
     Thus, it is very likely that SARI functions as a tumor suppressor in cancer development; however, its role and mechanism in lung adenocarcinoma metastasis is largely unknown. In the current study, we have shown that loss of SARI facilitates EMT, leading to lung adenocarcinoma metastasis:
     The first part explores the SARI and EMT markers expression in lung adenocarcinoma patients. In accordance with the preoperative PET-CT results, we will have lymph node metastasis and non-lymph node metastasis groups. According to postoperative lung cancer TNM staging system,6cases of stage I patients with adenocarcinoma, and7cases of stage III patients were screened using the conventional H&E staining of lymph node metastasis and lymph node metastasis of lung adenocarcinoma specimens and metastatic lymph node lesions. We found that the primary lesions and metastases of the cancer are the same cells type. Compared with the non-metastasis group, lymph node metastasis of lung adenocarcinoma patients were showing that SARI was high expression but E-cadherin missing.We also find positive for vimentin, p-GSK-3β and (3-catenin, increased expression. In all test specimens, a significant correlation (r=0.8390) between SARI and E-cadherin, and SARI and vimentin has a significant negative correlation (r=0.7255).
     The second part to further explore the effect and mechanism of regulation of EMT by SARI in vitro.SARI expression is detected in a series of lung adenocarcinoma cell line, found a high-expression in the NCI-1650, NCI-of H1299and CRL5908SARI; in NCI-H1975, Calu-3and A549, are the relatively low expression; GLC-82, PG49and HTB-55, are almost no expression. When transfected SARI to GLC-82and PG49cells, cell morphology changed from long hammer-shaped fibroblast-like mesenchymal type (control group) into a pebble-like epithelial phenotype (experimental group), the connection between adjacent cells become closer, and also enhances cell polarity. GLC-82and PG49cells, effect of SARI expression is to enhance the E-cadherin and reduce expression of vimentin. Conversely, when endogenous SARI gene knockout, lung adenocarcinoma cell lines NCI-H1650and NCI-of H1299, for example, both can be detected the process of EMT, changed cell morphology and biomarkers.
     For understanding the possible mechanisms SARI adjustment EMT, we examined the effect of SARI in GSK-3β-β-catenin signaling pathway. SARI gene downregulated by siRNA, and we observed in the cytoplasm of (3-catenin accumulation and translocation to the nucleus, which attached to the membrane of (3-catenin,which expression was also decreased when transfected SARI to GLC-82. Based on immunoprecipitation experiments, GSK-3β and SARI are in close contaction. The mechanism may be due to the SARI is not a phosphorylase, so SARI activation of GSK-3β is mediated by an independent phosphorylase that is in close contact with the compound. And based on Ser9(S9, a negative regulator of the site) phosphorylation of GSK-3β level was significantly increased but β-catenin/TCF transcriptional activity (TOP/FOP) decreased. Similarly, by transient transfection SARI-siRNA to NCI-H1650cells, SARI expression can increase GSK-3β phosphorylation (S9) and β-catenin/TCF transcriptional activity by Wnt medium processing, the effect is much more pronounced. Therefore, SARI is used to activate the by S9reduction phosphate into GSK-3β, thereby regulating GSK-3β-β-catenin signal. Although Wnt was only a slight to the EMT in the NCI-H1650cells, but SARI-siRNA knockout of EMT markers increased significantly. Conversely, the restoration of the SARI expression in GLC-82cells was to prevent Wnt-induced EMT. This indicates that the SARI is the antagonist of the Wnt-mediated EMT. SARI can activate GSK-3β activity and thus degradation of cytoplasmic P-catenin and reduce the nucleus of P-catenin transcriptional activity, but overexpression of P-catenin can reverse SARI inhibition is unknown, in this regard to do the testing. In cells transfected with SARI, a gradual increasing of β-catenin cDNA dose increase beta-catenin transcriptional activity, restore the EMT markers and changes in cell morphology. Similar in the knockout the SARI NCI-H1650cells, overexpression of P-catenin and active beta-catenin transcription can be induced by the EMT, showing a dose-dependent, and cell morphology changed.
     The third part in situ animal models, we compare the knockout the SARI genes in the NCI-H1650cells and the control group transfer potential in situ animal models,. Before the inoculated cells, we must make sure that the fluorescence activity in each subgroup was consistent. Using bioluminescence imaging (BLI), we monitor tumor growth and metastasis initiating. A week later, the BLI detected in different parts of the mice inoculated with NCI-H1650cells-the KD obvious tumor metastasis damage. On the contrary, the control mice only can see the original tumor site and no transfer of signs after5weeks. The immunohistochemical staining revealed that most of the tumor cells strongly positive for vimentin, but weak expression of E-cadherin and cytokeratin. The above experimental data provide strong evidence that SARI in vivo inhibition of lung adenocarcinoma metastasis. Conclusion:
     This study delineates the functional role of SARI in EMT, which also explains how loss of SARI in lung adenocarcinoma underlines the onset of aggressive metastatic lung adenocarcinoma. We believe that the assessment of SARI expression in lung adenocarcinoma specimens can be a valuable prognostic biomarker for the risk of lung adenocarcinoma metastasis, and that the delineation of SARI function could provide a potential intervention strategy for lung adenocarcinoma metastasis.
引文
[1]Jemal A, Murray T, Ward E, et al.. Cancer statistics[J]. CA Cancer J Clin, 2005,55(1):10-30.
    [2]Mountain CF. Revisions in the International System for Staging Lung Cancer[J]. Chest,1997,111(6):1710-7.
    [3]Yoshida B A, SokoloffM M, Welch D R, et al. Metastasis-suppressor genes:a review and perspective on an emerging field[J]J Natl Cancer Inst,2000,92(21): 1717-1730.
    [4]Thiery J P. Epithelial-mesenchymal transitions in tumour progression.[J]. Nat Rev Cancer,2002,2(6):442-454.
    [5]Matsumura T, Makino R, Mitamura K. Frequent down-regulation of E-cadherin by genetic and epigenetic changes in the malignant progression of hepatocellular carcinomas[J]. Clin Cancer Res,2001,7(3):594-599.
    [6]Eger A, Stockinger A, Schaffhauser B, et al. Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity[J]. J Cell Biol,2000,148(1):173-188.
    [7]Thuault S, Valcourt U, Petersen M, et al. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition[J]. J Cell Biol,2006,174(2):175-183.
    [8]David I,Bellovin,Richard C,et al.Altered Localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease[J]. Cancer Res,2005,65(23):10938-10945.
    [9]Yook J I, Li X Y, Ota I, et al. Wnt-dependent regulation of the E-cadherin repressor snail[J]. J Biol Chem,2005,280(12):11740-11748.
    [10]Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer[J].Am J Pathol,2002,161(5):1881-1891.
    [11]Behrens J. The role of the Wnt signalling pathway in colorectal tumorigenesis[J]. Biochem Soc Trans,2005,33(Pt 4):672-675.
    [12]Behrens J, Lustig B. The Wnt connection to tumorigenesis[J]. Int J Dev Biol,2004,48(5-6):477-487.
    [13]张维,刘爽,徐宁志.Wnt信号传导通路及其在肿瘤发生中的作用[J].世界华人消化杂志.2002,10:1201-1205.
    [14]Ma H, Liang X, Chen Y, et al. Decreased expression of BATF2 is associated with a poor prognosis in hepatocellular carcinoma[J].Int J Cancer.2011 Feb 15;128(4):771-777.
    [15]Hay E D. The extracellular matrix in development and regeneration. An interview with Elizabeth D. Hay[J].2004.48,687-694.
    [16]Prudkin L, Liu D D, Ozburn N C, et al. Epithelial-to-mesenchymal transition in the development and progression of adenocarcinoma and squamous cell carcinoma of the lung[J]. Mod Pathol,2009,22(5):668-678.
    [17]Veeman MT,Axelrod JD,Moon RT. A second canon. Functions and mechanisms of beta-catenin2independent Wnt signaling[J]. Dev Cell,2003,5 (3):367-377.
    [18]Li CY,Cui ZS,Lu Y, et al. The roles of important molecules of Wnt signaling pathway in non2small2cell lung cancer[J]. Zhonghua Bing Li Xue Za Zhi,2005,34(9):599-600.
    [19]Polakis P. Related The adenomatous polyposis coli (APC) tumor suppressor[J]. Biochim Biophys Acta 1997;1332:F127-147.
    [20]Sakanaka C, Weiss JB, Williams LT. Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription[J]. Proc Natl Acad Sci 1998;95:3020-3023.
    [21]Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL 3rd,Lee JJ, Tilghman SM, Gumbiner BM, Costantini F. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation[J]. Cell 1997;90:181-192.
    [22]Berle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway[J]. EMBO J 1997;16:3797-3804.
    [23]Novak A, Hsu SC, Leung-Hagesteijn C, Radeva G, Papkoff J,Montesano R, Roskelley C, Grosschedl R, Dedhar S. Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways[J]. Proc Natl Acad Sci 1998;95:4374-4379.
    [24]Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent reg-ulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase[J]. Proc Natl Acad Sci 1998;95:11211-11216.
    [25]Goto H, Kawano K, Kobayashi I, Sakai H, Yanagisawa S. Expression of cyclin D1 and GSK-3beta and their predictive value of prognosis in squamous cell carcinomas of the tongue[J]. Oral Oncol 2002; 38:549-556.
    [26]Ban KC, Singh H, Krishnan R, Seow HF. GSK-3beta phosph-orylation and alteration of beta-catenin in hepatocellular carcinoma[J]. Cancer Lett 2003; 199:201-208.
    [27]Cui J, Zhou X, Liu Y, Tang Z, Romeih M. Wnt signaling in hepatocellular carcinoma:analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes[J]. J Gastroenterol Hepatol 2003; 18:280-287.
    [28]Eresh S, Riese J, Jackson DB, Bohmann D, Bienz M. A CREB-binding site as a target for decapentaplegic signalling during Drosophila endoderm induction[J]. EMBO J 1997;16:2014-2022.
    [29]Takemaru KI, Moon RT. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression[J]. J Cell Biol 2000; 149:249-254.
    [30]Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates[J]. EMBO J 2000;19:1839-1850.
    [31]McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, et al. (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockinanalysis[J]. EMBO J 24:1571-1583.
    [32]Cheon SS, Nadesan P, Poon R, Alman BA (2004) Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing[J]. Exp Cell Res 293:261-214.
    [33]Holnthoner W, Pillinger M, Groger M, Wolff K, Ashton AW, et al. Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells[J]. J Biol Chem 277:45847-45853.
    [34]Ding Q, Xia W, Liu JC, Yang JY, Lee DF, et al. (2005) Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin[J]. Mol Cell 19:159-170.
    [35]Feldser DM, Kostova KK, Winslow MM, Taylor SE, Cashman C, et al. (2010) Stage-specific sensitivity to p53 restoration during lung cancer progression[J]. Nature 468:572-575.
    [36]Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, et al. (2006) Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation[J]. Int J Cancer 118:290-301.
    [37]Li J, Zhou BP (2011) Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters[J]. BMC Cancer 11:49.
    [38]Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, et al. (2003) Autoregulation of E-cadherin expression by cadherin-cadherin interactions:the roles of beta-catenin signaling, Slug, and MAPK[J]. J Cell Biol 163:847-857.
    [39]Asnaghi L, Vass WC, Quadri R, Day PM, Qian X, et al. (2010) E-cadherin negatively regulates neoplastic growth in non-small cell lung cancer:role of Rho GTPases[J]. Oncogene29:2760-2771.
    [40]Yoshida B A, Sokoloff M M, Welch D R,et al. Metastasis-suppressor genes:a review and perspective on an emerging field[J].J Natl Cancer Inst,2000, (21): 1717-1730.
    [41]Sukoh N, Abe S, Nakajima I, et al. Immunohistochemical distributions of cathepsin B and basement membrane antigens in human lung adenocarcinoma: association with invasion and metastasis[J]. Virchows Arch,1994,424 (1):3338
    [42]Ho C C, Huang P H, Huang H Y, et al. Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation[J]. Am J Pathol,2002, (5):1647-1656.
    [43]Mitsuta K, Yokoyama A, Kondo K, et al. Polymorphism of the MUC1 mucin gene is associated with susceptibility to lung adenocarcinoma and poor prognosis[J]. Oncol Rep,2005, (1):185-189.
    [44]Chang C C, Shih J Y, Jeng Y M, et al. Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis[J].J Natl Cancer Inst,2004, (5):364-375.
    [45]Su J L, Yang C Y, Shih J Y, et al. Knockdown of contactin-1 expression suppresses invasion and metastasis of lung adenocarcinoma[J]. Cancer Res, 2006, (5):2553-2561.
    [46]Shibata T, Uryu S, Kokubu A, et al. Genetic classification of lung adenocarcinoma based on array-based comparative genomic hybridization analysis:its association with clinicopathologic features[J]. Clin Cancer Res, 2005, (17):6177-6185.
    [47]Larsen J E, Pavey S J, Passmore L H, et al. Gene expression signature predicts recurrence in lung adenocarcinoma[J]. Clin Cancer Res,2007, (10):2946-2954
    [48]Nakamura N, Kobayashi K, Nakamoto M, et al. Identification of tumor markers and differentiation markers for molecular diagnosis of lung adenocarcinoma[J]. Oncogene,2006, (30):4245-4255.
    [49]Li CY,Cui ZS,Lu Y, et al. The roles of important molecules of Wnt signaling pathway in non-small cell lung cancer[J]. Zhonghua Bing Li Xue Za Zhi,2005,34(9):599-600.
    [50]Nabais S, Machado JC, Lopes C, Seruca R,Carneiro F, Sobrinho-Simoes M. Patterns of beta-catenin expression in gastric carcinoma:clinicopathological relevance and mutation analysis[J]. Int J Surg Pathol 2003; 11:1-9.
    [51]Osterheld MC, Bian YS, Bosman FT,Benhattar J, Fontolliet C. Beta-catenin expression and its association with prognostic factors in adenocarcinoma developed in Barrett esophagus[J]. Am J Clin Pathol 2002; 117:451-456.
    [52]Lowy AM, Fenoglio-Preiser C, Kim OJ, Kordich J, Gomez A, Knight J, James L, Groden J. Dysregulation of beta-catenin expression correlates with tumor differentiation in pancreatic duct adenocarcinoma[J]. Ann Surg Oncol 2003; 10: 284-290.
    [53]Qiao Q, Ramadani M, Gansauge S, Gansauge F, Leder G, Beger HG. Reduced membranous and ectopic cytoplasmic expression of beta-catenin correlate with cyclin D1 overexpression and poor prognosis in pancreatic cancer[J]. Int J Cancer 2001; 95:194-197.
    [54]Suzuki T, Yano H, Nakashima Y, Nakashima O, Kojiro M. Beta-catenin expression in hepatocellular carcinoma:a possible participation of betacatenin in the dedifferentiation process[J]. J Gastroenterol Hepatol 2002; 17:994-1000.
    [55]Joo M, Lee HK, Kang YK. Expression of beta-catenin in hepatocellular carcinoma in relation to tumor cell proliferation and cyclin D1 expression[J]. J Korean Med Sci 2003; 18:211-217.
    [56]Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R, Miller A, Reeve AE. E-cadherin germline mutations in familial gastric cancer[J]. Nature 1998;392:402-405.
    [57]Gayther SA, Gorringe KL, Ramus SJ, Huntsman D, Roviello F,Grehan N, Machado JC, Pinto E, Seruca R, Halling K, MacLeod P, Powell SM, Jackson CE, Ponder BA, Caldas C. Identification of germ-line E-cadherin mutations in gastric cancer families of European origin[J]. Cancer Res 1998;58:4086-4089.
    [58]Hiraguri S, Godfrey T, Nakamura H, Graff J, Collins C, Shayesteh L, Doggett N, Johnson K, Wheelock M, Herman J, Baylin S, Pinkel D, Gray J. Mechanisms of inactivation of E-cadherin in breast cancer cell lines[J]. Cancer Res 1998;58:1972-1977.
    [59]Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, et al. (2010) The mutation spectrum revealed by paired genome sequences from a lung cancer patient[J]. Nature 465: 473-477.
    [60]Hata A, Katakami N, Yoshioka H, Fujita S, Kunimasa K, et al. Erlotinib after gefitinib failure in relapsed non-small cell lung cancer:Clinical benefit with optimal patient selection[J]. Lung Cancer.2011 Nov;74(2):268-73.
    [61]Longo F, Riquelme A, Rodriguez M, Olmedo ME, Garrido P (2011) Long-term survival in a smoking Caucasian male patient treated with gefitinib for spinal cord compression secondary to lung cancer[J]. Onkologie 34:326-328.
    [62]Rich AL, Tata LJ, Free CM, Stanley RA, Peake MD, et al. (2011) How do patient and hospital features influence outcomes in small-cell lung cancer in England[J]? Br J Cancer 105:746-752.
    [63]Weng JH, Lee JK, Wu MF, Shen CY, Kao PF (2011) Pituitary FDG uptake in a patient of lung cancer with bilateral adrenal metastases causing adrenal cortical insufficiency[J]. Clin Nucl Med 36:731-732.
    [64]DiMeo TA, Anderson K, Phadke P, Fan C, Perou CM, et al. (2009) A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer[J]. Cancer Res 69: 5364-5373.
    [65]Lemjabbar-Alaoui H, Dasari V, Sidhu SS, Mengistab A, Finkbeiner W, et al. (2006) Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer[J]. PLoS One 1:e93.
    [66]Teng Y, Wang X, Wang Y, Ma D (2010) Wnt/beta-catenin signaling regulates cancer stem cells inlung cancer A549 cells[J]. Biochem Biophys Res Commun 392:373-379.
    [1]Hay E D. The extracellular matrix in development and regeneration. An interview with Elizabeth D. Hay[J].2004.48,687-694.
    [2]Nawshad A, Lagamba D, Polad A, et al. Transforming growth factor-beta signaling during epithelial-mesenchymal transformation:implications for embryogenesis and tumor metastasis[J]. Cells Tissues Organs,2005,179(1-2):11-23.
    [3]Thiery J P. Epithelial-mesenchymal transitions in tumour progression[J]. Nat Rev Cancer,2002,2(6):442-454.
    [4]Matsumura T, Makino R, Mitamura K. Frequent down-regulation of E-cadherin by genetic and epigenetic changes in the malignant progression of hepatocellular carcinomas[J]. Clin Cancer Res,2001,7(3):594-599.
    [5]Eger A, Stockinger A, Schaffhauser B, et al. Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity[J]. J Cell Biol,2000,148(1):173-188.
    [6]Kotoh M.Epithelial-mesenchymal transition in gastric cancer[J].Int J Oncol,2005,27(6):1677-1683.
    [7]Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer[J]. Am J Pathol,2002,161(5):1881-1891.
    [8]Bhowmick N A, Ghiassi M, Bakin A, et al. Transforming growth factor-betal mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism[J]. Mol Biol Cell,2001,12(1):27-36.
    [9]Nakajima S, Doi R, Toyoda E, et al. N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma[J]. Clin Cancer Res,2004,10(12 Pt 1):4125-4133.
    [10]Evers E E, Zondag G C, Malliri A, et al. Rho family proteins in cell adhesion and cell migration[J]. Eur J Cancer,2000,36(10):1269-1274.
    [11]Gotzmann J, Mikula M, Eger A, et al. Molecular aspects of epithelial cell plasticity:implications for local tumor invasion and metastasis[J]. Mutat Res,2004,566(1):9-20.
    [12]Fuse T, Kanai Y, Kanai-Azuma M, et al. Conditional activation of RhoA suppresses the epithelial to mesenchymal transition at the primitive streak during mouse gastrulation[J]. Biochem Biophys Res Commun,2004,318(3):665-672.
    [13]Kang Y, Massague J. Epithelial-mesenchymal transitions:twist in development and metastasis[J]. Cell,2004,118(3):277-279.
    [14]Yang J, Mani S A, Donaher J L, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J]. Cell,2004,117(7):927-939.
    [15]Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis[J]. Oncogene,2005,24(37):5742-5750.
    [16]Alcorn J F, Guala A S, Van Der Velden J, et al. Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-betal[J]. J Cell Sci,2008,121(Pt 7):1036-1045.
    [17]Seeker G A, Shortt A J, Sampson E, et al. TGFbeta stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling[J]. Exp Cell Res,2008,314(1):131-142.
    [18]Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity[J]. Science,2005,307(5715):1603-1609.
    [19]Massagu J.TGF-P in cancer[J].Cell,2008.134(2):215-230.
    [20]Sarbassov D D, Ali S M, Sabatini D M. Growing roles for the mTOR pathway[J]. Curr Opin Cell Biol,2005,17(6):596-603.
    [21]Cho H J, Baek K E, Saika S, et al. Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway[J]. Biochem Biophys Res Commun,2007,353(2):337-343.
    [22]Sjoblom T, Jones S, Wood L D, et al. The consensus coding sequences of human breast and colorectal cancers[J]. Science,2006,314(5797):268-274.
    [23]Levy L, Hill C S. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer[J]. Cytokine Growth Factor Rev,2006,17(1-2):41-58.
    [24]Descargues P, Sil A K, Sano Y, et al. IKKalpha is a critical coregulator of a Smad4-independent TGFbeta-Smad2/3 signaling pathway that controls keratinocyte differentiation[J]. Proc Natl Acad Sci U S A,2008,105(7):2487-2492.
    [25]Ahmed S, Nawshad A. Complexity in interpretation of embryonic epithelial-mesenchymal transition in response to transforming growth factor-beta signaling[J]. Cells Tissues Organs,2007,185(1-3):131-145.
    [26]Broderick P, Carvajal-Carmona L, Pittman A M, et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk[J]. Nat Genet,2007,39(11):1315-1317.
    [27]Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition[J]. Cell Res,2009,19(2):156-172.
    [28]Rosivatz E, Becker K F, Kremmer E, et al. Expression and nuclear localization of Snail, an E-cadherin repressor, in adenocarcinomas of the upper gastrointestinal tract[J]. Virchows Arch,2006,448(3):277-287.
    [29]Natalwala A, Spychal R, Tselepis C. Epithelial-mesenchymal transition mediated tumourigenesis in the gastrointestinal tract[J]. World J Gastroenterol,2008,14(24):3792-3797.
    [30]Shirakihara T, Saitoh M, Miyazono K. Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta[J]. Mol Biol Cell,2007,18(9):3533-3544.
    [31]Ansieau S, Bastid J, Doreau A, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence[J]. Cancer Cell,2008,14(1):79-89.
    [32]Thuault S, Valcourt U, Petersen M, et al. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition[J]. J Cell Biol,2006,174(2):175-183.
    [33]David I,Bellovin,Richard C,et al.Altered Localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease[J].Cancer Res,2005,65(23):10938-10945.
    [34]Yook J I, Li X Y, Ota I, et al. Wnt-dependent regulation of the E-cadherin repressor snail[J]. J Biol Chem,2005,280(12):11740-11748.
    [35]Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer[J]. Am J Patho1,2002,161(5):1881-1891.
    [36]Behrens J. The role of the Wnt signalling pathway in colorectal tumorigenesis[J]. Biochem Soc Trans,2005,33(Pt 4):672-675.
    [37]Behrens J, Lustig B. The Wnt connection to tumorigenesis[J]. Int J Dev Biol,2004,48(5-6):477-487.
    [38]张维,刘爽,徐宁志.Wnt信号传导通路及其在肿瘤发生中的作用[J].世界华人消化杂志.2002,10:1201-1205.
    [39]姚婵,来茂德.上皮间质转化(EMT)及其分子机制[J].国际遗传学杂志,2006(04):290-294.
    [40]Timmerman L A, Grego-Bessa J, Raya A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation[J]. Genes Dev,2004,18(1):99-115.
    [41]Grego-Bessa J, Diez J, Timmerman L, et al. Notch and epithelial-mesenchyme transition in development and tumor progression:another turn of the screw[J]. Cell Cycle,2004,3(6):718-721.
    [42]孙力,詹启敏,章文华Notch信号通路与肿瘤[J].国外医学.肿瘤学分册,2004(09):655-658,
    [43]封耀辉,朱运峰,孙伟建Hedghog信号通路与肿瘤发生[J].肿瘤防治研究,2005(12):796-799.
    [44]郭杰芳,高军,李兆申Hedgehog-GLI信号通路在胰腺癌发生中的作用[J].世界华人消化杂志,2007(10):1137-1140.
    [45]Yan W, Fu Y, Tian D, et al. PI3 kinase/Akt signaling mediates epithelial-mesenchymal transition in hypoxic hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun,2009,382(3):631-636.
    [46]Kang M H, Kim J S, Seo J E, et al. BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway[J]. Exp Cell Res,2010,316(1):24-37.
    [47]Skurk C, Maatz H, Rocnik E, et al. Glycogen-Synthase Kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells.[J]. Circ Res,2005,96(3):308-318.
    [48]Thiery J P. Epithelial-mesenchymal transitions in tumour progression[J]. Nat Rev Cancer,2002,2(6):442-454.
    [49]Yang L, Huang J, Ren X, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+myeloid cells that promote metastasis[J]. Cancer Cell,2008,13(1):23-35.
    [50]Joseph M J, Dangi-Garimella S, Shields M A, et al. Slug is a downstream mediator of transforming growth factor-beta1-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells[J]. J Cell Biochem,2009,108(3):726-736.
    [51]Bao J, Wu Z S, Qi Y, et al. [Expression of TGF-beta1 and the mechanism of invasiveness and metastasis induced by TGF-beta1 in breast cancer][J]. Zhonghua Zhong Liu Za Zhi,2009,31(9):679-682.
    [52]Lester R D, Jo M, Montel V, et al. uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells[J]. J Cell Biol,2007,178(3):425-436.
    [53]Wright J A, Richer J K, Goodall G J. microRNAs and EMT in mammary cells and breast cancer[J]. J Mammary Gland Biol Neoplasia,2010,15(2):213-223.
    [54]Beilharz T H, Humphreys D T, Clancy J L, et al. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells[J]. PLoS One,2009,4(8):e6783.
    [55]Yang J, Mani S A, Weinberg R A. Exploring a new twist on tumor metastasis [J]. Cancer Res,2006,66(9):4549-4552.
    [56]Yang J, Mani S A, Donaher J L, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J]. Cell,2004,117(7):927-939.
    [57]Mironchik Y, Jr Winnard P T, Vesuna F, et al. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer[J]. Cancer Res,2005,65(23):10801-10809.
    [58]冯美燕,宁晓明,刘婷,等.Twist在胃癌黏膜组织的表达及在上皮间质转化中的作用[J].现代肿瘤医学,2008(11):1-4.
    [59]Guo K, Li J, Tang J P, et al. Catalytic domain of PRL-3 plays an essential role in tumor metastasis:formation of PRL-3 tumors inside the blood vessels[J]. Cancer Biol Ther,2004,3(10):945-951.
    [60]Li Z R, Wang Z, Zhu B H, et al. Association of tyrosine PRL-3 phosphatase protein expression with peritoneal metastasis of gastric carcinoma and prognosis[J]. Surg Today,2007,37(8):646-651.
    [61]Bardelli A, Saha S, Sager J A, et al. PRL-3 expression in metastatic cancers[J]. Clin Cancer Res,2003,9(15):5607-5615.
    [62]Escriva M, Peiro S, Herranz N, et al. Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis[J]. Mol Cell Biol,2008,28(5):1528-1540.
    [63]Lippman S M, Gibson N, Subbaramaiah K, et al. Combined targeting of the epidermal growth factor receptor and cyclooxygenase-2 pathways [J]. Clin Cancer Res,2005,11(17):6097-6099.
    [64]Tian M, Schiemann W P. The TGF-beta paradox in human cancer:an update[J]. Future Oncol,2009,5(2):259-271.
    [65]Christiansen J J, Rajasekaran A K. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis[J]. Cancer Res,2006,66(17):8319-8326.
    [66]Robson E J, Khaled W T, Abell K, et al. Epithelial-to-mesenchymal transition confers resistance to apoptosis in three murine mammary epithelial cell lines[J]. Differentiation,2006,74(5):254-264.
    [67]Del C G, Murillo M M, Alvarez-Barrientos A, et al. Autocrine production of TGF-beta confers resistance to apoptosis after an epithelial-mesenchymal transition process in hepatocytes:Role of EGF receptor ligands[J]. Exp Cell Res,2006,312(15):2860-2871.
    [68]张育军,陈海珍,赵春丽,等BCAR3诱导乳腺癌上皮间质转化及与癌细胞迁移、侵袭的关系[J].武汉大学学报(医学版),2010(04):471-475.
    [69]Meyer Z S H, Grube M, Dreisbach A, et al. Epidermal growth factor-mediated activation of the map kinase cascade results in altered expression and function of ABCG2 (BCRP)[J]. Drug Metab Dispos,2006,34(4):524-533.
    [70]Jechlinger M, Grunert S, Tamir I H, et al. Expression profiling of epithelial plasticity in tumor progression.[J]. Oncogene,2003,22(46):7155-7169.
    [71]陈伟娟,王辉,唐勇,等.乳腺癌上皮-间质转化后引发BCRP介导的多药耐药的研究[J].癌症,2010(02):159-165.
    [72]O'Brien C A, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.[J]. Nature,2007,445(7123):106-110.
    [73]Ricci-Vitiani L, Lombardi D G, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cell.[J]. Nature,2007,445(7123):111-115.
    [74]Odoux C, Fohrer H, Hoppo T, et al. A stochastic model for cancer stem cell origin inmetastatic colon cancer[J]. Cancer Res,2008,68(17):6932-6941.
    [75]孙正魁,马行天,唐华,等.乳腺癌干细胞上皮-间质转化标志物表达变化及意义[J].实用癌症杂志,2010(02):118-121.
    [76]Mani S A, Guo W, Liao M J, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell,2008,133(4):704-715.
    [77]Hou J M, Krebs M, Ward T, et al. Circulating tumor cells as a window on metastasis biology in lung cancer[J]. Am J Pathol,2011,178(3):989-996.
    [78]Prudkin L, Liu D D, Ozburn N C, et al. Epithelial-to-mesenchymal transition in the development and progression of adenocarcinoma and squamous cell carcinoma of the lung[J]. Mod Pathol,2009,22(5):668-678.
    [79]Jou J, Diehl A M. Epithelial-mesenchymal transitions and hepatocarcinogenesis[J]. J Clin Invest,2010,120(4):1031-1034.
    [80]Lee T K, Poon R T, Yuen A P, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition[J]. Clin Cancer Res,2006,12(18):5369-5376.
    [81]Ding W, You H, Dang H, et al. Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion[J]. Hepatology,2010,52(3):945-953.
    [82]Otsuki S, Inokuchi M, Enjoji M, et al. Vimentin expression is associated with decreased survival in gastric cancer[J]. Oncol Rep,2011,25(5):1235-1242.
    [83]Ru G Q, Wang H J, Xu W J, et al. Upregulation of Twist in gastric carcinoma associated with tumor invasion and poor prognosis[J]. Pathol Oncol Res,2011,17(2):341-347.
    [84]Kim M A, Lee H S, Lee H E, et al. Prognostic importance of epithelial-mesenchymal transition-related protein expression in gastric carcinoma[J]. Histopathology,2009,54(4):442-451.
    [85]Brabletz T, Jung A, Reu S, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment[J]. Proc Natl Acad Sci U S A,2001,98(18):10356-10361.
    [86]Larriba M J, Bonilla F, Munoz A. The transcription factors Snail1 and Snail2 repress vitamin D receptor during colon cancer progression[J]. J Steroid Biochem Mol Biol,2010,121(1-2):106-109.
    [87]Loboda A, Nebozhyn M V, Watters J W, et al. EMT is the dominant program in human colon cancer[J]. BMC Med Genomics,2011,4:9.
    [88]Gjerdrum C, Tiron C, Hoiby T, et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival[J]. Proc Natl Acad Sci U S A,2010,107(3):1124-1129.
    [89]Soini Y, Tuhkanen H, Sironen R, et al. Transcription factors zebl, twist and snail in breast carcinoma[J]. BMC Cancer,2011,11:73.
    [90]Bokobza S M, Ye L, Kynaston H, et al. Growth and differentiation factor 9 (GDF-9) induces epithelial-mesenchymal transition in prostate cancer cells[J]. Mol Cell Biochem,2011,349(1-2):33-40.
    [91]Han G, Lu S L, Li A G, et al. Distinct mechanisms of TGF-betal-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis[J]. J Clin Invest,2005,115(7):1714-1723.
    [92]Ricken A, Lochhead P, Kontogiannea M, et al. Wnt signaling in the ovary: identification and compartmentalized expression of Wnt-2, Wnt-2b, and frizzled-4 mRNAs[J]. Endocrinology,2002,143(7):2741-2749.
    [93]Yang M H, Chang S Y, Chiou S H, et al. Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer[J]. Oncogene,2007,26(10):1459-1467.
    [94]Mani S A, Guo W, Liao M J, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell,2008,133(4):704-715.
    [95]Spira A, Ettinger D S. Multidisciplinary management of lung cancer[J]. N Engl J Med,2004,350(4):379-392.
    [96]Carney D N. Lung cancer--time to move on from chemotherapy[J]. N Engl J Med,2002,346(2):126-128.
    [97]Kasai H, Allen J T, Mason R M, et al. TGF-betal induces human alveolar epithelial to mesenchymal cell transition (EMT)[J]. Respir Res,2005,6:56.
    [98]Keshamouni V G, Michailidis G, Grasso C S, et al. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype[J]. J ProteomeRes,2006,5(5):1143-1154.
    [99]Cordenonsi M, Dupont S, Maretto S, et al. Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads[J]. Cell,2003,113(3):301-314.
    [100]Shintani Y, Maeda M, Chaika N, et al. Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signaling[J]. Am J Respir Cell Mol Biol,2008,38(1):95-104.
    [101]Lu Z, Ghosh S, Wang Z, et al. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion[J]. Cancer Cell,2003,4(6):499-515.
    [102]Masuda A, Kondo M, Saito T, et al. Establishment of human peripheral lung epithelial cell lines (HPL1) retaining differentiated characteristics and responsiveness to epidermal growth factor, hepatocyte growth factor, and transforming growth factor betal[J]. Cancer Res,1997,57(21):4898-4904.
    [103]Blanco D, Vicent S, Elizegi E, et al. Altered expression of adhesion molecules and epithelial-mesenchymal transition in silica-induced rat lung carcinogenesis[J]. Lab Invest,2004,84(8):999-1012.
    [104]Thiery J P, Sleeman J P. Complex networks orchestrate epithelial-mesenchymal transitions[J]. Nat Rev Mol Cell Biol,2006,7(2):131-142.
    [105]Prindull G. Hypothesis:cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells? [J]. Exp Hematol,2005,33(7):738-746.
    [106]Ben-Porath I, Thomson M W, Carey V J, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors[J]. Nat Genet,2008,40(5):499-507.
    [107]Ullmann U, In'T V P, Gilles C, et al. Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions[J]. Mol Hum Reprod,2007,13(1):21-32.
    [108]Fischer A N, Fuchs E, Mikula M, et al. PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression[J]. Oncogene,2007,26(23):3395-3405.
    [109]Tarin D, Thompson E W, Newgreen D F. The fallacy of epithelial mesenchymal transition in neoplasia[J]. Cancer Res,2005,65(14):5996-6000, 6000-6001.
    [110]Christiansen J J, Rajasekaran A K. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis[J]. Cancer Res,2006,66(17):8319-8326.
    [111]Wicki A, Lehembre F, Wick N, et al. Tumor invasion in the absence of epithelial-mesenchymal transition:podoplanin-mediated remodeling of the actin cytoskeleton[J]. Cancer Cell,2006,9(4):261-272.
    [112]Trimboli A J, Fukino K, De Bruin A, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer[J]. Cancer Res,2008,68(3):937-945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700